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Convex sets – Definition

• A set C is convex if for every x, y ∈ C and θ ∈ [0, 1]:

θx+ (1− θ)y ∈ C

• “Every line segment that connect any two points in C is in C”

Nonconvex Convex

NonconvexNonconvex Nonconvex

• Will assume that all sets are nonempty and closed
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Convex combination and convex hull

Convex hull (convS) of S is smallest convex set that contains S:

Mathematical construction:

• Convex combinations of x1, . . . , xk are all points x of the form

x = θ1x1 + θ2x2 + . . .+ θkxk

where θ1 + . . .+ θk = 1 and θi ≥ 0
• Convex hull: set of all convex combinations of points in S
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Affine sets

• Take any two points x, y ∈ V : V is affine if full line in V :

x

y

Lines and planes are affine sets

• Definition: A set V is affine if for every x, y ∈ V and α ∈ R:

αx+ (1− α)y ∈ V (1)

hence convex this holds in particular for α ∈ [0, 1]
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Affine hyperplanes

• Affine hyperplanes in Rn are affine sets that cut Rn in two halves

s

s

• Dimension of affine hyperplane in Rn is n− 1 (If s 6= 0)

• All affine sets in Rn of dimension n− 1 are hyperplanes

• Mathematical definition:

hs,r := {x ∈ Rn : sTx = r}

where s ∈ Rn and r ∈ R, i.e., defined by one affine function

• Vector s is called normal to hyperplane
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Halfspaces

• A halfspace is one of the halves constructed by a hyperplane

s

• Mathematical definition:

Hr,s = {x ∈ Rn : sTx ≤ r}

• Halfspaces are convex, and vector s is called normal to halfspace
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Polytopes

• A polytope is intersection of halfspaces and hyperplanes

• Mathematical representation:

C = {x ∈ Rn : sTi x ≤ ri for i ∈ {1, . . . ,m} and

sTi x = ri for i ∈ {m+ 1, ..., p}}
• Polytopes convex since intersection of convex sets
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Cones

• A set K is a cone if for all x ∈ K and α ≥ 0: αx ∈ K
• If x is in cone K, so is entire ray from origin passing through x:

x

• Examples:

Cone Cone Not cone
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Convex cones

• Cones can be convex or nonconvex:

Nonconvex cone Convex cone

• Convex cone examples:
• Linear subspaces {x ∈ Rn : Ax = 0} (but not affine subspaces)
• Halfspaces based on linear (not affine) hyperplanes {x : sTx ≤ 0}
• Positive semi-definite matrices
{X ∈ Rn×n : X symmetric and zTXz ≥ 0 for all z ∈ Rn}

• Nonnegative orthant {x ∈ Rn : x ≥ 0}
• Second order cone {(x, r) ∈ Rn × R : ‖x‖2 ≤ r}
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Sublevel sets

• Suppose that g : Rn → R is a real-valued function

• The (0th) sublevel set of g is defined as

S := {x ∈ Rn : g(x) ≤ 0}

• Example: construction giving 1D interval S = [a, b]

x

g(x)

a b

• S is a convex set if g is a convex function

• S is not necessarily nonconvex although g is
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Sublevel sets – Examples

• Levelset of convex quadratic function

−3
−2

−1
0

1
2

3
4

{x ∈ Rn : 1
2x

TPx+ qTx+ r ≤ 0}, with P positive definite

• Norm balls {x ∈ Rn : ‖x‖ − r ≤ 0}
• Second-order cone {(x, r) ∈ Rn × R : ‖x‖2 − r ≤ 0}
• Halfspaces {x ∈ Rn : cTx− r ≤ 0}
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Convexity preserving operations

• Intersection (but not union)

• Affine image and inverse affine image of a set
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Intersection and union

• Intersection C = C1 ∩ C2 means x ∈ C if x ∈ C1 and x ∈ C2

• Union C = C1 ∪ C2 means x ∈ C if x ∈ C1 or x ∈ C2

C1 C2

Intersection

C1 C2

Union

• Intersection of any number of, e.g., infinite, convex sets is convex

• Union of convex sets need not be convex
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Image sets and inverse image sets

• Let L(x) = Ax+ b be an affine mapping defined by
• matrix A ∈ Rm×n

• vector b ∈ Rm

• Let C be a convex set in Rn then the image set of C under L

{Ax+ b : x ∈ C}

is convex

• Let D be a convex set in Rm then the inverse image of D under L

{x : Ax+ b ∈ D}

is convex

17

Outline

Definition and convex hull

Examples of convex sets

Convexity preserving operations

Concluding convexity – Examples

Separating and supporting hyperplanes

18

Ways to conclude convexity

• Use convexity definition

• Show that set is sublevel set of a convex function

• Show that set constructed by convexity preserving operations
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Example – Nonnegative orthant

• Nonnegative orthant is set C = {x ∈ Rn : x ≥ 0}
• Prove convexity from definition:

• Let x ≥ 0 and y ≥ 0 be arbitrary points in C
• For all θ ∈ [0, 1]:

θx ≥ 0 and (1− θ)y ≥ 0

• All convex combinations therefore also satisfy

θx+ (1− θ)y ≥ 0

i.e., they belongs to C and the set is convex
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Example – Positive semidefinite cone

• The positive semidefinite (PSD) cone is

{X ∈ Rn×n : X symmetric}
⋂
{X ∈ Rn×n : zTXz ≥ 0 for all z ∈ Rn}

• This can be written as the following intersection over all z ∈ Rn

{X ∈ Rn×n : X symmetric}
⋂

z∈Rn

{X ∈ Rn×n : zTXz ≥ 0}

which, by noting that zTXz = tr(zTXz) = tr(zzTX), is equal to

{X ∈ Rn×n : X symmetric}
⋂

z∈Rn

{X ∈ Rn×n : tr(zzTX) ≥ 0}

where tr(zzTX) ≥ 0 is a halfspace in Rn×n (except when z = 0)
• The PSD cone is convex since it is intersection of

• symmetry set, which is a finite set of (convex) linear equalities
• an infinite number of (convex) halfspaces in Rn×n

• Notation: If X belong to the PSD cone, we write X � 0
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Example – Linear matrix inequality

• Let us consider a linear matrix inequality (LMI) of the form

{x ∈ Rk : A+

k∑

i=1

xiBi � 0}

where A and Bi are fixed matrices in Rn×n

• Convex since inverse image of PSD cone under affine mapping
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Separating hyperplane theorem

• Suppose that C,D ⊆ Rn are two non-intersecting convex sets
• Then there exists hyperplane with C and D in opposite halves

D

C

Example

D

C

Counter-example
D nonconvex

• Mathematical formulation: There exists s 6= 0 and r such that

sTx ≤ r for all x ∈ C
sTx ≥ r for all x ∈ D

• The hyperplane {x : sTx = r} is called separating hyperplane

24
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A strictly separating hyperplane theorem

• Suppose that C,D ⊆ Rn are non-intersecting closed and convex
sets and that one of them is compact (closed and bounded)

• Then there exists hyperplane with strict separation

D

C

Example

D = {(x, y) : y ≥ x−1, x > 0}

C = {(x, y) : y ≤ 0}

Counter example
C,D not compact

• Mathematical formulation: There exists s 6= 0 and r such that

sTx < r for all x ∈ C
sTx > r for all x ∈ D
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Consequence – C is intersection of halfspaces

a closed convex set C is the intersection of all halfspaces that contain it

proof:

• let H be the intersection of all halfspaces containing C
• ⇒: obviously x ∈ C ⇒ x ∈ H
• ⇐: assume x 6∈ C, since C closed and convex and {x} compact

singleton, there exists a strictly separating hyperplane, i.e., x 6∈ H:

C

⇒

C x

⇐
26

Supporting hyperplanes

• Supporting hyperplanes touch set and have full set on one side:

s
s
s

s

• We call the halfspace that contains the set supporting halfspace

• s is called normal vector to C at x

• Definition: Hyperplane {y : sT y = r} supports C at x ∈ bd C if

sTx = r and sT y ≤ r for all y ∈ C
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Supporting hyperplane theorem

Let C be a nonempty convex set and let x ∈ bd(C). Then there exists
a supporting hyperplane to C at x.

• Does not exist for all point on boundary for nonconvex sets

• Many supporting hyperplanes exist for points of nonsmoothness

s
s
s

s
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Normal cone operator

• Normal cone to C at x ∈ bd(C) is set of normals at x

C

• Normal cone operator NC to C takes point input and returns set:
• x ∈ bd(C) ∩ C: set of normal vectors to supporting halfspaces
• x ∈ int(C): returns zero set {0}
• x 6∈ C: returns emptyset ∅

• Mathematical definition: The normal cone operator to a set C is

NC(x) =

{
{s : sT (y − x) ≤ 0 for all y ∈ C} if x ∈ C
∅ else

i.e., vectors that form obtuse angle between s and all y−x, y ∈ C
• For all x ∈ C: the NC outputs a set that contains 0

29
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Extended-valued functions and domain

• We consider extended-valued functions f : Rn → R ∪ {∞} =: R
• Example: Indicator function of interval [a, b]

ι[a,b](x) =

{
0 if a ≤ x ≤ b
∞ else

a b

• The (effective) domain of f : Rn → R ∪ {∞} is the set

dom f = {x ∈ Rn : f(x) <∞}

• (Will always assume domf 6= ∅, this is called proper)
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Convex functions

• Graph below line connecting any two pairs (x, f(x)) and (y, f(y))

convex function nonconvex function

• Function f : Rn → R is convex if for all x, y ∈ Rn and θ ∈ [0, 1]:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

(in extended valued arithmetics)

• A function f is concave if −f is convex
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Epigraphs

• The epigraph of a function f is the set of points above graph

epif

• Mathematical definition:

epif = {(x, r) | f(x) ≤ r}

• The epigraph is a set in Rn × R
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Epigraphs and convexity

• Let f : Rn → R ∪ {∞}
• Then f is convex if and only epif is a convex set in Rn × R

epif epif

• f is called closed (lower semi-continuous) if epif is closed set
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Convex envelope

• Convex envelope of f is largest convex minorizer

f(x)

x

envf(x)

x

• Definition: The convex envelope envf satisfies: envf convex,

envf ≤ f and envf ≥ g for all convex g ≤ f

7

Convex envelope and convex hull

• Assume f : Rn → R ∪ {∞} is closed

• Epigraph of convex envelope of f is closed convex hull of epif

• epif in light gray, epi envf includes dark gray

8
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Affine functions

• Affine functions f : Rn → R are of the form

f(y) = sT y + r

• Affine functions f : Rn → R cut Rn × R in two halves

(s,−1)

f(y) = sT y + r

• s defines slope of function

• Upper halfspace is epigraph with normal vector (s,−1):

epif = {(y, t) : t ≥ sT y + r} = {(y, t) : (s,−1)T (y, t) ≤ −r}

10

Affine functions – Reformulation

• Pick any fixed x ∈ Rn; affine f(y) = sT y + r can be written as

f(y) = f(x) + sT (y − x)

(since r = f(x)− sTx)

(s,−1)

f(y) = f(x) + sT (y − x)

• Affine function of this form is important in convex analysis
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First-order condition for convexity

• A differentiable function f : Rn → R is convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x)

(∇f(x),−1)

(x, f(x))

• Function f has for all x ∈ Rn an affine minorizer that:
• coincides with function f at x
• has slope s defined by ∇f , which coincides the function slope
• is supporting hyperplane to epigraph of f
• defines normal (∇f(x),−1) to epigraph of f
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Second-order condition for convexity

• A twice differentiable function is convex if and only if

∇2f(x) � 0

for all x ∈ Rn (i.e., the Hessian is positive semi-definite)

• “The function has non-negative curvature”

• Nonconvex example: f(x) = xT
[
1 0
0 −1

]
x with ∇2f(x) 6� 0
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Operations that preserve convexity

• Positive sum

• Marginal function

• Supremum of family of convex functions

• Composition rules

• Prespective of convex function

15

Positive sum

• Assume that fj are convex for all j ∈ {1, . . . ,m}
• Assume that there exists x such that fj(x) <∞ for all j

• Then the positive sum

f =

m∑

j=1

tjfj

with tj > 0 is convex

16
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Marginal function

• Let f : Rn × Rm → R ∪ {∞} be convex

• Define the marginal function

g(x) := inf
y
f(x, y)

• The marginal function g is convex if f is
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Supremum of convex functions

• Point-wise supremum of convex functions from family {fj}j∈J :

f(x) := sup{fj(x) : j ∈ J}
• Supremum is over functions in family for fixed x

• Example:

f1

f2

f3

• Convex since epigraph is intersection of convex epigraphs

18

Scalar composition rule

• Consider the function f : Rn → R ∪ {∞} defined as

f(x) = h(g(x))

where h : R→ R ∪ {∞} is convex and g : Rn → R
• Suppose that one of the following holds:

• h is nondecreasing and g is convex
• h is nonincreasing and g is concave
• g is affine

Then f is convex
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Vector composition rule

• Consider the function f : Rn → R ∪ {∞} defined as

f(x) = h(g1(x), g2(x), . . . , gk(x))

where h : Rk → R ∪ {∞} is convex and gi : Rn → R
• Suppose that for each i ∈ {1, . . . , k} one of the following holds:

• h is nondecreasing in the ith argument and gi is convex
• h is nonincreasing in the ith argument and gi is concave
• gi is affine

Then f is convex
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Perspective of function

Let

• f : Rn → R be convex

• t be positive, i.e, t ∈ R+

then the perspective function g : Rn × R→ R, defined by

g(x, t) :=

{
tf(x/t) if t > 0

∞ else

is convex

21
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Ways to conclude convexity

• Use convexity definition

• Show that epigraph is convex set

• Use first or second order condition for convexity

• Show that function constructed by convexity preserving operations
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Conclude convexity – Some examples

• From definition:
• indicator function of convex set C

ιC(x) :=

{
0 if x ∈ C
∞ else

• norms: ‖x‖
• From first- or second-order conditions:

• affine functions: f(x) = sTx+ r
• quadratics: f(x) = 1

2
xTQx with Q positive semi-definite matrix

• From convex epigraph:

• matrix fractional function: f(x, Y ) =

{
xTY −1x if Y � 0

∞ else

• From marginal function:
• (shortest) distance to convex set C: distC(x) = infy∈C(‖y − x‖)

24
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Example – Convexity of norms

Show that f(x) := ‖x‖ is convex from convexity definition

• Norms satisfy the triangle inequality

‖u+ v‖ ≤ ‖u‖+ ‖v‖

• For arbitrary x, y and θ ∈ [0, 1]:

f(θx+ (1− θ)y) = ‖θx+ (1− θ)y‖
≤ ‖θx‖+ ‖(1− θ)y‖
= θ‖x‖+ (1− θ)‖y‖
= θf(x) + (1− θ)f(y)

which is definition of convexity

• Proof uses triangle inequality and θ ∈ [0, 1]
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Example – Matrix fractional function

Show that the matrix fractional function is convex via its epigraph

• The matrix fractional function

f(x, Y ) =

{
xTY −1x if Y � 0

∞ else

• The epigraph satisfies

epif(x, Y, t) = {(x, Y, t) : f(x, Y ) ≤ t}
= {(x, Y, t) : xTY −1x ≤ t and Y � 0}

• Schur complement condition says for Y � 0 that

xTY −1x ≤ t ⇔
[
Y x
xT t

]
� 0

which is a (convex) linear matrix inequality (LMI) in (x, Y, t)

• Epigraph is intersection between LMI and positive definite cone
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Example – Composition with matrix

• Let
• f : Rm → R be convex
• L ∈ Rm×n be a matrix

then composition with a matrix

(f ◦ L)(x) := f(Lx)

is convex

• Vector composition with convex function and affine mappings

27

Example – Image of function under linear mapping

• Let
• f : Rn → R be convex
• L ∈ Rm×n be a matrix

then image function (sometimes called infimal postcomposition)

(Lf)(x) := inf
y
{f(y) : Ly = x}

is convex

• Proof: Define

h(x, y) = f(y) + ι{0}(Ly − x)

which is convex in (x, y), then

(Lf)(x) = inf
y
h(x, y)

which is convex since marginal of convex function
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Example – Nested composition

Show that: f(x) := e‖Lx−b‖
3
2 is convex where L is matrix b vector:

• Let

g1(u) = ‖u‖2, g2(u) =

{
0 if u < 0

u3 if u ≥ 0
, g3(u) = eu

then f(x) = g3(g2(g1(Lx− b)))
• g1(Lx− b) convex: convex g1 and Lx− b affine

• g2(g1(Lx− b)) convex: cvx nondecreasing g2 and cvx g1(Lx− b)
• f(x) convex: convex nondecreasing g3 and convex g2(g1(Lx− b))
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Example – Conjugate function

Show that the conjugate f∗(s) := sup
x∈Rn

(sTx− f(x)) is convex:

• Define (uncountable) index set J and xj such that ∪j∈Jxj = Rn

• Define rj := f(xj) and affine (in s): aj(s) := sTxj − rj
• Therefore f∗(s) = sup(aj(s) : j ∈ J)
• Convex since supremum over family of convex (affine) functions

• Note convexity of f∗ not dependent on convexity of f

30
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Strict convexity

• A function is strictly convex if

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)
for all x 6= y and θ ∈ (0, 1)

• Convexity definition with strict inequality
• No flat (affine) regions
• Example: f(x) = 1/x for x > 0

x

f(x)

32
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Strong convexity

• Let σ > 0
• A function f is σ-strongly convex if f − σ

2 ‖ · ‖22 is convex
• Alternative equivalent definition of σ-strong convexity:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− σ
2 θ(1− θ)‖x− y‖2

holds for every x, y ∈ Rn and θ ∈ [0, 1]
• Strongly convex functions are strictly convex and convex
• Example: f 2-strongly convex since f − ‖ · ‖22 convex:

f(x) f(x)− ‖x‖22
33

Uniqueness of minimizers

• Strictly (strongly) convex functions have unique minimizers

• Strictly convex functions may not have a minimizing point

• Strongly convex functions always have a unique minimizing point

34

First-order condition for strict convexity

• Let f : Rn → R be differentiable
• f is strictly convex if and only if

f(y) > f(x) +∇f(x)T (y − x)
for all x, y ∈ Rn where x 6= y

f(y)

f(x) +∇f(x)T (y − x)

(∇f(x),−1)

(x, f(x))

• Function f has for all x ∈ Rn an affine minorizer that:
• has slope s defined by ∇f
• coincides with function f only at x
• is supporting hyperplane to epigraph of f
• defines normal (∇f(x),−1) to epigraph of f
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First-order condition for strong convexity

• Let f : Rn → R be differentiable
• f is σ-strongly convex with σ > 0 if and only if

f(y) ≥ f(x) +∇f(x)T (y − x) + σ
2 ‖x− y‖22

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x) + σ
2
‖x− y‖22

(∇f(x),−1)

(x, f(x))

• Function f has for all x ∈ Rn a quadratic minorizer that:
• has curvature defined by σ
• coincides with function f at x
• defines normal (∇f(x),−1) to epigraph of f

36

Second-order condition for strict/strong convexity

Let f : Rn → R be twice differentiable

• f is strictly convex if

∇2f(x) � 0

for all x ∈ Rn (i.e., the Hessian is positive definite)

• f is σ-strongly convex if and only if

∇2f(x) � σI

for all x ∈ Rn

37

Examples of strictly/strongly convex functions

Strictly convex

• f(x) = − log(x) + ι>0(x)

• f(x) = 1/x+ ι>0(x)

• f(x) = e−x

Strongly convex

• f(x) = λ
2 ‖x‖22

• f(x) = 1
2x

TQx where Q positive definite

• f(x) = f1(x) + f2(x) where f1 strongly convex and f2 convex

• f(x) = f1(x) + f2(x) where f1, f2 strongly convex

• f(x) = 1
2x

TQx+ ιC(x) where Q positive definite and C convex

38

Proofs for two examples

Strict convexity of f(x) = e−x:

• ∇f(x) = −e−x, ∇2f(x) = e−x > 0 for all x ∈ R

Strong convexity of f(x) = 1
2x

TQx with Q positive definite

• ∇f(x) = Qx, ∇2f(x) = Q � λmin(Q)I where λmin(Q) > 0

39
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Smoothness

• A function is called β-smooth if its gradient is β-Lipschitz:

‖∇f(x)−∇f(y)‖2 ≤ β‖x− y‖2
for all x, y ∈ Rn (it is not necessarily convex)

• Alternative equivalent definition of β-smoothness

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)− β
2 θ(1− θ)‖x− y‖2

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) + β
2 θ(1− θ)‖x− y‖2

hold for every x, y ∈ Rn and θ ∈ [0, 1]
• Smoothness does not imply convexity
• Example:

41

First-order condition for smoothness

• f is β-smooth with β ≥ 0 if and only if

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖22

f(y) ≥ f(x) +∇f(x)T (y − x)− β
2 ‖x− y‖22

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x)− β
2
‖x− y‖22

f(x) +∇f(x)T (y − x) + β
2
‖x− y‖22

• Quadratic upper/lower bounds with curvatures defined by β
• Quadratic bounds coincide with function f at x

42

First-order condition for smooth convex

• f is β-smooth with β ≥ 0 and convex if and only if

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖22

f(y) ≥ f(x) +∇f(x)T (y − x)
for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x) + β
2
‖x− y‖22

f(x) +∇f(x)T (y − x)

(∇f(x),−1)

(x, f(x))

• Quadratic upper bounds and affine lower bound
• Bounds coincide with function f at x
• Quadratic upper bound is called descent lemma

43

Second-order condition for smoothness

Let f : Rn → R be twice differentiable

• f is β-smooth if and only if

−βI � ∇2f(x) � βI

for all x ∈ Rn

• f is β-smooth and convex if and only if

0 � ∇2f(x) � βI

for all x ∈ Rn

44

Convex Optimization Problems

45

Composite optimization form

• We will consider optimization problem on composite form

minimize
x

f(Lx) + g(x)

where f and g are convex functions and L is a matrix

• Convex problem due to convexity preserving operations

• Can model constrained problems via indicator function

• This model format is suitable for many algorithms

46
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Gradients of convex functions

• Recall: A differentiable function f : Rn → R is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x)

(∇f(x),−1)

(x, f(x))

• Function f has for all x ∈ Rn an affine minorizer that:
• has slope s defined by ∇f
• coincides with function f at x
• defines normal (∇f(x),−1) to epigraph of f

• What if function is nondifferentiable?
3

Subdifferentials and subgradients

• Subgradients s define affine minorizers to the function that:

(s,−1)

(s,−1)

• coincide with f at x
• define normal vector (s,−1) to epigraph of f
• can be one of many affine minorizers at nondifferentiable points x

• Subdifferential of f : Rn → R at x is set of vectors s satisfying

f(y) ≥ f(x) + sT (y − x) for all y ∈ Rn, (1)

• Notation:
• subdifferential: ∂f : Rn → 2R

n

(power-set notation 2R
n

)
• subdifferential at x: ∂f(x) = {s : (1) holds}
• elements s ∈ ∂f(x) are called subgradients of f at x

4

Relation to gradient

x2

(∇f(x1),−1)
x1

(∇f(x3),−1)

x3

• If f differentiable at x and ∂f(x) 6= ∅ then ∂f(x) = {∇f(x)}:
• If f convex but not differentiable at x ∈ int domf , then

∂f(x) = cl (convS(x))

where S(x) is set of all s such that ∇f(xk)→ s when xk → x

• In general for convex f : ∂f(x) = cl (convS(x)) +Ndomf (x)

5

Subgradient existence – Convex setting

For finite-valued convex functions, a subgradient exists for every x

• In extended-valued setting, let f : Rn → R ∪ {∞} be convex:
(i) Subgradients exist for all x in relative interior of domf
(ii) Subgradients sometimes exist for x on relative boundary of domf
(iii) No subgradient exists for x outside domf

• Examples for second case, boundary points of domf :

−
√
1− x2 + ι[−1,1](x) x2 + ι[−2,2](x)

• No subgradient (affine minorizer) exists for left function at x = 1

6

Subgradient existence – Nonconvex setting

• Function can be differentiable at x but ∂f(x) = ∅

x1

x2
x3

• x1: ∂f(x1) = {0}, ∇f(x1) = 0
• x2: ∂f(x2) = ∅, ∇f(x2) = 0
• x3: ∂f(x3) = ∅, ∇f(x3) = 0

• Gradient is a local concept, subdifferential is a global property

7

Outline

Subdifferential and subgradient – Definition and basic properties

Monotonicity

Examples

Strong monotonicity and cocoercivity

Fermat’s rule

Subdifferential calculus

Optimality conditions

Proximal operators

8

11



Monotonicity of subdifferential

• Subdifferential operator is monotone:

(sx − sy)T (x− y) ≥ 0

for all sx ∈ ∂f(x) and sy ∈ ∂f(y)

• Proof: Add two copies of subdifferential definition

f(y) ≥ f(x) + sTx (y − x)

with x and y swapped
• ∂f : R→ 2R: Minimum slope 0 and maximum slope ∞

∂f

x

9

Monotonicity beyond subdifferentials

• Let A : Rn → 2R
n

be monotone, i.e.:

(u− v)T (x− y) ≥ 0

for all u ∈ Ax and v ∈ Ay

• If n = 1, then A = ∂f for some function f : R→ R ∪ {∞}
• If n ≥ 2 there exist monotone A that are not subdifferentials

10

Maximal monotonicity

• Let the set gph ∂f := {(x, u) : u ∈ ∂f(x)} be the graph of ∂f

• ∂f is maximally monotone if no other function g exists with

gph ∂f ⊂ gph ∂g,

with strict inclusion

• A result (due to Rockafellar):

f is closed convex if and only if ∂f is maximally monotone

11

Minty’s theorem

• Let ∂f : Rn → 2R
n

and α > 0

• ∂f is maximally monotone if and only if range(αI + ∂f) = Rn

∂f1

x

maximally monotone

∂f2

x

not maximally monotone

∂f1 + αI

x

full range

∂f2 + αI

x

not full range

• Interpretation: No “holes” in gph ∂f

12

Outline

Subdifferential and subgradient – Definition and basic properties

Monotonicity

Examples

Strong monotonicity and cocoercivity

Fermat’s rule

Subdifferential calculus

Optimality conditions

Proximal operators

13

Example – Absolute value

• The absolute value:
f(x) = |x|

• Subdifferential
• For x > 0, f differentiable and ∇f(x) = 1, so ∂f(x) = {1}
• For x < 0, f differentiable and ∇f(x) = −1, so ∂f(x) = {−1}
• For x = 0, f not differentiable, but since f convex:

∂f(0) = cl(convS(0)) = cl(conv({−1, 1}) = [−1, 1]
• The subdifferential operator:

f(x) = |x|

∂f(x)

14

A nonconvex example

• Nonconvex function:

a b

• Subdifferential
• For x > b, f differentiable and ∇f(x) = 1, so ∂f(x) = {1}
• For x < a, f differentiable and ∇f(x) = −1, so ∂f(x) = {−1}
• For x ∈ (a, b), no affine minorizer, ∂f(x) = ∅
• For x = a, f not differentiable, ∂f(x) = [−1, 0]
• For x = b, f not differentiable, ∂f(x) = [0, 1]

• The subdifferential operator:

f(x) = |x|

15

Example – Separable functions

• Consider the separable function f(x) =
∑n
i=1 fi(xi)

• Subdifferential

∂f(x) = {s = (s1, . . . , sn) : si ∈ ∂fi(xi)}

• The subgradient s ∈ ∂f(x) if and only if each si ∈ ∂fi(xi)
• Proof:

• Assume all si ∈ ∂f(xi):

f(y)− f(x) =
n∑

i=1

fi(yi)− fi(xi) ≥
n∑

i=1

si(yi − xi) = sT (y − x)

• Assume sj 6∈ ∂f(xj) and xi = yi for all i 6= j:

fj(yj)− fj(xj) < sj(yj − xj)

which gives

f(y)− f(x) = fj(yj)− fj(xj) < sj(yj − xj) = sT (y − x)
16
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Example – 1-norm

• Consider the 1-norm f(x) = ‖x‖1 =
∑n
i=1 |xi|

• It is a separable function of absolute values

• From previous examples, we conclude that the subdifferential is

∂f(x) =





(s1, . . . , sn) :





si = −1 if xi < 0

si ∈ [−1, 1] if xi = 0

si = 1 if xi > 0





17

Example – 2-norm

• Consider the 2-norm f(x) = ‖x‖2 =
√
‖x‖22

• The function is differentiable everywhere except for when x = 0

• Divide into two cases; x = 0 and x 6= 0

• Subdifferential for x 6= 0: ∂f(x) = {∇f(x)}:
• Let h(u) =

√
u and g(x) = ‖x‖22, then f(x) = (h ◦ g)(x)

• The gradient for all x 6= 0 by chain rule (since h : R+ → R):

∇f(x) = ∇h(g(x))∇g(x) = 1

2
√
‖x‖22

2x =
x

‖x‖2

18

Example cont’d – 2-norm

Subdifferential of ‖x‖2 at x = 0

(i) educated guess of subdifferential from ∂f(0) = cl(convS(0))
• recall S(0) is set of all limit points of (∇f(xk))k∈N when xk → 0
• let xk = tkd with t ∈ (0, 1) and d ∈ Rn\0, then ∇f(xk) = d

‖d‖2• since d arbitrary, (∇f(xk)) can converge to any unit norm vector
• so S(0) = {s : ‖s‖2 = 1} and ∂f(0) = {s : ‖s‖2 ≤ 1}?

(ii) verify using subgradient definition f(y) ≥ f(0) + sT (y− 0) = sT y
• Let ‖s‖2 > 1, then for, e.g., y = 2s

sT y = 2‖s‖22 > 2‖s‖2 = f(y)

so such s are not subgradients
• Let ‖s‖2 ≤ 1, then for all y:

sT y ≤ ‖s‖2‖y‖2 ≤ ‖y‖2 = f(y)

so such s are subgradients

19
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Strong convexity revisited

• Recall that f is σ-strongly convex if f − σ
2 ‖ · ‖22 is convex

• If f is σ-strongly convex then

f(y) ≥ f(x) + sT (y − x) + σ
2 ‖x− y‖22

holds for all x ∈ dom∂f , s ∈ ∂f(x), and y ∈ Rn
• The function has convex quadratic minorizers instead of affine

f(y)

f(x1) + sT1 (y − x1) + σ
2
‖x1 − y‖22x1

(s1,−1)

f(x2) + sT2,1(y − x2) + σ
2
‖x2 − y‖22

(s2,1,−1)

f(x2) + sT2,2(y − x2) + σ
2
‖x2 − y‖22

x2

(s2,2,−1)

• Multiple lower bounds at x2 with subgradients s2,1 and s2,2

21

Strong monotonicity

• If f σ-strongly convex function, then ∂f is σ-strongly monotone:

(sx − sy)T (x− y) ≥ σ‖x− y‖22
for all sx ∈ ∂f(x) and sy ∈ ∂f(y)

• Proof: Add two copies of strong convexity inequality

f(y) ≥ f(x) + sTx (y − x) + σ
2 ‖x− y‖22

with x and y swapped
• ∂f is σ-strongly monotone if and only if ∂f − σI is monotone
• ∂f : R→ 2R: Minimum slope σ and maximum slope ∞

∂f

x

22

Strongly convex functions – An equivalence

The following are equivalent for f : Rn → R ∪ {∞}
(i) f is closed and σ-strongly convex

(ii) ∂f is maximally monotone and σ-strongly monotone

Proof:

(i)⇒(ii): we know this from before
(ii)⇒(i): (ii) ⇒ ∂f − σI = ∂(f − σ

2 ‖ · ‖22) maximally monotone
⇒ f − σ

2 ‖ · ‖22 closed convex
⇒ f closed and σ-strongly convex

23

Smooth convex functions

• A differentiable function f : Rn → R is convex and β-smooth if

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖22

f(y) ≥ f(x) +∇f(x)T (y − x)

hold for all x, y ∈ Rn
• f has convex quadratic majorizers and affine minorizers

f(x1) +∇f(x1)T (y − x1) + β
2
‖x1 − y‖22

x1

(∇f(x2),−1)

f(x2) +∇f(x2)T (y − x2) + β
2
‖x2 − y‖22

x2

(∇f(x2),−1)

f(y)

• Quadratic upper bound is called descent lemma
24
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Cocoercivity of gradient

• Gradient of smooth convex function is monotone and Lipschitz

(∇f(x)−∇f(y))T (x− y) ≥ 0

‖∇f(y)−∇f(x)‖2 ≤ β‖x− y‖2
• ∇f : R→ R: Minimum slope 0 and maximum slope β

∇f(x)

x

• Actually satisfies the stronger 1
β -cocoercivity property:

(∇f(x)−∇f(y))T (x− y) ≥ 1
β ‖∇f(y)−∇f(x)‖22

due to the Baillon-Haddad theorem
25

Smooth convex functions – An equivalence

Let f : Rn → R be differentiable. The following are equivalent:

(i) ∇f is 1
β -cocoercive

(ii) ∇f is maximally monotone and β-Lipschitz continuous

(iii) f is closed convex and satisfies descent lemma (is β-smooth)

Will later connect smooth convexity and strong convexity via conjugates

26

Smooth strongly convex functions

• Let f : Rn → R be differentiable
• f is β-smooth and σ-strongly convex with 0 < σ ≤ β if

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖22

f(y) ≥ f(x) +∇f(x)T (y − x) + σ
2 ‖x− y‖22

hold for all x, y ∈ Rn
• f has quadratic minorizers and quadratic majorizers

f(y)

f(x) +∇f(x)T (y − x) + σ
2
‖x− y‖22

(∇f(x),−1)

(x, f(x))

f(x) +∇f(x)T (y − x) + β
2
‖x− y‖22

• We say that the ratio β
σ is the condition number for the function

27

Gradient of smooth strongly convex function

• Gradient of β-smooth σ-strongly convex function f satisfies

‖∇f(y)−∇f(x)‖2 ≤ β‖x− y‖2
(∇f(x)−∇f(y))T (x− y) ≥ σ‖x− y‖22

so is β-Lipschitz continuous and σ-strongly monotone
• ∇f : R→ R: Minimum slope σ and maximum slope β

∇f(x)

x

• Actually satisfies this stronger property:

(∇f(x)−∇f(y))T (x− y) ≥ 1
β+σ‖∇f(y)−∇f(x)‖22 + σβ

β+σ‖x− y‖22
for all x, y ∈ Rn

28

Proof of stronger property

• f is σ-strongly convex if and only if g := f − σ
2 ‖ · ‖22 is convex

• Since f is β-smooth g is (β − σ)-smooth

• Since g convex and (β − σ)-smooth, ∇g is 1
β−σ -cocoercive:

(∇g(x)−∇g(y))T (x− y) ≥ 1
β−σ ‖∇g(x)−∇g(y)‖

2
2

which by using ∇g = ∇f − σI gives

(∇f(x)−∇f(y))T (x− y)− σ‖x− y‖22 ≥ 1
β−σ ‖∇f(x)−∇f(y)− σ(x− y)‖

2
2

which by expanding the square and rearranging is equivalent to

(∇f(x)−∇f(y))T (x− y) ≥ 1
β+σ
‖∇f(x)−∇f(y)‖22 + σβ

β+σ
‖x− y‖22

29
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Fermat’s rule

Let f : Rn → R ∪ {∞}, then x minimizes f if and only if

0 ∈ ∂f(x)

• Proof: x minimizes f if and only if

f(y) ≥ f(x) = f(x) + 0T (y − x) for all y ∈ Rn

which by definition of subdifferential is equivalent to 0 ∈ ∂f(x)

• Example: several subgradients at solution, including 0

(0,−1)

31

Fermat’s rule – Nonconvex example

• Fermat’s rule holds also for nonconvex functions

• Example:

x1
x2

(0,−1)

• ∂f(x1) = 0 and ∇f(x1) = 0 (global minimum)
• ∂f(x2) = ∅ and ∇f(x2) = 0 (local minimum)

• For nonconvex f , we can typically only hope to find local minima

32
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Subdifferential calculus rules

• Subdifferential of sum ∂(f1 + f2)

• Subdifferential of composition with matrix ∂(g ◦ L)

34

Subdifferential of sum

If f1, f2 closed convex and relint domf1 ∩ relint domf2 6= ∅:
∂(f1 + f2) = ∂f1 + ∂f2

• One direction always holds: if x ∈ dom∂f1 ∩ dom∂f2:

∂(f1 + f2)(x) ⊇ ∂f1(x) + ∂f2(x)

Proof: let si ∈ ∂fi(x), add subdifferential definitions:

f1(y) + f2(y) ≥ f1(x) + f2(x) + (s1 + s2)T (y − x)

i.e. s1 + s2 ∈ ∂(f1 + f2)(x)

• If f1 and f2 differentiable, we have (without convexity of f)

∇(f1 + f2) = ∇f1 +∇f2

35

Subdifferential of composition

If f closed convex and relint dom(f ◦ L) 6= ∅:
∂(f ◦ L)(x) = LT∂f(Lx)

• One direction always holds: If Lx ∈ domf , then

∂(f ◦ L)(x) ⊇ LT∂f(Lx)

Proof: let s ∈ ∂f(Lx), then by definition of subgradient of f :

(f ◦ L)(y) ≥ (f ◦ L)(x) + sT (Ly − Lx) = (f ◦ L)(x) + (LT s)T (y − x)

i.e., LT s ∈ ∂(f ◦ L)(x)

• If f differentiable, we have chain rule (without convexity of f)

∇(f ◦ L)(x) = LT∇f(Lx)

36
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Composite optimization problems

• We consider optimization problems on composite form

minimize
x

f(Lx) + g(x)

where f : Rm → R ∪ {∞}, g : Rn → R ∪ {∞}, and L ∈ Rm×n

• Can model constrained problems via indicator function

• This model format is suitable for many algorithms

38

A sufficient optimality condition

Let f : Rm → R, g : Rn → R, and L ∈ Rm×n then:

minimize f(Lx) + g(x) (1)

is solved by every x ∈ Rn that satisfies

0 ∈ LT∂f(Lx) + ∂g(x) (2)

• Subdifferential calculus inclusions say:

0 ∈ LT∂f(Lx) + ∂g(x) ⊆ ∂((f ◦ L)(x) + g(x))

which by Fermat’s rule is equivalent to x solution to (1)

• Note: (1) can have solution but no x exists that satisfies (2)

39

A necessary and sufficient optimality condition

Let f : Rm → R, g : Rn → R, L ∈ Rm×n with f, g closed convex
and assume relint dom(f ◦ L) ∩ relint domg 6= ∅ then:

minimize f(Lx) + g(x) (1)

is solved by x ∈ Rn if and only if x satisfies

0 ∈ LT∂f(Lx) + ∂g(x) (2)

• Subdifferential calculus equality rules say:

0 ∈ LT∂f(Lx) + ∂g(x) = ∂((f ◦ L)(x) + g(x))

which by Fermat’s rule is equivalent to x solution to (1)

• Algorithms search for x that satisfy 0 ∈ LT∂f(Lx) + ∂g(x)

40
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A comment on constraint qualification

• The condition

relint dom(f ◦ L) ∩ relint domg 6= ∅

is called constraint qualification and referred to as CQ

• It is a mild condition that rarely is not satisfied

dom(f ◦ L)

domg

no solution

dom(f ◦ L)

domg

solution
no CQ

dom(f ◦ L)

domg

solution
CQ

41

Evaluating subgradients of convex functions

• Obviously need to evaluate subdifferentials to solve

0 ∈ LT∂f(Lx) + ∂g(x)

• Explicit evaluation:
• If function is differentiable: ∇f (unique)
• If function is nondifferentiable: compute element in ∂f

• Implicit evaluation:
• Proximal operator (specific element of subdifferential)

42
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Proximal operators

44

Proximal operator – Definition

• Proximal operator of g defined as:

proxγg(z) = argmin
x

(g(x) + 1
2γ ‖x− z‖22)

where γ > 0 is a parameter

• Evaluating prox requires solving optimization problem

• For convex g, prox is well-defined and single-valued
• Why? Objective is strongly convex ⇒ argmin exists and is unique

45

Prox is generalization of projection

• Recall the indicator function of a set C

ιC(x) :=

{
0 if x ∈ C
∞ otherwise

• Then

proxιC (z) = argmin
x

( 1
2‖x− z‖22 + ιC(x))

= argmin
x

( 1
2‖x− z‖22 : x ∈ C)

= argmin
x

(‖x− z‖2 : x ∈ C)

= ΠC(z)

• Projection onto C equals prox of indicator function of C

46

Prox computes a subgradient

• Fermat’s rule on prox definition: x = proxγg(z) if and only if

0 ∈ ∂g(x) + γ−1(x− z) ⇔ γ−1(z − x) ∈ ∂g(x)

Hence, γ−1(z − x) is element in ∂g(x)

• A subgradient ∂g(x) where x = proxγg(z) is computed

47

Prox is 1-cocoercive

• For convex g, the proximal operator is 1-cocoercive:

(x− y)T (proxγg(x)− proxγf (y)) ≥ ‖proxγg(x)− proxγf (y)‖22
• Proof

• Combine monotonicity of ∂g, that for all zu ∈ ∂g(u), zv ∈ ∂g(v):

(zu − zv)T (u− v) ≥ 0

• with Fermat’s rule on prox that evalutes subgradients of g:

u = proxγg(x) if and only if γ−1(x− u) ∈ ∂g(u)
v = proxγg(y) if and only if γ−1(y − v) ∈ ∂g(v)

• which gives, by letting zu = γ−1(x− u) and zv = γ−1(y − v):

γ−1((x− u)− (y − v))T (u− v) ≥ 0

⇔ (x− proxγg(x)− (y − proxγg(y)))
T (proxγg(x)− proxγg(y)) ≥ 0

⇔ (x− y)T (proxγg(x)− proxγg(y)) ≥ ‖proxγg(x)− proxγg(y)‖22
48
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Prox is (firmly) nonexpansive

• We know 1-cocoercivity implies nonexpansiveness (1-Lipschitz)

‖proxγg(x)− proxγg(y)‖2 ≤ ‖x− y‖2
which was shown using Cauchy-Schwarz inequality

• Actually the stronger firm nonexpansive inequality holds

‖proxγg(x)− proxγg(y)‖22 ≤ ‖x− y‖22
− ‖x− proxγg(x)− (y − proxγg(y))‖22

which implies nonexpansiveness
• Proof:

• take 1-cocoercivity and multiply both sides by 2:

2(x− y)T (proxγg(x)− proxγf (y)) ≥ 2‖proxγg(x)− proxγf (y)‖22
• use the following equality with u = proxγg(x) and v = proxγg(y):

(x− y)T (u− v) = 1
2

(
‖x− y‖22 + ‖u− v‖22 − ‖x− y − (u− v)‖22

)

49

Proximal operator – Separable functions

• Let x = (x1, . . . , xn) and g(x) =
∑n
i=1 gi(xi) be separable, then

proxγg(z) = (proxγg1(z1), . . . ,proxγgn(zn))

decomposes into n individual proxes

• Why? Since also ‖ · ‖22 is separable:

proxγg(z) = argmin
x

(g(x) + 1
2γ ‖x− z‖22)

= argmin
x

(
n∑

i=1

(gi(xi) + 1
2γ (xi − zi)2)

)

which gives n independent optimization problems

argmin
xi

(gi(xi) + 1
2γ (xi − zi)2) = proxγgi(zi)

50

Proximal operator – Example 1

• Consider the function g with subdifferential ∂g:

g(x) =

{
−x if x ≤ 0

0 if x ≥ 0
∂g(x) =





−1 if x < 0

[−1, 0] if x = 0

0 if x > 0

• Graphical representations

(−1,−1)

(−1,−1)
(−0.5,−1) (0,−1) (0,−1)

g(x)

x

∂g(x)

x

• Fermat’s rule for x = proxγg(z):

0 ∈ ∂g(x) + γ−1(x− z)
51

Proximal operator – Example 1 cont’d

• Let x < 0, then Fermat’s rule reads

0 = −1 + γ−1(x− z) ⇔ x = z + γ

which is valid (x < 0) if z < −γ
• Let x = 0, then Fermat’s rule reads

0 ∈ [−1, 0] + γ−1(0− z)
which is valid (x = 0) if z ∈ [−γ, 0]

• Let x > 0, then Fermat’s rule reads

0 = 0 + γ−1(x− z) ⇔ x = z

which is valid (x > 0) if z > 0
• The prox satisfies

proxγg(z) =





z + γ if z < −γ
0 if z ∈ [−γ, 0]

z if z > 0

52

Proximal operator – Example 2

Let g(x) = 1
2x

TPx+ qTx with P positive semidefinite

• Gradient satisfies ∇g(x) = Px+ q

• Fermat’s rule for x = proxγg(z):

0 = ∇g(x) + γ−1(x− z) ⇔ 0 = Px+ q + γ−1(x− z)
⇔ (I + γP )x = z − γq
⇔ x = (I + γP )−1(z − γq)

• So proxγg(z) = (I + γP )−1(z − γq)

53

Computational cost

• Evaluating prox requires solving optimization problem

proxγg(z) = argmin
x

(g(x) + 1
2γ ‖x− z‖22)

• Prox often more expensive to evaluate than gradient
• Example: Quadratic g(x) = 1

2
xTPx+ qTx:

proxγg(z) = (I + γP )−1(z − γq), ∇g(z) = Pz + q

• But typically cheap to evaluate for separable functions

• Prox often used for nondifferentiable and separable functions

54
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Conjugate Functions

3

Conjugate function – Definition

• The conjugate function of f : Rn → R ∪ {∞} is defined as

f∗(s) := sup
x

(
sTx− f(x)

)

• Implicit definition via optimization problem

4

Conjugate function properties

• Let ax(s) := sTx− f(x) be affine function parameterized by x:

f∗(s) = sup
x
ax(s)

is supremum of family of affine functions

• Epigraph of f∗ is intersection of epigraphs of (below three) ax

ax1 (s)

ax2 (s)

ax3 (s)

epif∗

• f∗ convex: epigraph intersection of convex halfspaces epi ax
• f∗ closed: epigraph intersection of closed halfspaces epi ax

5

Conjugate interpretation

• Conjugate f∗(s) defines affine minorizer to f with slope s:

f(x)

sT x− f∗(s)

(s,−1)

x∗

−f∗(s)

where −f∗(s) decides constant offset to get support
• Why?

f∗(s) = sup
x

(
sTx− f(x)

)
⇔ f∗(s) ≥ sTx− f(x) for all x

⇔ f(x) ≥ sTx− f∗(s) for all x

• Maximizing argument x∗ gives support: f(x∗) = sTx∗ − f∗(s)
• We have f(x∗) = sTx∗ − f∗(s) if and only if s ∈ ∂f(x∗)

6

Consequence

• Conjugate of f and envf are the same, i.e., f∗ = (envf)∗

f(x)

(s,−1)

sT x− f∗(s)

envf(x)

(s,−1)

sT x− f∗(s)

• Functions have same supporting affine functions

• Epigraphs have same supporting hyperplanes

7
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Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−2,−1)

−2

s

f∗(s)

9

Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−2,−1)

−2 →∞

s

f∗(s)
∞

9

Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−1,−1)

−1

s

f∗(s)

9

Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−1,−1)

−1 = 0

s

f∗(s)

9

Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−0.5,−1)

−0.5

s

f∗(s)

9

Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−0.5,−1)

−0.5 = 0

s

f∗(s)

9

Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(0,−1)

0

s

f∗(s)

9

Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(0,−1)

0 = 0

s

f∗(s)

9
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Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(0.5,−1)

0.5

s

f∗(s)

9

Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(0.5,−1)

0.5 = 0

s

f∗(s)

9

Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(1,−1)

1

s

f∗(s)

9

Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(1,−1)

1 = 0

s

f∗(s)

9

Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(2,−1)

2

s

f∗(s)

9

Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(2,−1)

2 →∞

s

f∗(s)

Conjugate is f∗(s) = ι[−1,1](s)

9

A nonconvex example

• Draw conjugate of f (f(x) =∞ outside points)

(−1, 0)
(0, 0.2)

(1, 0)
x

f(x)

−s s

−0.2s

f∗(s)

• Draw all affine ax(s) and select for each s the max to get f∗(s)

f∗(s) = sup
x
(sx− f(x)) = max(−s− 0, 0s− 0.2, s− 0)

= max(−s,−0.2, s) = |s|

10

A nonconvex example

• Draw conjugate of f (f(x) =∞ outside points)

(−1, 0)
(0, 0.2)

(1, 0)
x

f(x)

−s s

−0.2s

f∗(s)

• Draw all affine ax(s) and select for each s the max to get f∗(s)

f∗(s) = sup
x
(sx− f(x)) = max(−s− 0, 0s− 0.2, s− 0)

= max(−s,−0.2, s) = |s|

10
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Example – Quadratic functions

Let g(x) = 1
2x

TQx+ pTx with Q positive definite (invertible)

• Gradient satisfies ∇g(x) = Qx+ p

• Fermat’s rule for g∗(s) = supx(s
Tx− 1

2x
TQx− pTx):

0 = s−Qx− p ⇔ x = Q−1(s− p)

• So

g∗(s) = sTQ−1(s− p)− 1
2 (s− p)TQ−1QQ−1(s− p) + pTQ−1(s− p)

= 1
2 (s− p)TQ−1(s− p)

11

Example – A piece-wise linear function

• Consider

g(x) =





−x− 1 if x ≤ −1
0 if x ∈ [−1, 1]
x− 1 if x ≥ 1

g(x)

x

• Subdifferential satisfies

∂g(x) =





−1 if x < −1
[−1, 0] if x = −1
0 if x ∈ (−1, 1)
[0, 1] if x = 1

1 if x > 1

∂g(x)

x

12

Example cont’d

• We use g∗(s) = sx− g(x) if s ∈ ∂g(x):
• x < −1: s = −1, hence g∗(−1) = −1x− (−x− 1) = 1
• x = −1: s ∈ [−1, 0] hence g∗(s) = −s− 0 = −s
• x ∈ (−1, 1): s = 0 hence g∗(0) = 0x− 0 = 0
• x = 1: s ∈ [0, 1] hence g∗(s) = s− 0 = s
• x > 1: s = 1 hence g∗(1) = x− (x− 1) = 1

• That is

g∗(s) =

{
−s if s ∈ [−1, 0]
s if s ∈ [0, 1]

• For s < −1 and s > 1, g∗(s) =∞:
• s < −1: let x = t→ −∞ and g∗(s) ≥ ((s+ 1)t+ 1)→∞
• s > 1: let x = t→∞ and g∗(s) ≥ ((s− 1)t+ 1)→∞

13

Example – Separable functions

• Let f(x) =
∑n
i=1 fi(xi) be a separable function, then

f∗(s) =
n∑

i=1

f∗i (si)

is also separable
• Proof:

f∗(s) = sup
x
(sTx−

n∑

i=1

fi(xi))

= sup
x
(
n∑

i=1

(sixi − fi(xi)))

=

n∑

i=1

sup
xi

(sixi − fi(xi))

=

n∑

i=1

f∗i (si)

14

Example – 1-norm

• Let f(x) = ‖x‖1 =
∑n
i=1 |xi| be the 1-norm

• It is a separable sum of absolute values

• Use separable sum formula and that | · |∗ = ι[−1,1]:

f∗(s) =
n∑

i=1

f∗i (si) =
n∑

i=1

ι[−1,1](si) =

{
0 if maxi(|si|) ≤ 1

∞ else

• We have maxi(|si|) = ‖s‖∞, let

B∞(r) = {s : ‖s‖∞ ≤ r}

be the infinity norm ball of radius r, then

f∗(s) = ιB∞(1)(s)

is the indicator function for the unit infinity norm ball

15
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Biconjugate

• Biconjuate f∗∗ := (f∗)∗ is conjugate of conjugate

f∗∗(x) = sup
s
(xT s− f∗(s))

• For every x, it is largest value of all affine minorizers

f(x)

xx0

f(x0)

f∗∗(x0)

• Why?:
• xT s− f∗(s): supporting affine minorizer to f with slope s
• f∗∗(x) picks largest over all these affine minorizers evaluated at x

17

Biconjugate and convex envelope

• Biconjugate is closed convex envelope of f

x

f∗∗(x)

• f∗∗ ≤ f and f∗∗ = f if and only if f (closed and) convex

18
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Biconjugate – Example

• Draw the biconjugate of f (f(x) =∞ outside points)

x

f(x)

(−1, 0)
(0, 0.2)

(1, 0)

x

f∗∗(x)

• Biconjugate is convex envelope of f

• We found before f∗(s) = |s|, and now (f∗)∗(x) = ι[−1,1](x)

• Therefore also ι∗[−1,1](s) = |s|
(since f∗ = (envf)∗ = (f∗∗)∗ =: f∗∗∗)

19

Biconjugate – Example

• Draw the biconjugate of f (f(x) =∞ outside points)

x

f(x)

(−1, 0)
(0, 0.2)

(1, 0)
x

f∗∗(x)

• Biconjugate is convex envelope of f

• We found before f∗(s) = |s|, and now (f∗)∗(x) = ι[−1,1](x)

• Therefore also ι∗[−1,1](s) = |s|
(since f∗ = (envf)∗ = (f∗∗)∗ =: f∗∗∗)
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Fenchel-Young’s inequality

• Going back to conjugate interpretation:

f(x)

sT x− f∗(s)

(s,−1)

x∗

• Fenchel-Youngs’s inequality: f(x) ≥ sTx− f∗(s) for all x, s

• Follows immediately from definition: f∗(s) = supx(s
Tx− f(x))

21

Fenchel-Young’s equality

• When is do we have equality in Fenchel-Young?

f(x) = sTx− f∗(s)

f(x)

sT x− f∗(s)

(s,−1)

x∗

• Fenchel-Young’s equality and equivalence:

f(x∗) = sTx∗ − f∗(s) holds if and only if s ∈ ∂f(x∗)

22

Proof – Fenchel-Young’s equality

f(x) = sTx− f∗(s) holds if and only if s ∈ ∂f(x)

• s ∈ ∂f(x) if and only if (by defintion of subgradient)

f(y) ≥ f(x) + sT (y − x) for all y

⇔ sTx− f(x) ≥ sT y − f(y) for all y

⇔ sTx− f(x) ≥ sup
y

(
sT y − f(y)

)

⇔ sTx− f(x) ≥ f∗(s)

which is Fenchel-Young’s inequality with inequality reversed

• Fenchel-Young’s inequality always holds:

f∗(s) ≥ sTx− f(x)

so we have equality if and only if s ∈ ∂f(x)
23

A subdifferential formula for convex f

Assume f closed convex, then ∂f(x) = Argmaxs(s
Tx− f∗(s))

• Since f∗∗ = f , we have f(x) = sups(x
T s− f∗(s)) and

s∗ ∈ Argmax
s

(xT s− f∗(s)) ⇐⇒ f(x) = xT s∗ − f∗(s∗)

⇐⇒ s∗ ∈ ∂f(x)

• The last equivalence is from previous slide

24

Subdifferential formulas for f ∗

• For general f , we have that

∂f∗(s) = Argmax
x

(sTx− f∗∗(x))

by previous formula and since f∗ closed and convex

• For closed convex f , we have, since f = f∗∗, that

∂f∗(s) = Argmax
x

(sTx− f(x))

25
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Relation between ∂f and ∂f ∗ – General case

s ∈ ∂f(x) implies that x ∈ ∂f∗(s)

• Since f∗∗ ≤ f and s ∈ ∂f(x), Fenchel-Young’s equality gives:

0 = f∗(s) + f(x)− sTx ≥ f∗(s) + f∗∗(x)− sTx ≥ 0

where last step is Fenchel-Young’s inequality

• Hence f∗(s) + f∗∗(x)− sTx = 0 and FY ⇒ x ∈ ∂f∗(s)

26

Inverse relation between ∂f and ∂f ∗ – Convex case

Suppose f closed convex, then s ∈ ∂f(x)⇐⇒ x ∈ ∂f∗(s)

• Using implication on previous slide twice and f∗∗ = f :

s ∈ ∂f(x)⇒ x ∈ ∂f∗(s)⇒ s ∈ ∂f∗∗(x)⇒ s ∈ ∂f(x)

• Another way to write the result is that for closed convex f :

∂f∗ = (∂f)−1

(Definition of inverse of set-valued A: x ∈ A−1u⇐⇒ u ∈ Ax)

27

Example 1 – Relation between ∂f and ∂f ∗

• What is ∂f∗ for below ∂f?

s

x

s ∈ ∂f(x)

s

x

x ∈ ∂f∗(s)

28

Example 1 – Relation between ∂f and ∂f ∗

• What is ∂f∗ for below ∂f?

s

x

s ∈ ∂f(x)

s

x

x ∈ ∂f∗(s)

Since ∂f∗ = (∂f)−1, we flip the figure

28

Example 2 – Relation between ∂f and ∂f ∗

s

x

s ∈ ∂f(x)

s

x

x ∈ ∂f∗(s)

• region with slope σ in ∂f(x) ⇔ region with slope 1
σ in ∂f∗(s)

• Implication: ∂f σ-strong monotone ⇔ ∂f∗(s) σ-cocoercive?
(Recall: σ-cocoercivity ⇔ 1

σ -Lipschitz and monotone)

29
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Cocoercivity and strong monotonicity

∂f : Rn → 2R
n

maximal monotone and σ-strongly monotone
⇐⇒

∂f∗ = ∇f∗ : Rn → Rn single-valued and σ-cocoercive

• σ-strong monotonicity: for all u ∈ ∂f(x) and v ∈ ∂f(y)

(u− v)T (x− y) ≥ σ‖x− y‖22 (1)

or equivalently for all x ∈ ∂f∗(u) and y ∈ ∂f∗(v)
• ∂f∗ is single-valued:

• Assume x ∈ ∂f∗(u) and y ∈ ∂f∗(u), then lhs of (1) 0 and x = y

• ∇f∗ is σ-cocoercive: plug x = ∇f∗(u) and y = ∇f∗(v) into (1)

• That ∂f∗ has full domain follows from Minty’s theorem

31

Duality correspondance

Let f : Rn → R ∪ {∞}. Then the following are equivalent:

(i) f is closed and σ-strongly convex

(ii) ∂f is maximally monotone and σ-strongly monotone

(iii) ∇f∗ is σ-cocoercive

(iv) ∇f∗ is maximally monotone and 1
σ -Lipschitz continuous

(v) f∗ is closed convex and satisfies descent lemma (is 1
σ -smooth)

where ∇f∗ : Rn → Rn and f∗ : Rn → R
Comments:

• (i) ⇔ (ii) and (iii) ⇔ (iv) ⇔ (v): Previous lecture

• (ii) ⇔ (iii): This lecture

• Since f = f∗∗ the result holds with f and f∗ interchanged

• Full proof available on course webpage

32
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Example – Proximal operator is 1-cocoercive

Assume g closed convex, then proxγg is 1-cocoercive

• Prox definition proxγg(z) = argminx(g(x) +
1
2γ ‖x− z‖22)

• Let r = γg + 1
2‖ · ‖22, then

proxγg(z) = argmin
x

(g(x) + 1
2γ ‖x− z‖22)

= argmax
x

(−γg(x)− 1
2‖x− z‖22)

= argmax
x

(zTx− ( 12‖x‖22 + γg(x)))

= argmax
x

(zTx− r(x))

= ∇r∗(z)

where last step is subdifferential formula for r∗ for convex r

• Now, r is 1-strongly convex and ∇r∗ = proxγg is 1-cocoercive

33

Example – Proximal operator for strongly convex g

Assume g is σ-strongly convex, then proxγg is (1 + γσ)-cocoercive

• Let r = γg + 1
2‖ · ‖22, and use proxγg(z) = ∇r∗(z)

• r is (1 + γσ)-strongly convex and ∇r∗ is (1 + γσ)-cocoercive

34
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Moreau decomposition – Statement

Assume g closed convex, then proxg(z) + proxg∗(z) = z

• When g scaled by γ > 0, Moreau decomposition is

z = proxγg(z) + prox(γg)∗(z) = proxγg(z) + γproxγ−1g∗(γ
−1z)

(since prox(γg)∗ = γproxγ−1g∗ ◦ γ−1Id)

• Don’t need to know g∗ to compute proxγg∗

36

Moreau decomposition – Proof

• Let u = z − x
• Fermat’s rule: x = proxg(z) if and only if

0 ∈ ∂g(x) + x− z ⇔ z − x ∈ ∂g(x)
⇔ u ∈ ∂g(x)
⇔ x ∈ ∂g∗(u)
⇔ z − u ∈ ∂g∗(u)
⇔ 0 ∈ ∂g∗(u) + u− z

if and only if u = proxg∗(z) by Fermat’s rule

• Using z = x+ u, we get

z = x+ u = proxg(z) + proxg∗(z)

37

Optimality Conditions and Duality

38
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Composite optimization problem

• Consider primal composite optimization problem

minimize f(Lx) + g(x)

where f, g closed convex and L is a matrix

• We will derive primal-dual optimality conditions and dual problem

40
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Primal optimality condition

Let f : Rm → R, g : Rn → R, L ∈ Rm×n with f, g closed convex
and assume CQ, then:

minimize f(Lx) + g(x)

is solved by x? ∈ Rn if and only if x? satisfies

0 ∈ LT∂f(Lx?) + ∂g(x?)

• Optimality condition implies that vector s exists such that

s ∈ LT∂f(Lx?) and − s ∈ ∂g(x?)

• So CQ implies a subgradient exists for both functions at solution

41

Primal-dual optimality condition 1

• Introduce dual variable µ ∈ ∂f(Lx), then optimality condition

0 ∈ LT ∂f(Lx)︸ ︷︷ ︸
µ

+∂g(x)

is equivalent to

µ ∈ ∂f(Lx)
−LTµ ∈ ∂g(x)

• This is a necessary and sufficient primal-dual optimality condition

• (Primal-dual since involves primal x and dual µ variables)

42

Primal-dual optimality condition 2

• Primal-dual optimality condition

µ ∈ ∂f(Lx)
−LTµ ∈ ∂g(x)

• Using subdifferential inverse:

µ ∈ ∂f(Lx) ⇐⇒ Lx ∈ ∂f∗(µ)

gives equivalent primal dual optimality condition

Lx ∈ ∂f∗(µ)
−LTµ ∈ ∂g(x)

43

Dual optimality condition

• Using subdifferential inverse on other condition

−LTµ ∈ ∂g(x) ⇐⇒ x ∈ ∂g∗(−LTµ)

gives equivalent primal dual optimality condition

Lx ∈ ∂f∗(µ)
x ∈ ∂g∗(−LTµ)

• This is equivalent to that:

0 ∈ ∂f∗(µ)− L∂g∗(−LTµ)︸ ︷︷ ︸
x

which is a dual optimality condition since it involves only µ

44

Dual problem

• The dual optimality condition

0 ∈ ∂f∗(µ)− L∂g∗(−LTµ)

is a sufficient condition for solving the dual problem

minimize f∗(µ) + g∗(−LTµ)

• Have also necessity under CQ on dual, which is mild

45

Why dual problem?

• Sometimes easier to solve than primal

• Only useful if primal solution can be obtained from dual

46

Solving primal from dual

• Assume f, g closed convex and CQ holds

• Assume optimal dual µ known: 0 ∈ ∂f∗(µ)− L∂g∗(−LTµ)
• Optimal primal x must satisfy any and all primal-dual conditions:

{
µ ∈ ∂f(Lx)
−LTµ ∈ ∂g(x)

{
Lx ∈ ∂f∗(µ)
−L∗µ ∈ ∂g(x)

{
µ ∈ ∂f(Lx)
x ∈ ∂g∗(−LTµ)

{
Lx ∈ ∂f∗(µ)
x ∈ ∂g∗(−LTµ)

• If one of these uniquely characterizes x, then must be solution:
• g∗ is differentiable at −LTµ for dual solution µ
• f∗ is differentiable at dual solution µ and L invertible
• · · ·

47

Optimality conditions – Summary

• Assume f, g closed convex and that CQ holds

• Problem minx f(Lx) + g(x) is solved by x if and only if

0 ∈ LT∂f(Lx) + ∂g(x)

• Primal dual necessary and sufficient optimality conditions:
{
µ ∈ ∂f(Lx)
−LTµ ∈ ∂g(x)

{
Lx ∈ ∂f∗(µ)
−LTµ ∈ ∂g(x)

{
µ ∈ ∂f(Lx)
x ∈ ∂g∗(−LTµ)

{
Lx ∈ ∂f∗(µ)
x ∈ ∂g∗(−LTµ)

• Dual optimality condition

0 ∈ ∂f∗(µ)− L∂g∗(−LTµ)

solves dual problem minµ f
∗(µ) + g∗(−LTµ)

48
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Concave dual problem

• We have defined dual as convex minimization problem

minimize
µ

f∗(µ) + g∗(−LTµ)

• Dual problem can be written as concave maximization problem:

maximize
µ

−f∗(µ)− g∗(−LTµ)

• Same solutions but optimal values minus of each other

• Concave formulation gives nicer optimal value comparisons

• To compare, we let the primal and dual optimal values be

p? = inf
x
(f(Lx) + g(x)) and d? = sup

µ
(−f∗(µ)− g∗(−LTµ))

50

Weak duality

Weak duality always holds meaning p? ≥ d?

• We have by Fenchel-Young’s inequality for all µ and x:

f∗(µ) + g∗(−LTµ) ≥ µTLx− f(Lx) + (−LTµ)Tx− g(x)
= −f(Lx)− g(x)

• Negate, maximize lhs over µ, minimize rhs over x, to get

d? = sup
µ
(−f∗(µ)− g∗(−LTµ)) ≤ inf

x
(f(Lx) + g(x)) = p?

51

Strong duality

Assume f, g closed convex, solution x? exists, and CQ
then strong duality holds meaning p? = d?

• Dual µ? and primal x? solutions exist such that

µ? ∈ ∂f(Lx?) and − LTµ? ∈ ∂g(x?)

• We have by Fenchel-Young’s equality:

p? = f(Lx?) + g(x?)

= (µ?)TLx? − f∗(µ?) + (−LTµ?)Tx? − g∗(−LTµ?)
= −f∗(µ?)− g∗(−LTµ?) = d?

52

Dual problem gives lower bound

• Consider again concave dual problem with optimal value

d? = sup
µ
(−f∗(µ)− g∗(−LTµ))

• We know that for all dual variables µ

p? ≥ d? ≥ −f∗(µ)− g∗(−LTµ)

• So can find lower bound to p? by evaluating dual objective

53
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Proximal Gradient Method

Pontus Giselsson
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Composite optimization problems

• We have introduced the composite optimization problem

minimize
x

f(Lx) + g(x)

• Need an algorithm that solves it - proximal gradient method

• We will consider the simpler composite optimization problem

minimize
x

f(x) + g(x)

that gives the former by letting f → f ◦ L

3

Problem assumptions

• Proximal gradient method works, e.g., for problems that satisfy
• f is β-smooth f : Rn → R (not necessarily convex)
• g is closed convex

• Recall that if β-smoothness implies that f satisfies

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖22

f(y) ≥ f(x) +∇f(x)T (y − x)− β
2 ‖y − x‖22

it has convex quadratic upper and concave quadratic lower bounds

• If f in addition is convex, we instead have

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖22

f(y) ≥ f(x) +∇f(x)T (y − x)

where the concave quadratic lower bound is replaced by affine

4

Minimizing upper bound

• Due to β-smoothness of f , we have

f(y) + g(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖22 + g(y)

for all x, y ∈ Rn, i.e., r.h.s. is upper bound to l.h.s.

• Minimizing in every iteration the r.h.s. w.r.t. y for given x gives

v = argmin
y

(
f(x) +∇f(x)T (y − x) + β

2 ‖y − x‖22 + g(y)
)

= argmin
y

(
g(y) + β

2 ‖y − (x− β−1∇f(x))‖22
)

= proxβ−1g(x− β−1∇f(x))

5

Proximal gradient method

• Let us replace β by γ−1
k , x by xk, and v by xk+1 to get:

xk+1 = argmin
y

(
f(xk) +∇f(xk)T (y − xk) + 1

2γk
‖y − xk‖22 + g(y)

)

= argmin
y

(
g(y) + 1

2γk
‖y − (xk − γk∇f(xk))‖22

)

= proxγkg(xk − γk∇f(xk))

• This is exactly the proximal gradient method

• The method replaces f by quadratic approximation and minimizes

• (Note that we need an initial guess x0 to start the iteration)

6

Proximal gradient – Example

• Proximal gradient iterations for problem minimize
x

1
2 (x− a)2 + |x|

• f(x) = 1
2 (x− a)2 is smooth term and g(x) = |x| is nonsmooth

• Iteration: xk+1 = proxγg(xk − γ∇f(xk))

• Note: convergence in finite number of iterations (not always)

x0

x1

x2
x3x4
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Proximal gradient – Special cases

• Proximal gradient method:
• solves minimize

x
(f(x) + g(x))

• iteration: xk+1 = proxγkg(xk − γk∇f(xk))

• Proximal gradient method with g = 0:
• solves minimize

x
(f(x))

• proxγkg(z) = argminx(0 + 1
2γ
‖x− z‖22) = z

• iteration: xk+1 = proxγkg(xk − γk∇f(xk)) = xk − γk∇f(xk)
• reduces to gradient method

• Proximal gradient method with f = 0:
• solves minimize

x
(g(x))

• ∇f(x) = 0
• iteration: xk+1 = proxγkg(xk − γk∇f(xk)) = proxγkg(xk)
• reduces to proximal point method (which is not very useful)

8
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Proximal gradient method – Fixed-point set

• Proximal gradient step

xk+1 = proxγkg(xk − γk∇f(xk))

• If xk+1 = xk, they are in proximal gradient fixed-point set

{x : x = proxγg(x− γ∇f(x))}

• Under some assumptions, algorithm will satisfy xk+1 − xk → 0
• this means that fixed-point equation will be satisfied in limit
• what does it mean for x to be a fixed-point?

10

Proximal gradient – Optimality condition

• Proximal gradient step:

v = proxγg(x− γ∇f(x)) = argmin
y

(g(y) + 1
2γ ‖y − (x− γ∇f(x))‖22︸ ︷︷ ︸

h(y)

)

where v is unique due to strong convexity of h

• Fermat’s rule (since CQ holds) gives v = proxγg(x− γ∇f(x)) iff:

0 ∈ ∂g(v) + ∂h(v)

= ∂g(v) + γ−1(v − (x− γ∇f(x)))

= ∂g(v) +∇f(x) + γ−1(v − x)

since h differentiable

11
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Proximal gradient – Fixed-point characterization

For γ > 0, we have that

x̄ = proxγg(x̄− γ∇f(x̄)) if and only if 0 ∈ ∂g(x̄) +∇f(x̄)

• Proof: the proximal step equivalence

v = proxγg(x− γ∇f(x)) ⇔ 0 ∈ ∂g(v) +∇f(x) + γ−1(v − x)

evaluated at a fixed-point x = v = x̄ reads

x̄ = proxγg(x̄− γ∇f(x̄)) ⇔ 0 ∈ ∂g(x̄) +∇f(x̄)

• We call inclusion 0 ∈ ∂g(x̄) +∇f(x̄) fixed-point characterization

12

Meaning of fixed-point characterization

• What does fixed-point characterization 0 ∈ ∂g(x̄) +∇f(x̄) mean?

• For convex differentiable f , subdifferential ∂f(x) = {∇f(x)} and

0 ∈ ∂f(x̄) + ∂g(x̄) = ∂(f + g)(x̄)

(subdifferential sum rule holds), i.e., fixed-points solve problem

• For nonconvex differentiable f , we might have ∂f(x̄) = ∅
• Fixed-point are not in general global solutions
• Points x̄ that satisfy 0 ∈ ∂g(x̄) +∇f(x̄) are called critical points
• If g = 0, the condition is ∇f(x̄) = 0, i.e., a stationary point

• Quality of fixed-points differs between convex and nonconvex f

13

Conditions on γk for convergence

• We replace in proximal gradient method f(y) by

f(xk) +∇f(xk)T (y − xk) + 1
2γk
‖y − xk‖22

and minimize this plus g(y) over y to get the next iterate

• We know from β-smoothness of f that for all x, y

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖22

• If γk ∈ [ε, 1
β ] with ε > 0, an upper bound is minimized

• Can use γk ∈ [ε, 2
β − ε] and show convergence of some quantity

14

Practical convergence – Example

• Logarithmic y axis of quantity that should go to 0 for convergence
• Linear x axis with iteration number

#10 5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

iteration k

• Fast convergence to medium accuracy, slow from medium to high
• Many iterations may be required

15

Stopping conditions

• For β-smooth f : Rn → R, we can stop algorithm when

1
βuk := 1

β (γ−1
k (xk − xk+1) +∇f(xk+1)−∇f(xk))

is small (notation and reason will be motivated in future lecture)

• This is the plotted quantity on the previous slide

• We can use absolute or relative stopping conditions:
• absolute stopping conditions with small εabs > 0

1
β
‖uk‖2 ≤ εabs or 1

β
‖uk‖2 ≤ εabs

√
n

• relative stopping condition with small εrel, ε > 0:

1
β

‖uk‖2
‖xk‖2+β−1‖∇f(xk)‖2+ε

≤ εrel

• Problem considered solved to optimality if, say, 1
β ‖uk‖2 ≤ 10−6

• Often lower accuracy of 10−3 or 10−4 is enough

16
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Applying proximal gradient to primal problems

Problem minimize
x

f(x) + g(x):

• Assumptions:
• f smooth
• g closed convex and prox friendly1

• Algorithm: xk+1 = proxγkg(xk − γk∇f(xk))

Problem minimize
x

f(Lx) + g(x):

• Assumptions:
• f smooth (implies f ◦ L smooth)
• g closed convex and prox friendly1

• Gradient ∇(f ◦ L)(x) = LT∇f(Lx)

• Algorithm: xk+1 = proxγkg(xk − γkLT∇f(Lxk))

1 Prox friendly: proximal operator cheap to evaluate, e.g., g separable
18

Applying proximal gradient to dual problem

• Let us apply the proximal gradient method to the dual problem

minimize
µ

f∗(µ) + g∗(−LTµ)

• Assumptions:
• f : closed convex and prox friendly
• g: σ-strongly convex

• Why these assumptions?
• f∗: closed convex and prox friendly

• g∗ ◦ −LT :
‖L‖22
σ

-smooth and convex

• Algorithm:

µk+1 = proxγkf∗(µk − γk∇(g∗ ◦ −LT )(µk))

19
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Dual proximal gradient method – Explicit version 1

• We will make the dual proximal gradient method more explicit

µk+1 = proxγkf∗(µk − γk∇(g∗ ◦ −LT )(µk))

• Use ∇(g∗ ◦ −LT )(µ) = −L∇g∗(−LTµ) to get

xk = ∇g∗(−LTµk)

µk+1 = proxγkf∗(µk + γkLxk)

20

Dual proximal gradient method – Explicit version 2

• Restating the previous formulation

xk = ∇g∗(−LTµk)

µk+1 = proxγkf∗(µk + γkLxk)

• Use Moreau decomposition for prox:

proxγf∗(v) = v − γproxγ−1f (γ−1v)

to get

xk = ∇g∗(−LTµk)

vk = µk + γkLxk

µk+1 = vk − γkproxγ−1
k f (γ−1

k vk)

21

Dual proximal gradient method – Explicit version 3

• Restating the previous formulation

xk = ∇g∗(−LTµk)

vk = µk + γkLxk

µk+1 = vk − γkproxγ−1
k f (γ−1

k vk)

• Use subdifferential formula, since g∗ differentiable:

∇g∗(ν) = argmax
x

(νTx− g(x)) = argmin
x

(g(x)− νTx)

with ν = −LTµk to get

xk = argmin
x

(g(x) + (µk)TLx)

vk = µk + γkLxk

µk+1 = vk − γkproxγ−1
k f (γ−1

k vk)

• Can implement method without computing conjugate functions

22

Dual proximal gradient method – Primal recovery

• Can we recover a primal solution from dual prox grad method?

• Let us use explicit version 1

xk = ∇g∗(−LTµk)

µk+1 = proxγkf∗(µk + γkLxk)

and assume we have found fixed-point (x̄, µ̄): for some γ̄ > 0,

x̄ = ∇g∗(−LT µ̄)

µ̄ = proxγ̄f∗(µ̄+ γ̄Lx̄)

• Fermat’s rule for proximal step

0 ∈ ∂f∗(µ̄) + γ̄−1(µ̄− (µ̄+ γ̄Lx̄)) = ∂f∗(µ̄)− Lx̄

is with x̄ = ∇g∗(−LT µ̄) a primal-dual optimality condition

• So xk will solve primal problem if algorithm converges

23

Problems that prox-grad cannot solve

• Problem minimize
x

f(x) + g(x)

• Assumptions: f and g convex but nondifferentiable

• No term differentiable, another method must be used:
• Subgradient method
• Douglas-Rachford splitting
• Primal-dual methods

24

Problems that prox-grad cannot solve efficiently

• Problem minimize
x

f(x) + g(Lx)

• Assumptions:
• f smooth
• g nonsmooth convex
• L arbitrary structured matrix

• Can apply proximal gradient method

xk+1 = argmin
y

(g(Ly) + 1
2γk
‖y − (xk − γk∇f(xk))‖22)

but proximal operator of g ◦ L

proxγ(g◦L)(z) = argmin
x

(g(Lx) + 1
2γ ‖x− z‖22)

often not “prox friendly”, i.e., it is expensive to evaluate

25
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Machine learning

• Machine learning can very roughly be divided into:
• Supervised learning
• Unsupervised learning
• Semisupervised learning (between supervised and unsupervised)
• Reinforcement learning

• We will focus on supervised learning

3

Supervised learning

• Let (x, y) represent object and label pairs
• Object x ∈ X ⊆ Rn
• Label y ∈ Y ⊆ RK

• Available: Labeled training data (training set) {(xi, yi)}Ni=1

• Data xi ∈ Rn, or examples (often n large)
• Labels yi ∈ RK , or response variables (often K = 1)

Objective: Find a model (function) m(x):

• that takes data (example, object) x as input

• and predicts corresponding label (response variable) y

How?:

• learn m from training data, but should generalize to all (x, y)

4

Relation to optimization

Training the “machine” m consists in solving optimization problem

5

Regression vs Classification

There are two main types of supervised learning tasks:

• Regression:
• Predicts quantities
• Real-valued labels y ∈ Y = RK (will mainly consider K = 1)

• Classification:
• Predicts class belonging
• Finite number of class labels, e.g., y ∈ Y = {1, 2, . . . , k}

6

Examples of data and label pairs

Data Label R/C
text in email spam? C
dna blood cell concentration R
dna cancer? C
image cat or dog C
advertisement display click? C
image of handwritten digit digit C
house address selling cost R
stock price R
sport analytics winner C
speech representation spoken word C

R/C is for regression or classification

7

In this course

Lectures will cover different supervised learning methods:

• Classical methods with convex training problems
• Least squares (this lecture)
• Logistic regression
• Support vector machines

• Deep learning methods with nonconvex training problem

Highlight difference:

• Deep learning (specific) nonlinear model instead of linear

8
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Notation

• (Primal) Optimization variable notation:
• Optimization literature: x, y, z (as in first part of course)
• Statistics literature: β
• Machine learning literature: θ, w, b

• Reason: data, labels in statistics and machine learning are x, y

• Will use machine learning notation in these lectures

• We collect training data in matrices (one example per row)

X =



xT1
...
xTN


 Y =



yT1
...
yTN




• Columns Xj of data matrix X = [X1, . . . , Xn] are called features

9
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Regression training problem

• Objective: Find data model m such that for all (x, y):

m(x)− y ≈ 0

• Let model output u = m(x); Examples of data misfit losses

L(u, y) = 1
2 (u− y)2

L(u, y) = |u− y|

L(u, y) =

{
1
2 (u− y)2 if |u− v| ≤ c
c(|u− y| − c/2) else

u− y
Square

u− y
1-norm

u− y
Huber

• Training: find model m that minimizes sum of training set losses

minimize
m

N∑

i=1

L(m(xi), yi)
11

Supervised learning – Least squares

• Parameterize model m and set a linear (affine) structure

m(x; θ) = wTx+ b

where θ = (w, b) are parameters (also called weights)

• Training: find model parameters that minimize training cost

minimize
θ

N∑

i=1

L(m(xi; θ), yi) = 1
2

N∑

i=1

(wTxi + b− yi)2

(note: optimization over model parameters θ)

• Once trained, predict response of new input x as ŷ = wTx+ b

12

Example – Least squares

• Find affine function parameters that fit data:

variable x

re
sp
o
n
se
y
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Example – Least squares

• Find affine function parameters that fit data:

variable x

re
sp
o
n
se
y

Data points (x, y) marked with ( ), LS model wx+ b ( )

Least squares finds affine function that minimizes squared distance 13

Solving for constant term

• Constant term b also called bias term or intercept

• What is optimal b?

minimize
w,b

1
2

N∑

i=1

(wTxi + b− yi)2

• Optimality condition w.r.t. b (gradient w.r.t. b is 0):

0 = Nb+

N∑

i=1

(wTxi − yi) ⇔ b = ȳ − wT x̄

where x̄ = 1
N

∑N
i=1 xi and ȳ = 1

N

∑N
i=1 yi are mean values

14
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Equivalent problem

• Plugging in optimal b = ȳ − wT x̄ in least squares estimate gives

minimize
w,b

1
2

N∑

i=1

(wTxi + b− yi)2 = 1
2

N∑

i=1

(wT (xi − x̄)− (yi − ȳ))2

• Let x̃i = xi − x̄ and ỹi = yi − ȳ, then it is equivalent to solve

minimize
w

1
2

N∑

i=1

(wT x̃i − ỹi)2 = 1
2‖Xw − Y ‖22

where X and Y now contain all x̃i and ỹi respectively

• Obviously x̃i and ỹi have zero averages (by construction)

• Will often assume averages subtracted from data and responses

15

Least squares – Solution

• Training problem

minimize
w

1
2‖Xw − Y ‖22

• Strongly convex if X full column rank
• Features linearly independent and more examples than features
• Consequences: XTX is invertible and solution exists and is unique

• Optimal w satisfies (set gradient to zero)

0 = XTXw −XTY

if X full column rank, then unique solution w = (XTX)−1XTY

16
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Nonaffine example

• What if data that cannot be well approximated by affine mapping?

variable x

re
sp
o
n
se
y
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o
n
se
y

18

Adding nonlinear features

• A linear model is not rich enough to model relationship

• Try, e.g., a quadratic model

m(x; θ) = b+

n∑

i=1

wixi +

n∑

i=1

i∑

j=1

qijxixj

where x = (x1, . . . , xn) and parameters θ = (b, w, q)

• For x ∈ R2, the model is

m(x; θ) = b+ w1x1 + w2x2 + q11x
2
1 + q12x1x2 + q22x

2
2 = θTφ(x)

where x = (x1, x2) and

θ = (b, w1, w2, q11, q12, q22)

φ(x) = (1, x1, x2, x
2
1, x1x2, x

2
2)

• Add nonlinear features φ(x), but model still linear in parameter θ

19

Least squares with nonlinear features

• Can, of course, use other nonlinear feature maps φ
• Gives models m(x; θ) = θTφ(x) with increased fitting capacity
• Use least squares estimate with new model

minimize
θ

1
2

N∑

i=1

(m(xi; θ)− yi)2 = 1
2

N∑

i=1

(θTφ(xi)− yi)2

which is still convex since φ does not depend on θ!
• Build new data matrix (with one column per feature in φ)

X =



φ(x1)T

...
φ(xN )T




to arrive at least squares formulation

minimize
θ

1
2‖Xθ − Y ‖22

• The more features, the more parameters θ to optimize (lifting)

20
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 1, J = 0.635, ‖θ‖2 = 0.60
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 2, J = 0.113, ‖θ‖2 = 0.94
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 3, J = 0.112, ‖θ‖2 = 0.96
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 4, J = 0.108, ‖θ‖2 = 0.83
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 5, J = 0.105, ‖θ‖2 = 1.27
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 6, J = 0.075, ‖θ‖2 = 5.46

21

Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 7, J = 0.028, ‖θ‖2 = 22.5

21
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 8, J = 0.026, ‖θ‖2 = 26.6

21

Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 9, J = 0.001, ‖θ‖2 = 147.5

21

Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 10, J = 0.000, ‖θ‖2 = 167.8
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Generalization and overfitting

• Generalization: How well does model perform on unseen data

• Overfitting: Model explains training data, but not unseen data

• How to reduce overfitting/improve generalization?

23

Tikhonov Regularization

• Example indicates: Reducing ‖θ‖2 seems to reduce overfitting

• Least squares with Tikhonov regularization:

minimize
θ

1
2‖Xθ − Y ‖22 + λ

2 ‖θ‖22

• Regularization parameter λ ≥ 0 controls fit vs model expressivity

• Optimization problem called ridge regression in statistics

• (Could regularize with ‖θ‖2, but square easier to solve)

• (Don’t regularize b – constant data offset gives different solution)

24

Ridge Regression – Solution

• Recall ridge regression problem for given λ:

minimize
θ

1
2‖Xθ − Y ‖22 + λ

2 ‖θ‖22

• Objective λ-strongly convex for all λ > 0, hence unique solution

• Objective is differentiable, Fermat’s rule:

0 = XT (Xθ − Y ) + λθ ⇐⇒ (XTX + λI)θ = XTY

⇐⇒ θ = (XTX + λI)−1XTY

25

Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

26
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Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 10−5, J = 0.017, ‖θ‖2 = 20.2

26

Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 6.0 · 10−5, J = 0.023, ‖θ‖2 = 12.2

26

Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 3.6 · 10−4, J = 0.04, ‖θ‖2 = 6.21

26

Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 2.2 · 10−3, J = 0.064, ‖θ‖2 = 2.43

26

Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 1.3 · 10−2, J = 0.086, ‖θ‖2 = 1.10

26

Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 7.7 · 10−2, J = 0.109, ‖θ‖2 = 0.63

26

Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 0.46, J = 0.15, ‖θ‖2 = 0.43

26

Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 2.8, J = 0.29, ‖θ‖2 = 0.26

26
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Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 16.7, J = 0.68, ‖θ‖2 = 0.091

26

Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 100, J = 0.92, ‖θ‖2 = 0.019

26
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Selecting model hyperparameters

• Parameters in machine learning models are called hyperparameters

• Ridge model has polynomial order and λ as hyperparameters

• How to select hyperparameters?

28

Holdout

• Randomize data and assign to train, validate, or test set

Train Validate Test

Training set:

• Solve training problems with different hyperparameters

Validation set:

• Estimate generalization performance of all trained models
• Use this to select model that seems to generalize best

Test set:

• Final assessment on how chosen model generalizes to unseen data
• Not for model selection, then final assessment too optimistic

29

Holdout – Comments

• Typical division between sets 50/25/25 (or 70/20/10)

• Sometimes no test set (then no assessment of final model)

• If no test set, then validation set often called test set

• Can work well if lots of data, if less, use (k-fold) cross validation

30

k-fold cross validation

• Similar to hold out – divide first into training/validate and test set

• Divide training/validate set into k data chunks

• Train k models with k − 1 chunks, use k:th chunk for validation

• Loop

1. Set hyperparameters and train all k models
2. Evaluate generalization score on its validation data
3. Sum scores to get model performance

• Select final model hyperparameters based on best score

• Simpler model with slightly worse score may generalize better

• Estimate generalization performance via test set

31

4-fold cross validation – Graphics

Train/Validate Test

Validate Train Train Train Test

Train Validate Train Train Test

Train Train Validate Train Test

Train Train Train Validate Test

32
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Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y
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Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 10−5, Jt = 0.017, Jv = 0.422
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Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 6.0 · 10−5, Jt = 0.023, Jv = 0.358

33

Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 3.6 · 10−4, Jt = 0.04, Jv = 0.293

33

Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 2.2 · 10−3, Jt = 0.064, Jv = 0.260

33

Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 1.3 · 10−2, Jt = 0.086, Jv = 0.252

33

Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 7.7 · 10−2, Jt = 0.109, Jv = 0.260

33

Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 0.46, Jt = 0.15, Jv = 0.300

33
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Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 2.8, Jt = 0.29, Jv = 0.429

33

Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 16.7, Jt = 0.68, Jv = 0.716

33

Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 100, Jt = 0.92, Jv = 0.887

33

Selecting model

• Average training and test error vs model complexity
• Average training error smaller than average test error
• Large λ (left) model not rich enough
• Small λ (right) model too rich (overfitting)

Increasing model complexity, λ↘

E
rr
or

Train error

Test error

34
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Feature selection

• Assume X ∈ Rm×n with m < n (fewer examples than features)

• Want to find a subset of features that explains data well

• Example: Which genes in genome control eyecolor

36

Lasso

• Feature selection by regularizing least squares with 1-norm:

minimize
w

1
2‖Xw − Y ‖22 + λ‖w‖1

• Problem can be written as

minimize
w

1
2

∥∥∥∥∥
n∑

i=1

wiXi − Y
∥∥∥∥∥

2

2

+ λ‖w‖1

if wi = 0, then feature Xi not important

• The 1-norm promotes sparsity (many 0 variables) in solution

• It also reduces size (shrinks) w (like ‖ · ‖22 regularization)

• Problem is called the Lasso problem

37

Example – Lasso

• Data X ∈ R30×200, Lasso solution for different λ

so
lu

ti
on

λ
0 2 4 6 8 10 12 14

−0.25

−0.2

−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

0.25

• For large enough λ solution w = 0
• More nonzero elements in solution as λ decreases
• For small λ, 30 (nbr examples) nonzero wi (i.e., 170 wi = 0)

38
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Lasso and correlated features

• Assume two equal features exist, e.g., X1 = X2, lasso problem is

minimize 1
2

∥∥∥∥∥(w1 + w2)X1 +
n∑

i=3

wiXi − Y
∥∥∥∥∥

2

2

+ λ(|w1|+ |w2|+ ‖w3:n‖1)

• Assume w∗ solves the problem and let ∆ := w∗
1 + w∗

2 > 0 (wlog)
• Then all w1 ∈ [0,∆] with w2 = ∆− w1 solves problem:

• quadratic cost unchanged since sum w1 + w2 still ∆
• the remainder of the regularization part reduces to

min
w1

λ(|w1|+ |∆− w1|)

0 ∆

• For almost correlated features:
• often only w1 or w2 nonzero (the one with slightly better fit)
• however, features highly correlated, if X1 explains data so does X2

39

Elastic net

• Add Tikhonov regularization to the Lasso

minimize 1
2‖Xw − Y ‖2 + λ1‖w‖1 + λ2

2 ‖w‖22
• This problem is called elastic net in statistics

• Can perform better with correlated features

40

Elastic net and correlated features

• Assume equal features X1 = X2 and that w∗ solves the elastic net

• Let ∆ := w∗
1 + w∗

2 > 0 (wlog), then w∗
1 = w∗

2 = ∆
2

• Data fit cost still unchanged for w2 = ∆− w1 with w1 ∈ [0,∆]
• Remaining (regularization) part is

min
w1

λ1(|w1|+ |∆− w1|) + λ2(w2
1 + (∆− w1)2)

0 ∆

which is minimized in the middle at w1 = w2 = ∆
2

• For highly correlated features, both (or none) probably selected

41

Group lasso

• Sometimes want groups of variables to be 0 or nonzero

• Introduce blocks w = (w1, . . . , wp) where wi ∈ Rni

• The group Lasso problem is

minimize 1
2‖Xw − Y ‖22 + λ

p∑

i=1

‖wi‖2

(note ‖ · ‖2-norm without square)

• With all ni = 1, it reduces to the Lasso

• Promotes block sparsity, meaning full block wi ∈ Rni would be 0

42
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Composite optimization

• Least squares problems are convex problems of the form

minimize
θ

f(Xθ) + g(θ),

where
• f = 1

2
‖ · −Y ‖22 is data misfit term

• X is training data matrix (potentially extended with features)
• g is regularization term (1-norm, squared 2-norm, group lasso)

• Function properties
• f is 1-strongly convex and 1-smooth and f ◦X is ‖X‖22-smooth
• g is convex and possibly nondifferentiable

• Gradient ∇(f ◦X)(θ) = XT (Xθ − Y )

44
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Logistic Regression

Pontus Giselsson

1
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2

Classification

• Let (x, y) represent object and label pairs
• Object x ∈ X ⊆ Rn
• Label y ∈ Y = {1, . . . ,K} that corresponds to K different classes

• Available: Labeled training data (training set) {(xi, yi)}Ni=1

Objective: Find parameterized model (function) m(x; θ):

• that takes data (example, object) x as input

• and predicts corresponding label (class) y ∈ {1, . . . ,K}
How?:

• learn parameters θ by solving training problem with training data

minimize
θ

N∑

i=1

L(m(xi; θ), yi)

with some loss function L

3

Binary classification

• Labels y = 0 or y = 1 (alternatively y = −1 or y = 1)

• Training problem

minimize
θ

N∑

i=1

L(m(xi; θ), yi)

• Design loss L to train model parameters θ such that:
• m(xi; θ) < 0 for pairs (xi, yi) where yi = 0
• m(xi; θ) > 0 for pairs (xi, yi) where yi = 1

• Predict class belonging for new data points x with trained θ∗:
• m(x; θ∗) < 0 predict class y = 0
• m(x; θ∗) > 0 predict class y = 1

objective is that this prediction is accurate on unseen data

4

Binary classification – Cost functions

• Different cost functions L can be used:
• y = 0: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ), 0)

nonconvex (Neyman Pearson loss)

m(x; θ)

L(m(x; θ), 1)

5

Binary classification – Cost functions

• Different cost functions L can be used:
• y = 0: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ), 0)

L(u, y) = max(0, u)− yu

m(x; θ)

L(m(x; θ), 1)

5

Binary classification – Cost functions

• Different cost functions L can be used:
• y = −1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ),−1)

L(u, y) = max(0, 1− yu) (hinge loss used in SVM)

m(x; θ)

L(m(x; θ), 1)

5

Binary classification – Cost functions

• Different cost functions L can be used:
• y = −1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ),−1)

L(u, y) = max(0, 1− yu)2 (squared hinge loss)

m(x; θ)

L(m(x; θ), 1)

5
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Binary classification – Cost functions

• Different cost functions L can be used:
• y = 0: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ), 0)

L(u, y) = log(1 + eu)− yu (logistic loss)

m(x; θ)

L(m(x; θ), 1)

5
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6

Logistic regression

• Logistic regression uses:
• affine parameterized model m(x; θ) = wTx+ b (where θ = (w, b))
• loss function L(u, y) = log(1 + eu)− yu (if labels y = 0, y = 1)

• Training problem, find model parameters by solving:

minimize
θ

N∑

i=1

L(m(xi; θ), yi) =
N∑

i=1

(
log(1 + ex

T
i w+b)− yi(xTi w + b)

)

• Training problem convex in θ = (w, b) since:
• model m(x; θ) is affine in θ
• loss function L(u, y) is convex in u

u

L(u, 0)

u

L(u, 1)

7

Prediction

• Use trained model m to predict label y for unseen data point x
• Since affine model m(x; θ) = wTx+ b, prediction for x becomes:

• If wTx+ b < 0, predict corresponding label y = 0
• If wTx+ b > 0, predict corresponding label y = 1
• If wTx+ b = 0, predict either y = 0 or y = 1

• A hyperplane (decision boundary) separates class predictions:

H := {x : wTx+ b = 0}

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

m(x; θ) < 0m(x; θ) > 0

H
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Training problem interpretation

• Every parameter choice θ = (w, b) gives hyperplane in data space:

H := {x : wTx+ b = 0} = {x : m(x; θ) = 0}

• Training problem searches hyperplane to “best” separates classes

• Example – models with different parameters θ:

m(x; θ1)

9

Training problem interpretation

• Every parameter choice θ = (w, b) gives hyperplane in data space:

H := {x : wTx+ b = 0} = {x : m(x; θ) = 0}

• Training problem searches hyperplane to “best” separates classes

• Example – models with different parameters θ:

m(x; θ1)

m(x; θ2)

9

Training problem interpretation

• Every parameter choice θ = (w, b) gives hyperplane in data space:

H := {x : wTx+ b = 0} = {x : m(x; θ) = 0}

• Training problem searches hyperplane to “best” separates classes

• Example – models with different parameters θ:

m(x; θ1)

m(x; θ2)
m(x; θ3)

9

Training problem interpretation

• Every parameter choice θ = (w, b) gives hyperplane in data space:

H := {x : wTx+ b = 0} = {x : m(x; θ) = 0}

• Training problem searches hyperplane to “best” separates classes

• Example – models with different parameters θ:

m(x; θ1)

m(x; θ2)
m(x; θ3)

m(x; θ4)

9
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Training problem interpretation

• Every parameter choice θ = (w, b) gives hyperplane in data space:

H := {x : wTx+ b = 0} = {x : m(x; θ) = 0}

• Training problem searches hyperplane to “best” separates classes

• Example – models with different parameters θ:

m(x; θ1)

m(x; θ2)
m(x; θ3)

m(x; θ4)

m(x; θ∗)

9

What is “best” separation?

• The “best” separation is the one that minimizes the loss function
• Hyperplane for model m(·; θ) with parameter θ = θ1:

m(x; θ1) = 0

• Training loss:

m(x; θ1)

L(m(x; θ1), 0)

m(x; θ1)

L(m(x; θ1), 1)

+
=4.49576

0.208764.287
10

What is “best” separation?

• The “best” separation is the one that minimizes the loss function
• Hyperplane for model m(·; θ) with parameter θ = θ2:

m(x; θ2) = 0

• Training loss:

m(x; θ2)

L(m(x; θ2), 0)

m(x; θ2)

L(m(x; θ2), 1)

+
=10.49222

1.277339.21489
10

What is “best” separation?

• The “best” separation is the one that minimizes the loss function
• Hyperplane for model m(·; θ) with parameter θ = θ3:

m(x; θ3) = 0

• Training loss:

m(x; θ3)

L(m(x; θ3), 0)

m(x; θ3)

L(m(x; θ3), 1)

+
=6.58266

3.804172.77849
10

What is “best” separation?

• The “best” separation is the one that minimizes the loss function
• Hyperplane for model m(·; θ) with parameter θ = θ4:

m(x; θ4) = 0

• Training loss:

m(x; θ4)

L(m(x; θ4), 0)

m(x; θ4)

L(m(x; θ4), 1)

+
=4.42468

4.092650.33203
10

What is “best” separation?

• The “best” separation is the one that minimizes the loss function
• Hyperplane for model m(·; θ) with parameter θ = θ∗:

m(x; θ∗) = 0

• Training loss:

m(x; θ∗)

L(m(x; θ∗), 0)

m(x; θ∗)

L(m(x; θ∗), 1)

+
=1.94885

0.993320.95554
10

Fully separable data – Solution

• Let θ̄ = (w̄, b̄) give model that separates data:

w̄

m(x; θ̄) = 0

• Let Hθ̄ := {x : m(x; θ̄) = w̄Tx+ b̄ = 0} be hyperplane separates
• Training loss:

m(x; θ̄)

L(m(x; θ̄), 0)

m(x; θ̄)

L(m(x; θ̄), 1)

+
=4.90697

2.309272.5977

11

Fully separable data – Solution

• Also 2θ̄ = (2w̄, 2b̄) separates data:

2w̄

m(x; 2θ̄) = 0

• Hyperplane H2θ̄ := {x : m(x; 2θ̄) = 2(w̄Tx+ b̄) = 0} = Hθ̄ same
• Training loss reduced since input m(x; 2θ̄) = 2m(x; θ̄) further out:

m(x; 2θ̄)

L(m(x; 2θ̄), 0)

m(x; 2θ̄)

L(m(x; 2θ̄), 1)

+
=2.58353

1.274581.30894

11
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Fully separable data – Solution

• And 3θ̄ = (3w̄, 3b̄) also separates data:

3w̄

m(x; 3θ̄) = 0

• Hyperplane H3θ̄ := {x : m(x; 3θ̄) = 3(w̄Tx+ b̄) = 0} = Hθ̄ same
• Training loss further reduced since input m(x; 3θ̄) = 3m(x; θ̄):

m(x; 3θ̄)

L(m(x; 3θ̄), 0)

m(x; 3θ̄)

L(m(x; 3θ̄), 1)

+
=1.49149

0.784030.70746

11

Fully separable data – Solution

• And 3θ̄ = (3w̄, 3b̄) also separates data:

3w̄

m(x; 3θ̄) = 0

• Hyperplane H3θ̄ := {x : m(x; 3θ̄) = 3(w̄Tx+ b̄) = 0} = Hθ̄ same
• Training loss

m(x; 3θ̄)

L(m(x; 3θ̄), 0)

m(x; 3θ̄)

L(m(x; 3θ̄), 1)

+
=1.49149

0.784030.70746

Let θ = tθ̄ and t→∞, then loss → 0 ⇒ no optimal point
11

The bias term

• The model m(x; θ) = wTx+ b bias term is b

• Least squares: optimal b has simple formula

• No simple formula to remove bias term here!

12

Bias term gives shift invariance

• Assume all data points shifted xci := xi + c

• We want same hyperplane to separate data, but shifted

xi xci

• Assume θ = (w, b) is optimal for {(xi, yi)}Ni=1

• Then θc = (w, bc) with bc = b− wT c optimal for {(xci , yi)}Ni=1

• Why? Model outputs the same for all xi:
• m(xi; θ) = wTxi + b
• m(xci ; θc) = wTxci + bc = wTxi + b+ wT (c− c) = wTxi + b

13

Another derivation of logistic loss

• Assume model is instead σ(wTx+ b), with σ(u) = 1
1+e−u

• Binary cross entropy applied to model with sigmoid output:

−y log(σ(u))− (1− y) log(1− σ(u))

= −y log(
1

1 + e−u
)− (1− y) log(1− 1

1 + e−u
)

= −y log(
eu

1 + eu
)− (1− y) log(

e−u

1 + e−u
)

= −y(u− log(1 + eu)) + (1− y) log(1 + eu)

= log(1 + eu)− yu (= logistic loss)

• Two equivalent formulations to arrive at same problem:
• Real-valued model m(x; θ) and logistic loss log(1 + eu)− yu
• (0, 1)-valued model σ(m(x; θ)) and binary cross entropy

• Prefer previous formulation
• easier to see how deviations penalized
• easier to conclude convexity of training problem

14

Outline
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Multiclass logistic regression

Training problem properties
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Logistic regression – Nonlinear example

• Logistic regression tries to affinely separate data

• Can nonlinear boundary be approximated by logistic regression?

• Introduce features (perform lifting)

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

16

Logistic regression – Example

• Seems linear in feature 2 and quadratic in feature 1

• Add a third feature which is feature 1 squared
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Logistic regression – Example

• Seems linear in feature 2 and quadratic in feature 1

• Add a third feature which is feature 1 squared
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Logistic regression – Example

• Seems linear in feature 2 and quadratic in feature 1

• Add a third feature which is feature 1 squared
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Logistic regression – Example

• Seems linear in feature 2 and quadratic in feature 1

• Add a third feature which is feature 1 squared
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Logistic regression – Example

• Seems linear in feature 2 and quadratic in feature 1

• Add a third feature which is feature 1 squared
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Logistic regression – Example

• Seems linear in feature 2 and quadratic in feature 1

• Add a third feature which is feature 1 squared
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Logistic regression – Example

• Seems linear in feature 2 and quadratic in feature 1

• Add a third feature which is feature 1 squared
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Logistic regression – Example
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• Add a third feature which is feature 1 squared
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Logistic regression – Example

• Seems linear in feature 2 and quadratic in feature 1

• Add a third feature which is feature 1 squared
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Logistic regression – Example

• Seems linear in feature 2 and quadratic in feature 1

• Add a third feature which is feature 1 squared
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Logistic regression – Example
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Logistic regression – Example

• Seems linear in feature 2 and quadratic in feature 1

• Add a third feature which is feature 1 squared
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Logistic regression – Example
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Logistic regression – Example

• Seems linear in feature 2 and quadratic in feature 1

• Add a third feature which is feature 1 squared
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Nonlinear models – Features

• Create feature map φ : Rn → Rp of training data

• Data points xi ∈ Rn replaced by featured data points φ(xi) ∈ Rp

• New model: m(x; θ) = wTφ(x) + b, still linear in parameters

• Feature can include original data x

• We can add feature 1 and remove bias term b

• Logistic regression training problem

minimize
θ

N∑

i=1

(
log(1 + eφ(xi)

Tw+b)− yi(φ(xi)
Tw + b)

)

same as before, but with features as inputs

18

Graphical model representation

• A graphical view of model m(x; θ) = wTφ(x):

m(xi; θ)

φ(xi)

w
T
φ

(x
i
)

φx
i

• The input xi is transformed by fixed nonlinear features φ
• Feature-transformed input is multiplied by model parameters θ
• Model output is then fed into cost L(m(xi; θ), y)
• Problem convex since L convex and model affine in θ

19

Polynomial features

• Polynomial feature map for Rn with n = 2 and degree d = 3

φ(x) = (x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2)

(note that original data is also there)

• New model: m(x; θ) = wTφ(x) + b, still linear in parameters

• Number of features p+ 1 =
(
n+d
d

)
= (n+d)!

d!n! grows fast!

• Training problem has p+ 1 instead of n+ 1 decision variables

20
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Example – Different polynomial model orders

“Lifting” example with fewer samples and some mislabels

Logistic regression (no regularization) polynomial features of degree:
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Example – Different polynomial model orders

“Lifting” example with fewer samples and some mislabels

Logistic regression (no regularization) polynomial features of degree: 2
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Example – Different polynomial model orders

“Lifting” example with fewer samples and some mislabels

Logistic regression (no regularization) polynomial features of degree: 3
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Example – Different polynomial model orders

“Lifting” example with fewer samples and some mislabels

Logistic regression (no regularization) polynomial features of degree: 4
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Example – Different polynomial model orders

“Lifting” example with fewer samples and some mislabels

Logistic regression (no regularization) polynomial features of degree: 5
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Example – Different polynomial model orders

“Lifting” example with fewer samples and some mislabels

Logistic regression (no regularization) polynomial features of degree: 6
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Overfitting

Models with higher order polynomials overfit

Logistic regression (no regularization) polynomial features of degree 6
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Tikhonov regularization can reduce overfitting
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Tikhonov regularization

Regularized problem:

minimize
θ

N∑

i=1

(
log(1 + ex

T
i w+b)− yi(xTi w + b)

)
+ λ‖w‖22

Regularization:

• Regularize only w and not the bias term b

• Why? Model looses shift invariance if also b regularized

Problem properties:

• Problem is strongly convex in w ⇒ optimal w exists and is unique

• Optimal b is bounded if examples from both classes exist

24

Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Generalization

• Interested in models that generalize well to unseen data

• Assess generalization using holdout or k-fold cross validation

26

Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2.78 25.2/23.2 8/4

27

Test vs training error – Cost

• Decreasing λ gives higher complexity model

• Overfitting to the right, underfitting to the left

• Select lowest complexity model that gives good generalization

Increasing model complexity, λ↘

Training vs test cost

train
test

28

Test vs training error – Classification accuracy

• Decreasing λ gives higher complexity model

• Overfitting to the right, underfitting to the left

• Cost often better measure of over/underfitting

Increasing model complexity, λ↘

Number of misclassifications

train
test

29

Outline

Classification

Logistic regression

Nonlinear features

Overfitting and regularization

Multiclass logistic regression

Training problem properties

30

What is multiclass classification?

• We have previously seen binary classification
• Two classes (cats and dogs)
• Each sample belongs to one class (has one label)

• Multiclass classification
• K classes with K ≥ 3 (cats, dogs, rabbits, horses)
• Each sample belongs to one class (has one label)
• (Not to confuse with multilabel classification with ≥ 2 labels)

31

Multiclass classification from binary classification

• 1-vs-1: Train binary classifiers between all classes
• Example:

• cat-vs-dog,
• cat-vs-rabbit
• cat-vs-horse
• dog-vs-rabbit
• dog-vs-horse
• rabbit-vs-horse

• Prediction: Pick, e.g., the one that wins the most classifications
• Number of classifiers: K(K−1)

2

• 1-vs-all: Train each class against the rest
• Example

• cat-vs-(dog,rabbit,horse)
• dog-vs-(cat,rabbit,horse)
• rabbit-vs-(cat,dog,horse)
• horse-vs-(cat,dog,rabbit)

• Prediction: Pick, e.g., the one that wins with highest margin
• Number of classifiers: K
• Always skewed number of samples in the two classes

32

Multiclass logistic regression

• K classes in {1, . . . ,K} and data/labels (x, y) ∈ X × Y
• Labels: y ∈ Y = {e1, . . . , eK} where {ej} coordinate basis

• Example, K = 5 class 2: y = e2 = [0, 1, 0, 0, 0]T

• Use one model per class mj(x; θj) for j ∈ {1, . . . ,K}
• Objective: Find θ = (θ1, . . . , θK) such that for all models j:

• mj(x; θj)� 0, if label y = ej and mj(x; θj)� 0 if y 6= ej

• Training problem loss function:

L(u, y) = log




K∑

j=1

euj


− uT y

where label y is a “one-hot” basis vector, is convex in u

33
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Multiclass logistic loss function – Example

• Multiclass logistic loss for K = 3, u1 = 1, y = e1

L((1, u2, u3), 1) = log(e1 + eu2 + eu3)− 1

• Model outputs u2 � 0, u3 � 0 give smaller cost for label y = e1

u2

u3

34

Multiclass logistic loss function – Example

• Multiclass logistic loss for K = 3, u2 = −1, y = e1

L((u1,−1, u3), 1) = log(eu1 + e−1 + eu3)− u1

• Model outputs u1 � 0 and u3 � 0 give smaller cost for y = e1

u3

u1
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Multiclass logistic regression – Training problem

• Affine data model m(x; θ) = wTx+ b with

w = [w1, . . . , wK ] ∈ Rn×K , b = [b1, . . . , bK ]T ∈ RK

• One data model per class

m(x; θ) =



m1(x; θ1)

...
mK(x; θK)


 =



wT1 x+ b1

...
wTKx+ bK




• Training problem:

minimize
θ

N∑

i=1

log




K∑

j=1

ew
T
j xi+bj


− yTi (wTxi + b)

where yi is “one-hot” encoding of label
• Problem is convex since affine model is used
• (Alt.: model σ(wTx+ b) with σ softmax and cross entropy loss)
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Multiclass logistic regression – Prediction

• Assume model is trained and want to predict label for new data x

• Predict class with parameter θ for x according to:

argmax
j∈{1,...,K}

mj(x; θ)

i.e., class with largest model value (since trained to achieve this)

37

Special case – Binary logistic regression

• Consider two-class version and let
• ∆u = u1 − u2, ∆w = w1 − w2, and ∆b = b1 − b2
• ∆u = mbin(x; θ) = m1(x; θ1)−m2(x; θ2) = ∆wTx+ ∆b
• ybin = 1 if y = (1, 0) and ybin = 0 if y = (0, 1)

• Loss L is equivalent to binary, but with different variables:

L(u, y) = log(eu1 + eu2)− y1u1 − y2u2

= log

(
1 + eu1−u2

)
+ log(eu2)− y1u1 − y2u2

= log

(
1 + e∆u

)
− y1u1 − (y2 − 1)u2

= log

(
1 + e∆u

)
− ybin∆u
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Example – Linearly separable data

Problem with 7 classes
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Example – Linearly separable data

Problem with 7 classes and affine multiclass model
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Example – Quadratically separable data

Same data, new labels in 6 classes
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Example – Quadratically separable data

Same data, new labels in 6 classes, affine model
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Example – Quadratically separable data

Same data, new labels in 6 classes, quadratic model
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Features

• Used quadratic features in last example

• Same procedure as before:
• replace data vector xi with feature vector φ(xi)
• run classification method with feature vectors as inputs

m
(x
i
;θ

)

φ(xi)

w
T
φ

(x
i
)

φx
i

41
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Composite optimization – Binary logistic regression

Regularized (with g) logistic regression training problem (no features)

minimize
θ

N∑

i=1

(
log
(

1 + ew
T xi+b

)
− yi(wTxi + b)

)
+ g(θ)

can be written on the form

minimize
θ

f(Lθ) + g(θ),

where

• f(u) =
∑N
i=1 (log(1 + eui)− yiui) is data misfit term

• L = [X,1] where training data matrix X and 1 satisfy

X =



xT1
...
xTN


 1 =




1
...
1




• g is regularization term
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Gradient and function properties

• Gradient of hi(ui) = log(1 + eui)− yiui is:

∇hi(ui) =
eui

1 + eui
− yi =

1

1 + e−ui
− yi =: σ(ui)− yi

where σ(ui) = (1 + e−ui)−1 is called a sigmoid function
• Gradient of (f ◦ L)(θ) satisfies:

∇(f ◦ L)(θ) = ∇
N∑

i=1

hi(Liθ) =
N∑

i=1

LTi ∇hi(Liθ)

=
N∑

i=1

[
xi
1

]
(σ(xTi w + b)− yi)

=

[
XT

1T

]
(σ(Xw + b1)− Y )

where last σ : RN → RN applies 1
1+e−ui

to all [Xw + b1]i
• Function and sigmoid properties:

• sigmoid σ is 0.25-Lipschitz continuous:
• f is convex and 0.25-smooth and f ◦ L is 0.25‖L‖22-smooth

44

55



56



Support Vector Machines

Pontus Giselsson

1
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2

Binary classification

• Labels y = 0 or y = 1 (alternatively y = −1 or y = 1)

• Training problem

minimize
θ

N∑

i=1

L(m(xi; θ), yi)

• Design loss L to train model parameters θ such that:
• m(xi; θ) < 0 for pairs (xi, yi) where yi = 0
• m(xi; θ) > 0 for pairs (xi, yi) where yi = 1

• Predict class belonging for new data points x with trained θ̄:
• m(x; θ̄) < 0 predict class y = 0
• m(x; θ̄) > 0 predict class y = 1

3

Binary classification – Cost functions

• Different cost functions L can be used:
• y = 0: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ), 0)

L(u, y) = log(1 + eu) − yu (logistic loss)

m(x; θ)

L(m(x; θ), 1)

4

Binary classification – Cost functions

• Different cost functions L can be used:
• y = 0: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ), 0)

nonconvex (Neyman Pearson loss)

m(x; θ)

L(m(x; θ), 1)

4

Binary classification – Cost functions

• Different cost functions L can be used:
• y = 0: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ), 0)

L(u, y) = max(0, u) − yu

m(x; θ)

L(m(x; θ), 1)

4

Binary classification – Cost functions

• Different cost functions L can be used:
• y = −1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ),−1)

L(u, y) = max(0, 1 − yu) (hinge loss used in SVM)

m(x; θ)

L(m(x; θ), 1)

4

Binary classification – Cost functions

• Different cost functions L can be used:
• y = −1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ),−1)

L(u, y) = max(0, 1 − yu)2 (squared hinge loss)

m(x; θ)

L(m(x; θ), 1)

4
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5

Support vector machine

• SVM uses:
• affine parameterized model m(x; θ) = wTx+ b (where θ = (w, b))
• loss function L(u, y) = max(0, 1− yu) (if labels y = −1, y = 1)

• Training problem, find model parameters by solving:

minimize
θ

N∑

i=1

L(m(xi; θ), yi) =
N∑

i=1

max(0, 1− yi(wTxi + b))

• Training problem convex in θ = (w, b) since:
• model m(x; θ) is affine in θ
• loss function L(u, y) is convex in u

u

L(u,−1)

u

L(u, 1)

6

Prediction

• Use trained model m to predict label y for unseen data point x
• Since affine model m(x; θ) = wTx+ b, prediction for x becomes:

• If wTx+ b < 0, predict corresponding label y = −1
• If wTx+ b > 0, predict corresponding label y = 1
• If wTx+ b = 0, predict either y = −1 or y = 1

• A hyperplane (decision boundary) separates class predictions:

H := {x : wTx+ b = 0}
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m(x; θ) < 0m(x; θ) > 0

H

7

Training problem interpretation

• Every parameter choice θ = (w, b) gives hyperplane in data space:

H := {x : wTx+ b = 0} = {x : m(x; θ) = 0}

• Training problem searches hyperplane to “best” separates classes

• Example – models with different parameters θ:

m(x; θ1)

m(x; θ2)
m(x; θ3)

m(x; θ4)

m(x; θ∗)

8

What is “best” separation?

• The “best” separation is the one that minimizes the loss function
• Hyperplane for model m(·; θ) with parameter θ = θ1:

m(x; θ1) = 0

• Training loss:

m(x; θ1)

L(m(x; θ1),−1)

m(x; θ1)

L(m(x; θ1), 1)

+
=5.69992

0.05.69992
9

What is “best” separation?

• The “best” separation is the one that minimizes the loss function
• Hyperplane for model m(·; θ) with parameter θ = θ2:

m(x; θ2) = 0

• Training loss:

m(x; θ2)

L(m(x; θ2),−1)

m(x; θ2)

L(m(x; θ2), 1)

+
=12.83777

0.5251312.31264
9

What is “best” separation?

• The “best” separation is the one that minimizes the loss function
• Hyperplane for model m(·; θ) with parameter θ = θ3:

m(x; θ3) = 0

• Training loss:

m(x; θ3)

L(m(x; θ3),−1)

m(x; θ3)

L(m(x; θ3), 1)

+
=8.80777

5.138033.66974
9

What is “best” separation?

• The “best” separation is the one that minimizes the loss function
• Hyperplane for model m(·; θ) with parameter θ = θ4:

m(x; θ4) = 0

• Training loss:

m(x; θ4)

L(m(x; θ4),−1)

m(x; θ4)

L(m(x; θ4), 1)

+
=5.90926

5.909260.0
9
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What is “best” separation?

• The “best” separation is the one that minimizes the loss function
• Hyperplane for model m(·; θ) with parameter θ = θ∗:

m(x; θ∗) = 0

• Training loss:

m(x; θ∗)

L(m(x; θ∗),−1)

m(x; θ∗)

L(m(x; θ∗), 1)

+
=0.0

0.00.0
9

Fully separable data – Solution

• Let θ̄ = (w̄, b̄) give model that separates data:

w̄

m(x; θ̄) = 0

• Let Hθ̄ := {x : m(x; θ̄) = w̄Tx+ b̄ = 0} be hyperplane separates
• Training loss:

m(x; θ̄)

L(m(x; θ̄),−1)

m(x; θ̄)

L(m(x; θ̄), 1)

+
=3.33875

1.789371.54938

10

Fully separable data – Solution

• Also 2θ̄ = (2w̄, 2b̄) separates data:

2w̄

m(x; 2θ̄) = 0

• Hyperplane H2θ̄ := {x : m(x; 2θ̄) = 2(w̄Tx+ b̄) = 0} = Hθ̄ same
• Training loss reduced since input m(x; 2θ̄) = 2m(x; θ̄) further out:

m(x; 2θ̄)

L(m(x; 2θ̄),−1)

m(x; 2θ̄)

L(m(x; 2θ̄), 1)

+
=0.5133

0.305180.20813

10

Fully separable data – Solution

• And 3θ̄ = (3w̄, 3b̄) also separates data:

3w̄

m(x; 3θ̄) = 0

• Hyperplane H3θ̄ := {x : m(x; 3θ̄) = 3(w̄Tx+ b̄) = 0} = Hθ̄ same
• Training loss further reduced since input m(x; 3θ̄) = 3m(x; θ̄):

m(x; 3θ̄)

L(m(x; 3θ̄),−1)

m(x; 3θ̄)

L(m(x; 3θ̄), 1)

+
=0.0

0.00.0

10

Fully separable data – Solution

• And 3θ̄ = (3w̄, 3b̄) also separates data:

3w̄

m(x; 3θ̄) = 0

• Hyperplane H3θ̄ := {x : m(x; 3θ̄) = 3(w̄Tx+ b̄) = 0} = Hθ̄ same
• Training loss

m(x; 3θ̄)

L(m(x; 3θ̄),−1)

m(x; 3θ̄)

L(m(x; 3θ̄), 1)

+
=0.0

0.00.0

As soon as |m(xi; θ)| ≥ 1 (with correct sign) for all xi, cost is 0
10

Margin classification and support vectors

• Support vector machine classifiers for separable data
• Classes separated with margin, marks support vectors
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Nonlinear example

• Can classify nonlinearly separable data using lifting
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Adding features

• Create feature map φ : Rn → Rp of training data

• Data points xi ∈ Rn replaced by featured data points φ(xi) ∈ Rp

• Example: Polynomial feature map with n = 2 and degree d = 3

φ(x) = (x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2)

• Number of features p+ 1 =
(
n+d
d

)
= (n+d)!

d!n! grows fast!

• SVM training problem

minimize
θ

N∑

i=1

max(0, 1− yi(wTφ(xi) + b))

still convex since features fixed

14

Nonlinear example – Polynomial features

SVM and polynomial features of degree 2
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Nonlinear example – Polynomial features

SVM and polynomial features of degree 3
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Nonlinear example – Polynomial features

SVM and polynomial features of degree 4
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Nonlinear example – Polynomial features

SVM and polynomial features of degree 5
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Nonlinear example – Polynomial features

SVM and polynomial features of degree 6
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Nonlinear example – Polynomial features

SVM and polynomial features of degree 7
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Nonlinear example – Polynomial features

SVM and polynomial features of degree 8
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Nonlinear example – Polynomial features

SVM and polynomial features of degree 9
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Nonlinear example – Polynomial features

SVM and polynomial features of degree 10
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Overfitting and regularization

• SVM is prone to overfitting if model too expressive

• Regularization using ‖ · ‖1 (for sparsity) or ‖ · ‖22
• Tikhonov regularization with ‖ · ‖22 especially important for SVM

• Regularize only linear terms w, not bias b

• Training problem with Tikhonov regularization of w

minimize
θ

N∑

i=1

max(0, 1− yi(wTφ(xi) + b)) + λ
2 ‖w‖22

(note that features are used φ(xi))

17

Nonlinear example revisited

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 0.00001
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Nonlinear example revisited

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 0.00006
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Nonlinear example revisited

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 0.00036
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Nonlinear example revisited

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 0.0021
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Nonlinear example revisited

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 0.013
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Nonlinear example revisited

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 0.077
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Nonlinear example revisited

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 0.46
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Nonlinear example revisited

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 2.78
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Nonlinear example revisited

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 16.7
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λ and polynomial degree chosen using cross validation/holdout
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SVM problem reformulation

• Consider Tikhonov regularized SVM:

minimize
w,b

N∑

i=1

max(0, 1− yi(wTφ(xi) + b)) + λ
2 ‖w‖22

• Derive dual from reformulation of SVM:

minimize
w,b

1T max(0,1− (Xφ,Y w + Y b)) + λ
2 ‖w‖22

where max is vector valued and

Xφ,Y =



y1φ(x1)T

...
yNφ(xN )T


 , Y =



y1

...
yN




20

Dual problem

• Let L = [Xφ,Y , Y ] and write problem as

minimize
w,b

1T max(0,1− (Xφ,Y w + Y b))︸ ︷︷ ︸
f(L(w,b))

+ λ
2 ‖w‖22︸ ︷︷ ︸
g(w,b)

where
• f(ψ) =

∑N
i=1 fi(ψi) and fi(ψi) = max(0, 1− ψi) (hinge loss)

• g(w, b) = λ
2
‖w‖22, i.e., does not depend on b

• Dual problem

minimize
ν

f∗(ν) + g∗(−LT ν)

21

62



Conjugate of g

• Conjugate of g(w, b) = λ
2 ‖w‖22 =: g1(w) + g2(b) is

g∗(µw, µb) = g∗1(µw) + g∗2(µb) = 1
2λ‖µw‖22 + ι{0}(µb)

• Evaluated at −LT ν = −[Xφ,Y , Y ]T ν:

g∗(−LT ν) = g∗
(
−
[
XT
φ,Y

Y T

]
ν

)
= 1

2λ‖ −XT
φ,Y ν‖22 + ι{0}(−Y T ν)

= 1
2λν

TXφ,YX
T
φ,Y ν + ι{0}(Y

T ν)

22

Conjugate of f

• Conjugate of fi(ψi) = max(0, 1− ψi) (hinge-loss):

f∗i (νi) =

{
νi if −1 ≤ νi ≤ 0

∞ else

• Conjugate of f(ψ) =
∑N
i=1 fi(ψi) is sum of individual conjugates:

f∗(ν) =
N∑

i=1

f∗i (νi) = 1T ν + ι[−1,0](ν)

23

SVM dual

• The SVM dual is

minimize
ν

f∗(ν) + g∗(−LT ν)

• Inserting the above computed conjugates gives dual problem

minimize
ν

∑N
i=1 νi + 1

2λν
TXφ,YX

T
φ,Y ν

subject to −1 ≤ ν ≤ 0
Y T ν = 0

• Since Y ∈ RN , Y T ν = 0 is a hyperplane constraint

• If no bias term b; dual same but without hyperplane constraint

24

Primal solution recovery

• Meaningless to solve dual if we cannot recover primal

• Necessary and sufficient primal-dual optimality conditions

0 ∈
{
∂f∗(ν)− L(w, b)

∂g∗(−LT ν)− (w, b)

• From dual solution ν, find (w, b) that satisfies both of the above

• For SVM, second condition is

∂g∗(−LT ν) =

[
1
λ (−XT

φ,Y ν)

∂ι{0}(−Y T ν)

]
3
[
w
b

]

which gives optimal w = − 1
λX

T
Φ,Y ν (since unique)

• Cannot recover b from this condition

25

Primal solution recovery – Bias term

• Necessary and sufficient primal-dual optimality conditions

0 ∈
{
∂f∗(ν)− L(w, b)

∂g∗(−LT ν)− (w, b)

• For SVM, row i of first condition is 0 ∈ ∂f∗i (νi)− Li(w, b) where

∂f∗i (νi) =





[−∞, 1] if νi = −1

{1} if −1 < νi < 0

[1,∞] if νi = 0

∅ else

, Li = yi[φ(xi)
T 1]

• Pick i with νi ∈ (−1, 0), then unique subgradient ∂fi(νi) is 1 and

0 = 1− yi(wTφ(xi) + b)

and optimal b must satisfy b = yi − wTφ(xi) for such i

26
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SVM dual – A reformulation

• Dual problem

minimize
ν

∑N
i=1 νi + 1

2λν
TXφ,YX

T
φ,Y ν

subject to −1 ≤ ν ≤ 0
Y T ν = 0

• Let κij := φ(xi)
Tφ(xj) and rewrite quadratic term:

νTXφ,YX
T
φ,Y ν = ν diag(Y )



φ(x1)T

...
φ(xN )T



[
φ(x1) · · · φ(xN )

]
diag(Y )ν

= ν diag(Y )



κ11 · · · κ1N

...
. . .

...
κN1 · · · κNN




︸ ︷︷ ︸
K

diag(Y )ν

where K is called Kernel matrix
28

SVM dual – Kernel formulation

• Dual problem with Kernel matrix

minimize
ν

∑N
i=1 νi + 1

2λν
T diag(Y )K diag(Y )ν

subject to −1 ≤ ν ≤ 0
Y T ν = 0

• Solved without evaluating features, only scalar products:

κij := φ(xi)
Tφ(xj)

29
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Kernel methods

• We explicitly defined features and created Kernel matrix

• We can instead create Kernel that implicitly defines features

30

Kernel operators

• Define:
• Kernel operator κ(x, y) : Rn × Rn → R
• Kernel shortcut κij = κ(xi, xj)
• A Kernel matrix

K =



κ11 · · · κ1N

...
. . .

...
κN1 · · · κNN




• A Kernel operator κ : Rn × Rn → R is:
• symmetric if κ(x, y) = κ(y, x)
• positive semidefinite (PSD) if symmetric and

m∑

i,j

aiajκ(xi, xj) ≥ 0

for all m ∈ N, αi, αj ∈ R, and xi, xj ∈ Rn

• All Kernel matrices PSD if Kernel operator PSD

31

Mercer’s theorem

• Assume κ is a positive semidefinite Kernel operator

• Mercer’s theorem:

There exists continuous functions {ej}∞j=1 and nonnegative
{λj}∞j=1 such that

κ(x, y) =

∞∑

j=1

λjej(x)ej(y)

• Let φ(x) = (
√
λ1e1(x),

√
λ2e2(x), ...) be a feature map, then

κ(x, y) = 〈φ(x), φ(y)〉

where scalar product in `2 (space of square summable sequences)

• A PSD kernel operator implicitly defines features

32

Kernel SVM dual and corresponding primal

• SVM dual from Kernel κ with Kernel matrix Kij = κ(xi, xj)

minimize
ν

∑N
i=1 νi + 1

2λν diag(Y )K diag(Y )ν

subject to −1 ≤ ν ≤ 0
Y T ν = 0

• Due to Mercer’s theorem, this is dual to primal problem

minimize
θ

N∑

i=1

max(0, 1− yi(〈w, φ(xi)〉+ b)) + λ
2 ‖w‖2

with potentially an infinite number of features φ and variables w

33

Primal recovery and class prediction

• Assume we know Kernel operator, dual solution, but not features
• Can recover: Label prediction and primal solution b
• Cannot recover: Primal solution w (might be infinite dimensional)

• Primal solution b = yi − wTφ(xi):

wTφ(xi) = − 1
λ
νTXφ,Y φ(xi) = − 1

λ
νT



y1φ(x1)T

...
yNφ(xN )T


φ(xi) = − 1

λ
νT



y1κ1i

...
yNκNi




• Label prediction for new data x (sign of wTφ(x) + b):

wTφ(x) + b = − 1
λν

T



y1φ(x1)Tφ(x)

...
yNφ(xN )Tφ(x)


+ b = − 1

λν
T



y1κ(x1, x)

...
yNκ(xN , x)


+ b

• We are really interested in label prediction, not primal solution

34

Valid kernels

• Polynomial kernel of degree d: κ(x, y) = (1 + xT y)d

• Radial basis function kernels:

• Gaussian kernel: κ(x, y) = e−
‖x−y‖22

2σ2

• Laplacian kernel: κ(x, y) = e−
‖x−y‖2

σ

• Bias term b often not needed with Kernel methods

35

Example – Laplacian Kernel

Regularized SVM with Laplacian Kernel with σ = 1

Regularization parameter: λ = 0.01
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Example – Laplacian Kernel

Regularized SVM with Laplacian Kernel with σ = 1

Regularization parameter: λ = 0.035938

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

36

64



Example – Laplacian Kernel

Regularized SVM with Laplacian Kernel with σ = 1

Regularization parameter: λ = 0.12915
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Example – Laplacian Kernel

Regularized SVM with Laplacian Kernel with σ = 1

Regularization parameter: λ = 0.46416
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Example – Laplacian Kernel

Regularized SVM with Laplacian Kernel with σ = 1

Regularization parameter: λ = 1.6681
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Example – Laplacian Kernel

Regularized SVM with Laplacian Kernel with σ = 1

Regularization parameter: λ = 5.9948
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Example – Laplacian Kernel

Regularized SVM with Laplacian Kernel with σ = 1

Regularization parameter: λ = 21.5443
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Example – Laplacian Kernel

What if there is no structure in data? (Labels are randomly set)
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Example – Laplacian Kernel

What if there is no structure in data? (Labels are randomly set)

Regularized SVM Laplacian Kernel, regularization parameter: λ = 0.01
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Linearly separable in high dimensional feature space

Can be prone to overfitting ⇒ Regularize and use cross validation
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Composite optimization – Dual SVM

Dual SVM problems

minimize
ν

∑N
i=1 νi + 1

2λν
TXφ,YX

T
φ,Y ν

subject to −1 ≤ ν ≤ 0
Y T ν = 0

can be written on the form

minimize
ν

h1(ν) + h2(−XT
φ,Y ν),

where

• h1(ν) = 1T ν + ι[−1,0](ν) + ι{0}(Y T ν)

• First part 1T ν + ι[−1,0](ν) is conjugate of sum of hinge losses
• Second part ι{0}(Y

T ν) comes from that bias b not regularized

• h2(µ) = 1
2λ‖µ‖22 is conjugate to Tikhonov regularization λ

2 ‖w‖22

39

Gradient and function properties

• Gradient of (h2 ◦ −XT
φ,Y ) satisfies:

∇(h2 ◦ −XT
φ,Y )(ν) = ∇

(
1

2λν
TXφ,YX

T
φ,Y ν

)
= 1

λXφ,YX
T
φ,Y ν

= 1
λ diag(Y )K diag(Y )ν

where K is Kernel matrix

• Function properties

• h2 is convex and λ−1-smooth, h2 ◦ −XT
φ,Y is

‖Xφ,Y ‖22
λ

-smooth
• h1 is convex and nondifferentiable, use prox in algorithms

40
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Deep Learning

Pontus Giselsson
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Deep learning

• Can be used both for classification and regression

• Deep learning training problem is of the form

minimize
θ

N∑

i=1

L(m(xi; θ), yi)

where typically
• L(u, y) = 1

2
‖u− y‖22 is used for regression

• L(u, y) = log
(∑K

j=1 e
uj

)
− yTu is used for K-class classification

• Difference to previous convex methods: Nonlinear model m(x; θ)
• Deep learning regression generalizes least squares
• DL classification generalizes multiclass logistic regression
• Nonlinear model makes training problem nonconvex

3

Deep learning – Model

• Nonlinear model of the following form is often used:

m(x; θ) := Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1x+ b1) + b2) · · · ) + bn−1) + bn

where θ contains all Wi and bi
• Each activation σj constitutes a hidden layer in the model network
• We have no final layer activation (is instead part of loss)
• Graphical representation with three hidden layers

x
i

σ1(·)
σ2(·)

σ3(·)

• Some reasons for using this structure:
• (Assumed) universal function approximators
• Efficient gradient computation using backpropagation

4

No final layer activation in classification

• In classification, it is common to use
• Softmax final layer activation
• Cross entropy loss function

• Equivalent to
• no (identity) final layer activation
• multiclass logistic loss

which is what we use

5

Activation functions

• Activation function σj takes as input the output of Wj(·) + bj
• Often a function σ̄j : R→ R is applied to each element

• Example: σj : R3 → R3 is σj(u) =



σ̄j(u1)
σ̄j(u2)
σ̄j(u3)




• We will use notation over-loading and call both functions σj

6

Examples of activation functions

Name σ(u) Graph

Sigmoid 1
1+e−u

Tanh eu−e−u

e−u+eu

ReLU max(u, 0)

LeakyReLU max(u, αu)

ELU

{
u if u ≥ 0

α(eu − 1) else

7

Examples of affine transformations

• Dense (fully connected): Dense Wj

• Sparse: Sparse Wj

• Convolutional layer (convolution with small pictures)
• Fixed (random) sparsity pattern

• Subsampling: reduce size, Wj fat (smaller output than input)
• average pooling

8
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Prediction

• Prediction as in least squares and multiclass logistic regression

• Assume model m(x; θ) trained and “optimal” θ? found

• Regression:
• Predict response for new data x using ŷ = m(x; θ?)

• Classification (with no final layer activation):
• We have one model mj(x; θ?) output for each class
• Predict class belonging for new data x according to

argmax
j∈{1,...,K}

mj(x; θ?)

i.e., class with largest model value (since loss designed this way)

9
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10

Learning features

• Convex methods use prespecified feature maps (or kernels)

• Deep learning instead learns feature map during training
• Define parameter dependent feature vector:

φ(x; θ) := σn−1(Wn−1σn−2(· · · (W2σ1(W1x+b1)+b2) · · · )+bn−1)

• Model becomes m(x; θ) = Wnφ(x; θ) + bn
• Inserted into training problem:

minimize
θ

N∑

i=1

L(Wnφ(xi; θ) + bn, yi)

same as before, but with learned (parameter-dependent) features

• Learning features at training makes training nonconvex

11

Learning features – Graphical representation

• Fixed features gives convex training problems

m
(x
i
;θ
)

φ(xi)

w
T
φ
(x
i
)

φx
i

• Learning features gives nonconvex training problems

m
(x
i
;θ
)

x
i

φ(xi; θ)

W
4
φ
(x
i
;θ
)

φ(·; θ)

• Output of last activation function is feature vector 12

Optimizing only final layer

• Assume:
• that parameters θ̄f in the layers in the square are fixed
• that we optimize only the final layer parameters
• that the loss is a (binary) logistic loss

m
(x
i
;θ
)

x
i

φ(xi; θ)

W
4
φ
(x
i
;θ
)

φ(·; θ)

• What can you say about the training problem?

• It reduces to logistic regression with fixed features φ(xi; θ̄f )

minimize
θ=(Wn,bn)

N∑

i=1

L(Wnφ(xi; θ̄f ) + bn, yi)

• The training problem is convex

13

Optimizing only final layer

• Assume:
• that parameters θ̄f in the layers in the square are fixed
• that we optimize only the final layer parameters
• that the loss is a (binary) logistic loss

m
(x
i
;θ
)

x
i

φ(xi; θ)

W
4
φ
(x
i
;θ
)

φ(·; θ)

• What can you say about the training problem?
• It reduces to logistic regression with fixed features φ(xi; θ̄f )

minimize
θ=(Wn,bn)

N∑

i=1

L(Wnφ(xi; θ̄f ) + bn, yi)

• The training problem is convex

13

Design choices

Many design choices in building model to create good features

• Number of layers

• Width of layers

• Types of layers

• Types of activation functions

• Different model structures (e.g., residual network)

14
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Model properties – ReLU networks

• Recall model

m(x; θ) := Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1x+ b1) + b2) · · · ) + bn−1) + bn

where θ contains all Wi and bi
• Assume that all activation functions are (Leaky)ReLU

• What can you say about the properties of m(·; θ) for fixed θ?

• It is continuous piece-wise affine

16

Model properties – ReLU networks

• Recall model

m(x; θ) := Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1x+ b1) + b2) · · · ) + bn−1) + bn

where θ contains all Wi and bi
• Assume that all activation functions are (Leaky)ReLU

• What can you say about the properties of m(·; θ) for fixed θ?
• It is continuous piece-wise affine

16

1D Regression – Model properties

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyReLU
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1D Regression – Model properties

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyReLU
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• Vertical lines show kinks
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1D Regression – Model properties

• Fully connected, layers widths: 5,5,5,1,1 (78 params), Tanh
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• No kinks for Tanh

17

Identity activation

• Do we need nonlinear activation functions?

• What can you say about model if all σj = Id in

m(x; θ) := Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1x+ b1) + b2) · · · ) + bn−1) + bn

where θ contains all Wj and bj

• We then get

m(x; θ) := Wn(Wn−1(· · · (W2(W1x+ b1) + b2) · · · ) + bn−1) + bn

= WnWn−1 · · ·W2W1︸ ︷︷ ︸
W

x+ bn +

n−1∑

l=2

Wn · · ·Wlbl−1

︸ ︷︷ ︸
b

= Wx+ b

which is linear in x (but training problem nonconvex)

18

Identity activation

• Do we need nonlinear activation functions?

• What can you say about model if all σj = Id in

m(x; θ) := Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1x+ b1) + b2) · · · ) + bn−1) + bn

where θ contains all Wj and bj
• We then get

m(x; θ) := Wn(Wn−1(· · · (W2(W1x+ b1) + b2) · · · ) + bn−1) + bn

= WnWn−1 · · ·W2W1︸ ︷︷ ︸
W

x+ bn +

n−1∑

l=2

Wn · · ·Wlbl−1

︸ ︷︷ ︸
b

= Wx+ b

which is linear in x (but training problem nonconvex)

18

Network with identity activations – Example

• Fully connected, layers widths: 5,5,5,1,1 (78 params), Identity
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Training problem properties

• Recall model

m(x; θ) := Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1x+ b1) + b2) · · · ) + bn−1) + bn

where θ includes all Wj and bj and training problem

minimize
θ

N∑

i=1

L(m(xi; θ), yi)

• If all σj LeakyReLU and L(u, y) = 1
2‖u− y‖22, then for fixed x, y

• m(x; ·) is continuous piece-wise polynomial (cpp) of degree n in θ
• L(m(x; θ), y) is cpp of degree 2n in θ

where both model output and loss can grow fast

• If σj is instead Tanh
• model no longer piece-wise polynomial (but “more” nonlinear)
• model output grows slower since σj : R→ (−1, 1)

21

Loss landscape – Leaky ReLU

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
• Regression problem, least squares loss
• Plot:

∑N
i=1 L(m(xi; θ

? + t1θ1 + t2θ2), yi) vs scalars t1, t2, where
• θ? is numerically found solution to training problem
• θ1 and θ2 are random directions in parameter space

• First choice of θ1 and θ2:

22

Loss landscape – Leaky ReLU

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
• Regression problem, least squares loss
• Plot:

∑N
i=1 L(m(xi; θ

? + t1θ1 + t2θ2), yi) vs scalars t1, t2, where
• θ? is numerically found solution to training problem
• θ1 and θ2 are random directions in parameter space

• Second choice of θ1 and θ2:

22

Loss landscape – Leaky ReLU

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
• Regression problem, least squares loss
• Plot:

∑N
i=1 L(m(xi; θ

? + t1θ1 + t2θ2), yi) vs scalars t1, t2, where
• θ? is numerically found solution to training problem
• θ1 and θ2 are random directions in parameter space

• Third choice of θ1 and θ2:

22

Loss landscape – Tanh

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
• Regression problem, least squares loss
• Plot:

∑N
i=1 L(m(xi; θ

? + t1θ1 + t2θ2), yi) vs scalars t1, t2, where
• θ? is numerically found solution to training problem
• θ1 and θ2 are random directions in parameter space

• First choice of θ1 and θ2:
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• θ? is numerically found solution to training problem
• θ1 and θ2 are random directions in parameter space

• Third choice of θ1 and θ2:
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ReLU vs Tanh

Previous figures suggest:

• ReLU: more regular and similar loss landscape?

• Tanh: less steep (on macro scale)?

• Tanh: Minima extend over larger regions?

24
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Performance with increasing depth

• Increasing depth can deteriorate performance

• Deep networks may even have worse training errors than shallow

• Intuition: deeper layers bad at approximating identity mapping

26

Residual networks

• Add skip connections between layers
• Instead of network architecture with z1 = xi (see figure):

zj+1 = σj(Wjzj + bj) for j ∈ {1, . . . , n− 1}

use residual architecture

zj+1 = zj + σj(Wjzj + bj) for j ∈ {1, . . . , n− 1}
• Assume σ(0) = 0, Wj = 0, bj = 0 for j = 1, . . . ,m (m < n− 1)
⇒ deeper part of network is identity mapping and does no harm

• Learns variation from identity mapping (residual)

x
i
=
z 1

z1 σ1(·) z2 σ2(·) z3 σ3(·) z4 σ4(·)
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Graphical representation

For graphical representation, first collapse nodes into single node

x
i
=
z 1

z1 σ1(·) z2 σ2(·) z3 σ3(·) z4 σ4(·)

h1(·) h2(·) h3(·) h4(·)

h1(·) h2(·) h3(·) h4(·)

x
i
=
z 1

z1 z2 z3 z4
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Graphical representation

• Collapsed network representation

h1(·) h2(·) h3(·) h4(·)

x
i
=
z 1

z1 z2 z3 z4

• Residual network

h1(·) h2(·) h3(·) h4(·)

x
i
=
z 1

Σz1
Σz2

Σz3
Σz4

• If some hj = 0 gives same performance as shallower network
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Residual network – Example

• Fully connected – no residual layers, LeakyReLU activation

• Layers widths: 3x5,1,1 (depth: 5, 78 params)

• Trained for 5000 epochs
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Residual network – Example

• Fully connected – no residual layers, LeakyReLU activation

• Layers widths: 5x5,1,1 (depth: 7, 138 params)

• Trained for 5000 epochs
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Residual network – Example

• Fully connected – no residual layers, LeakyReLU activation

• Layers widths: 10x5,1,1 (depth: 12, 288 params)

• Trained for 5000 epochs
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Residual network – Example

• Fully connected – no residual layers, LeakyReLU activation

• Layers widths: 15x5,1,1 (depth: 17, 438 params)

• Trained for 5000 epochs
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Residual network – Example

• Fully connected – no residual layers, LeakyReLU activation

• Layers widths: 45x5,1,1 (depth: 47, 1,338 params)

• Trained for 5000 epochs
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Residual network – Example

• Fully connected – residual layers, LeakyReLU activation

• Layers widths: 45x5,1,1 (depth: 47, 1,338 params)

• Trained for 5000 epochs
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Why overparameterization?

• Neural networks are often overparameterized in practice

• Why? They often perform better than underparameterized

32

What is overparameterization?

• We mean that many solutions exist that can:
• fit all data points (0 training loss) in regression
• correctly classify all training examples in classification

• This requires (many) more parameters than training examples
• Need wide and deep enough networks
• Can result in overfitting

• Questions:
• Which of all solutions give best generalization?
• (How) can network design affect generalization?

x
i

σ1(·)
σ2(·)

σ3(·)

33

Overparameterization – An example

• Assume fully connected network with
• input data xi ∈ Rp
• n layers and N ≈ p2 samples
• same width throughout (except last layer, which can be neglected)

• What is the relation between number of weights and samples?

x
i

σ1(·) σ2(·) σ3(·)

• We have:
• Number of parameters approximately: (Wj)lk: p2n and (bj)l: pn

• Then #weights
#samples

≈ p2n
p2

= n more weights than samples
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Generalization

• Most important for model to generalize well to unseen data

• General approach in training
• Train a model that is too expressive for the underlying data

• Overparameterization in deep learning
• Use regularization to

• find model of appropriate (lower) complexity
• favor models with desired properties

36

Regularization

What regularization techniques in DL are you familiar with?

37
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Regularization techniques

• Reduce number of parameters
• Sparse weight tensors (e.g., convolutional layers)
• Subsampling (gives fewer parameters deeper in network)

• Explicit regularization term in cost function, e.g., Tikhonov

• Data augmentation – more samples, artificial often OK

• Early stopping – stop algorithm before convergence

• Dropouts

• ...

38

Implicit vs explicit regularization

• Regularization can be explicit or implicit

• Explicit – Introduce something with intent to regularize:
• Add cost function to favor desirable properties
• Design (adapt) network to have regularizing properties

• Implicit – Use something with regularization as byproduct:
• Use algorithm that finds favorable solution among many
• Will look at implicit regularization via SGD

39

Generalization – Our focus

Will here discuss generalization via:

• Norm of parameters – leads to implicit regularization via SGD

• Flatness of minima – leads to implicit regularization via SGD

40
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Lipschitz continuity of ReLU networks

• Assume that all activation functions 1-Lipschitz continuous

• The neural network model m(·; θ) is Lipschitz continuous in x,

‖m(x1; θ)−m(x2; θ)‖2 ≤ L‖x1 − x2‖2

for fixed θ, e.g., the θ obtained after training

• This means output differerences are bounded by input differences

• A Lipschitz constant L is given by

L = ‖Wn‖2 · ‖Wn−1‖2 · · · ‖W1‖2

since activation functions are 1-Lipschitz continuous

• For residual layers each ‖Wj‖2 replaced by (1 + ‖Wj‖2)

42

Desired Lipschitz constant

• Overparameterization gives many solutions that perfectly fit data

• Would you favor one with high or low Lipschitz constant L?

43

Small norm likely to generalize better

• Smaller Lipschitz constant probably generalizes better if perfect fit

• “Similar inputs give similar outputs”, recall

‖m(x1; θ)−m(x2; θ)‖2 ≤ L‖x1 − x2‖2

with a Lipschitz constant is given by

L = ‖Wn‖2 · ‖Wn−1‖2 · · · ‖W1‖2

or with ‖Wj‖2 replaced by (1 + ‖Wj‖2) for residual layers

• Smaller weight norms give better generalization if perfect fit

44

Generalization – Norm of weights

• Fully connected – residual layers, LeakyReLU
• Layers widths: 30x5,1,1 (888 params)
• Norm of weights (with perfect fit): 72
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Generalization – Norm of weights

• Fully connected – residual layers, LeakyReLU
• Layers widths: 30x5,1,1 (888 params)
• Norm of weights (with perfect fit): 540
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Generalization – Norm of weights

• Fully connected – residual layers, LeakyReLU
• Layers widths: 30x5,1,1 (888 params)
• Norm of weights (with perfect fit): 540
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Generalization – Norm of weights

• Fully connected – residual layers, LeakyReLU
• Layers widths: 30x5,1,1 (888 params)
• Norm of weights (with perfect fit): 595
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Generalization – Norm of weights

• Fully connected – residual layers, LeakyReLU
• Layers widths: 30x5,1,1 (888 params)
• Norm of weights (with perfect fit): 595
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Generalization – Norm of weights

• Fully connected – residual layers, LeakyReLU
• Layers widths: 30x5,1,1 (888 params)
• Norm of weights (with perfect fit): 72
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• Same as first, new scaling – overfits less than large norm solutions
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Flatness of minima

• Consider the following illustration of average loss:

Training loss Test loss

θ

• Depicts test loss as shifted training loss

• Motivation to that flat minima generalize better than sharp
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Flatness of minima

• Consider the following illustration of average loss:

Training loss Test loss

θ

• Depicts test loss as shifted training loss

• Motivation to that flat minima generalize better than sharp

• Is there a limitation in considering the average loss only?

47
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Generalization from loss landscape

• Training set {(xi, yi)}Ni=1 and training problem:

minimize
θ

N∑

i=1

L(m(xi; θ), yi)

• Test set {(x̂i, ŷi)}N̂i=1, θ generalizes well if test loss small

N̂∑

i=1

L(m(x̂i; θ), ŷi)

• By overparameterization, we can for each (x̂i, ŷi) find θ̂i so that

L(m(x̂i; θ), ŷi) = L(m(xji ; θ + θ̂i), yji)

for all θ given a (similar) (xji , yji) pair in training set
• Evaluate test loss by training loss at shifted points θ + θ̂i

1)

• Test loss small if original individual loss small at all θ + θ̂i
• Previous figure used same θ̂i = θ̂ for all i

1) Don’t compute in practice, just thought experiment to connect generalization to training loss
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Example

• Can flat (local) minima be different?

• Does one of the following minima generalize better?

Average training loss
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Example
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Example

• Can flat (local) minima be different?

• Does one of the following minima generalize better?

Average training loss

It depends on individual losses
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Example

• Can flat (local) minima be different?

• Does one of the following minima generalize better?

Test losses (= Shifted training losses)

It depends on individual losses

Let us evaluate test loss by shifting individual training losses

49
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Example

• Can flat (local) minima be different?

• Does one of the following minima generalize better?

Average test loss

It depends on individual losses

Let us evaluate test loss by shifting individual training losses

Do not only want flat minima, want individual losses flat at minima

49

Individually flat minima

• Both flat minima have ∇f(θ) = 0, but
• One minima has large individual gradients ‖∇fi(θ)‖
• Other minima has small individual gradients ‖∇fi(θ)‖
• The latter (individually flat minima) seems to generalize better

• Want individually flat minima (with small ‖∇fi(θ)‖)
• This implies average flat minima
• The reverse implication may not hold
• Overparameterized networks:

• The reverse implication may often hold at global minima
• Why? f(θ) = 0 and ∇f(θ) = 0 implies fi(θ) = 0 and ∇fi(θ) = 0
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Training algorithm

• Neural networks often trained using stochastic gradient descent

• DNN weights are updated via gradients in training

• Gradient of cost is sum of gradients of summands (samples)

• Gradient of each summand computed using backpropagation

52

Backpropagation

• Backpropagation is reverse mode automatic differentiation

• Based on chain-rule in differentiation

• Backpropagation must be performed per sample

• Our derivation assumes:
• Fully connected layers (W full, if not, set elements in W to 0)
• Activation functions σj(v) = (σj(v1), . . . , σj(vp)) element-wise

(overloading of σj notation)
• Weights Wj are matrices, samples xi and responses yi are vectors
• No residual connections
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Jacobians

• The Jacobian of a function f : Rn → Rm is given by

∂f

∂x
=




∂f1
∂x1

· · · ∂f1
∂xn

...
...

...
∂fm
∂x1

· · · ∂fm
∂xn


 ∈ Rm×n

• The Jacobian of a function f : Rp×n → R is given by

∂f

∂x
=




∂f
∂x11

· · · ∂f
∂x1n

...
...

...
∂f
∂xp1

· · · ∂f
∂xpn


 ∈ Rp×n

• The Jacobian of a function f : Rp×n → Rm is at layer j given by

[
∂f

∂x

]

:,j,:

=




∂f1
∂xj1

· · · ∂f1
∂xjn

...
...

...
∂fm
∂xj1

· · · ∂fm
∂xjn


 ∈ Rm×n

the full Jacobian is a 3D tensor in Rm×p×n
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Jacobian vs gradient

• The Jacobian of a function f : Rn → R is given by

∂f

∂x
=
[
∂f
∂x1

· · · ∂f
∂xn

]

• The gradient of a function f : Rn → R is given by

∇f =




∂f
∂x1

...
∂f
∂xn




i.e., transpose of Jacobian for f : Rn → R
• Chain rule holds for Jacobians:

∂f

∂x
=
∂f

∂z

∂z

∂x
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Jacobian vs gradient – Example

• Consider differentiable f : Rm → R and M ∈ Rm×n
• Compute Jacobian of g = (f ◦M) using chain rule:

• Rewrite as g(x) = f(z) where z = Mx
• Compute Jacobian by partial Jacobians ∂f

∂z
and ∂z

∂x
:

∂g

∂x
=
∂g

∂z

∂z

∂x
=
∂f

∂z

∂z

∂x
= ∇f(z)TM = ∇f(Mx)TM ∈ R1×n

• Know gradient of (f ◦M)(x) satisfies

∇(f ◦M)(x) = MT∇f(Mx) ∈ Rn

which is transpose of Jacobian

56
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Backpropagation – Introduce states

• Compute gradient/Jacobian of

L(m(xi; θ), yi)

w.r.t. θ = {(Wj , bj)}nj=1, where

m(xi; θ) = Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1xi + b1) + b2) · · · ) + bn−1) + bn

• Rewrite as function with states zj

L(zn+1, yi)

where zj+1 = σj(Wjzj + bj) for j ∈ {1, . . . , n}
and z1 = xi

where σn(u) ≡ u

57

Graphical representation

• Per sample loss function

L(zn+1, yi)

where zj+1 = σj(Wjzj + bj) for j ∈ {1, . . . , n}
and z1 = xi

where σn(u) ≡ u
• Graphical representation

x
i
=
z 1

z1 σ1(·) z2 σ2(·) z3 σ3(·) z4

σ4(·)
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Backpropagation – Chain rule

• Jacobian of L w.r.t. Wj and bj can be computed as

∂L

∂Wj
=

∂L

∂zn+1

∂zn+1

∂zn
· · · ∂zj+2

∂zj+1

∂zj+1

∂Wj

∂L

∂bj
=

∂L

∂zn+1

∂zn+1

∂zn
· · · ∂zj+2

∂zj+1

∂zj+1

∂bj

where we mean derivative w.r.t. first argument in L

• Backpropagation evaluates partial Jacobians as follows

∂L

∂Wj
=

((
∂L

∂zn+1

∂zn+1

∂zn

)
· · · ∂zj+2

∂zj+1

)
∂zj+1

∂Wj

∂L

∂bj
=

((
∂L

∂zn+1

∂zn+1

∂zn

)
· · · ∂zj+2

∂zj+1

)
∂zj+1

∂bj
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Backpropagation – Forward and backward pass

• Jacobian of L(zn+1, yi) w.r.t. zn+1 (transpose of gradient)
• Computing Jacobian of L(zn+1, yi) requires zn+1

⇒ forward pass: z1 = xi, zj+1 = σj(Wjzj + bj)
• Backward pass, store δj :

∂L

∂zj+1
=

((
∂L

∂zn+1︸ ︷︷ ︸
δTn+1

∂zn+1

∂zn

)

︸ ︷︷ ︸
δTn

· · · ∂zj+2

∂zj+1

)

︸ ︷︷ ︸
δTj+1

• Compute

∂L

∂Wj
=

∂L

∂zj+1

∂zj+1

∂Wj
= δTj+1

∂zj+1

∂Wj

∂L

∂bj
=

∂L

∂zj+1

∂zj+1

∂bj
= δTj+1

∂zj+1

∂bj
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Dimensions

• Let zj ∈ Rnj , consequently Wj ∈ Rnj+1×nj , bj ∈ Rnj+1

• Dimensions

∂L

∂Wj
=

((
∂L

∂zn+1︸ ︷︷ ︸
1×nn+1

∂zn+1

∂zn︸ ︷︷ ︸
nn+1×nn︸ ︷︷ ︸

1×nn

)
· · · ∂zj+2

∂zj+1︸ ︷︷ ︸
nj+2×nj+1

︸ ︷︷ ︸
1×nj+1

)
∂zj+1

∂Wj︸ ︷︷ ︸
nj+1×nj+1×nj

︸ ︷︷ ︸
nj+1×nj

∂L

∂bj
=

((
∂L

∂zn+1

∂zn+1

∂zn

)
· · · ∂zj+2

∂zj+1

)

︸ ︷︷ ︸
1×nj+1

∂zj+1

∂bj︸ ︷︷ ︸
nj+1×nj+1︸ ︷︷ ︸

1×nj+1

• Vector matrix multiplies except for in last step
• Multiplication with tensor

∂zj+1

∂Wj
can be simplified

• Backpropagation variables δj ∈ Rnj are vectors (not matrices)
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Partial Jacobian ∂zj+1

∂zj

• Recall relation zj+1 = σj(Wjzj + bj) and let vj = Wjzj + bj
• Chain rule gives

∂zj+1

∂zj
=
∂zj+1

∂vj

∂vj
∂zj

= diag(σ′j(vj))
∂vj
∂zj

= diag(σ′j(Wjzj + bj))Wj

where, with abuse of notation (notation overloading)

σ′j(u) =




σ′j(u1)
...

σ′j(unj+1
)




• Reason: σj(u) = [σj(u1), . . . , σj(unj+1
)]T with

σj : Rnj+1 → Rnj+1 , gives

dσj
du

=



σ′j(u1)

. . .

σ′j(unj+1
)


 = diag(σ′j(u))
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Partial Jacobian δTj = ∂L
∂zj

• For any vector δj+1 ∈ Rnj+1×1, we have

δTj+1

∂zj+1

∂zj
= δTj+1 diag(σ′j(Wjzj + bj))Wj

= (WT
j (δTj+1 diag(σ′j(Wjzj + bj)))

T )T

= (WT
j (δj+1 � σ′j(Wjzj + bj)))

T

where � is element-wise (Hadamard) product
• We have defined δTn+1 = ∂L

∂zn+1
, then

δTn =
∂L

∂zn
= δTn+1

∂zn+1

∂zn
= (WT

n (δn+1 � σ′n(Wnzn + bn))︸ ︷︷ ︸
δn

)T

• Consequently, using induction:

δTj =
∂L

∂zj
= δTj+1

∂zj+1

∂zj
= (WT

j (δj+1 � σ′j(Wjzj + bj))︸ ︷︷ ︸
δj

)T
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Information needed to compute ∂L
∂zj

• To compute first Jacobian ∂L
∂zn

, we need zn ⇒ forward pass

• Computing

∂L

∂zj
= δTj+1

∂zj+1

∂zj
= (WT

j (δj+1 � σ′j(Wjzj + bj)))
T = δTj

is done using a backward pass

δj = WT
j (δj+1 � σ′j(Wjzj + bj))

• All zj (or vj = Wjzj + bj) need to be stored for backward pass

x
i
=
z 1

z1 σ1(·) z2 σ2(·) z3 σ3(·) z4

σ4(·)

64

78



Partial Jacobian ∂L
∂Wj

• Computed by

∂L

∂Wj
=

∂L

∂zj+1

∂zj+1

∂Wj
= δTj+1

∂zj+1

∂Wj

where zj+1 = σj(vj) and vj = Wjzj + bj
• Recall

∂zj+1

∂Wl
is 3D tensor, compute Jacobian w.r.t. row l (Wj)l

δTj+1
∂zj+1

∂(Wj)l
= δTj+1

∂zj+1

∂vj

∂vj
∂(Wj)l

= δTj+1 diag(σ′j(vj))




0
...
zTj
...
0




= (δj+1 � σ′j(Wjzj + bj))
T




0
...
zTj
...
0




= (δj+1 � σ′j(Wjzj + bj))lz
T
j
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Partial Jacobian ∂L
∂Wj

cont’d

• Stack Jacobians w.r.t. rows to get full Jacobian:

∂L

∂Wj
= δTj+1

∂zj+1

∂Wj
=




δTj+1
∂zj+1

∂(Wj)1
...

δTj+1
∂zj+1

∂(Wj)nj+1


 =




(δj+1 � σ′j(Wjzj + bj))1z
T
j

...
(δj+1 � σ′j(Wjzj + bj))nj+1

zTj




= (δj+1 � σ′j(Wjzj + bj))z
T
j

for all j ∈ {1, . . . , n− 1}
• Dimension of result is nj+1 × nj , which matches Wj

• This is used to update Wj weights in algorithm
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Partial Jacobian ∂L
∂bj

• Recall zj+1 = σj(vj) where vj = Wjzj + bj
• Computed by

∂L

∂bj
=

∂L

∂zj+1

∂zj+1

∂vj

∂vj
∂bj

= δTj+1

∂zj+1

∂vj

∂vj
∂bj

= δTj+1 diag(σ′j(vj))

= (δj+1 � σ′j(Wjzj + bj))
T
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Backpropagation summarized

1. Forward pass: Compute and store zj (or vj = Wjzj + bj):

zj+1 = σj(Wjzj + bj)

where z1 = xi and σn = Id

2. Backward pass:

δj = WT
j (δj+1 � σ′j(Wjzj + bj))

with δn+1 = ∂L
∂zn+1

3. Weight update Jacobians (used in SGD)

∂L

∂Wj
= (δj+1 � σ′j(Wjzj + bj))z

T
j

∂L

∂bj
= (δj+1 � σ′j(Wjxj + bj))

T
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Backpropagation – Residual networks

1. Forward pass: Compute and store zj (or vj = Wjzj + bj):

zj+1 = σj(Wjzj + bj) + zj

where z1 = xi and σn = Id

2. Backward pass:

δj = WT
j (δj+1 � σ′j(Wjzj + bj)) + δj+1

with δn+1 = ∂L
∂zn+1

3. Weight update Jacobians (used in SGD)

∂L

∂Wj
= (δj+1 � σ′j(Wjzj + bj))z

T
j

∂L

∂bj
= (δj+1 � σ′j(Wjxj + bj))

T
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Outline

Deep learning

Learning features

Model properties and activation functions

Loss landscape

Residual networks

Overparameterized networks

Generalization and regularization

Generalization – Norm of weights

Generalization – Flatness of minima

Backpropagation

Vanishing and exploding gradients

70

Vanishing and exploding gradient problem

• For some activation functions, gradients can vanish

• For other activation functions, gradients can explode
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Vanishing gradient example: Sigmoid

• Assume ‖Wj‖ ≤ 1 for all j and ‖δn+1‖ ≤ C
• Maximal derivative of sigmoid (σ) is 0.25

• Then
∥∥∥∥
∂L

∂zj

∥∥∥∥ = ‖δj‖ = ‖WT
j (δj+1 � σ′j(Wjzj + bj))‖ ≤ 0.25‖δj+1‖

≤ 0.25n−j+1‖δn+1‖ ≤ 0.25n−j+1C

• Hence, as n grows, gradients can become very small for small i

• In general, vanishing gradient if σ′ < 1 everywhere

• Similar reasoning: exploding gradient if σ′ > 1 everywhere

• Hence, need σ′ = 1 in important regions
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Vanishing gradients – Residual networks

• Residual networks with forward pass

zj+1 = σj(Wjzj + bj) + zj

and backward pass

δj = WT
j (δj+1 � σ′j(Wjzj + bj)) + δj+1

• Gradients do not vanish in passes despite small σ gain
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Examples of activation functions

Activation functions that (partly) avoid vanishing gradients

Name σ(u) Graph

Tanh eu−e−u

e−u+eu

ReLU max(u, 0)

LeakyReLU max(u, αu)

ELU

{
u if u ≥ 0

α(eu − 1) else
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Exploding gradient – Example

• Assume L-Lipschitz activation (ReLU, Tanh etc have L = 1)
• Forward pass estimation:

‖zj+1‖2 = ‖σj(Wjzj + bj)‖2 ≤ L‖Wjzj + bj‖2 ≤ L(‖Wjzj‖2 + ‖bj‖2)

≤ L‖Wj‖2‖zj‖2 + L‖bj‖2
• Backward pass estimation:

‖δj‖2 = ‖WT
j (δj+1 � σ′j(Wjzj + bj))‖2

≤ ‖WT
j ‖2‖δj+1 � σ′j(Wjzj + bj)‖2

≤ L‖Wj‖2‖δj+1‖2
• If L ≤ 1, ‖Wj‖2 ≤ 1 and ‖bj‖2 small, gradients do not explode

• ReLU “average” L = 0.5 reduces “average estimate”

• Tanh reduces “average estimates” more since
• σj-outputs are constrained to (−1, 1)
• “average Lipschitz constant” is smaller
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Exploding gradient – Residual network

• Assume L-Lipschitz activation (ReLU, Tanh have L = 1)
• Forward pass estimation:

‖zj+1‖2 = ‖σj(Wjzj + bj)‖2 + ‖zj‖2 ≤ (1 + L‖Wj‖2)‖zj‖2 + L‖bj‖2
• Backward pass estimation:

‖δj‖2 = ‖WT
j (δj+1 � σ′j(Wjzj + bj))‖2 + δj+1

≤ (1 + L‖Wj‖2)‖δj+1‖2

• Larger estimates than for non-residual networks

• Activations with L ≤ 1 to avoid exploding and vanishing
gradients:
• α×ReLU with α ∈ (0, 1)
• α×Tanh with α ∈ (0, 1)
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Algorithms and Convergence

Pontus Giselsson

1

Outline

Algorithm overview

Convergence and convergence rates

Proving convergence rates

2

What is an algorithm?

• We are interested in algorithms that solve composite problems

minimize
x

f(x) + g(x)

• An algorithm:
• generates a sequence (xk)k∈N that hopefully converges to solution
• often creates next point in sequence according to

xk+1 = Akxk

where
• Ak is a mapping that gives the next point from the current
• Ak = proxγkg(I − γk∇f) for proximal gradient method

3

Deterministic and stochastic algorithms

• We have deterministic algorithms

xk+1 = Akxk

that given initial x0 will give the same sequence (xk)k∈N
• We will also see stochastic algorithms that iterate

xk+1 = Ak(ξk)xk

where ξk is a random variable that also decides the mapping
• (xk)k∈N is a stochastic process, i.e., collection of random variables
• when running the algorithm, we evaluate ξk and get a realization
• different realization (xk)k∈N every time even if started at same x0

• Stochastic algorithms useful although problem is deterministic

4

Optimization algorithm overview

• Algorithms can roughly be divided into the following classes:
• Second-order methods
• Quasi second-order methods
• First-order methods
• Stochastic and coordinate-wise first-order methods

• The first three are typically deterministic and the last stochastic

• Cost of computing one iteration decreases down the list

5

Second-order methods

• Solves problems using second-order (Hessian) information

• Requires smooth (twice continuously differentiable) functions

• Example: Newton’s method to minimize smooth function f :

xk+1 = xk − γk(∇2f(xk))−1∇f(xk)

• Constraints can be incorporated via barrier functions:
• Use sequence of smooth constraint barrier functions
• Make barriers increasingly well approximate constraint set
• For each barrier, solve smooth problem using Newton’s method
• Resulting scheme called interior point method
• (Can be applied to directly solve primal-dual optimality condition)

• Computational backbone: solving linear systems O(n3)

• Often restricted to small to medium scale problems

• We will cover Newton’s method

6

Quasi second-order methods

• Estimates second-order information from first-order

• Solves problems using estimated second-order information

• Requires smooth (twice continuously differentiable) functions

• Quasi-Newton method for smooth f

xk+1 = xk − γkBk∇f(xk)

where Bk is:
• estimate of Hessian inverse (not Hessian to avoid inverse)
• cheaply computed from gradient information

• Computational backbone: forming Bk and matrix multiplication

• Limited memory versions exist with cheaper iterations

• Can solve large-scale smooth problems

• Will briefly look into most common method (BFGS)

7

First-order methods

• Solves problems using first-order (sub-gradient) information

• Computational primitives: (sub)gradients and proximal operators

• Use gradient if function differentiable, prox if nondifferentiable

• Examples for solving minimize
x

f(x) + g(x)

• Proximal gradient method (requires smooth f since gradient used)

xk+1 = proxγg(xk − γ∇f(xk))

• Douglas-Rachford splitting (no smoothness requirement)

zk+1 = 1
2
zk + 1

2
(2proxγg − I)(2proxγf − I)zk

and xk = proxγf (zk) converges to solution

• Iteration often cheaper than second-order if function split wisely

• Can solve large-scale problems

• Will look at proximal gradient method and accelerated version

8
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Stochastic and coordinate-wise first-order methods

• Sometimes first-order methods computationally too expensive

• Stochastic gradient methods:
• Use stochastic approximation of gradient
• For finite sum problems, cheaply computed approximation exists

• Coordinate-wise updates:
• Update only one (or block of) coordinates in every iteration:

• via direct minimization
• via proximal gradient step

• Can update coordinates in cyclic fashion
• Stronger convergence results if random selection of block
• Efficient if cost of updating one coordinate is 1/n of full update

• Can solve huge scale problems

• Will cover randomized coordinate and stochastic methods

9

Outline

Algorithm overview

Convergence and convergence rates

Proving convergence rates

10

Types of convergence

• Let x? be solution to composite problem and p? = f(x?) + g(x?)

• We will see convergence of different quantities in different settings

• For deterministic algorithms that generate (xk)k∈N, we will see
• Sequence convergence: xk → x?

• Function value convergence: f(xk) + g(xk)→ p?

• If g = 0, gradient norm convergence: ‖∇f(xk)‖2 → 0

• Convergence is stronger as we go up the list

• First two common in convex setting, last in nonconvex

11

Convergence for stochastic algorithms

• Stochastic algorithms described by stochastic process (xk)k∈N
• When algorithm is run, we get realization of stochastic process

• We analyze stochastic process and will see summability, e.g., of:
• Expected distance to solution:

∑∞
k=0 E[‖xk − x?‖2] <∞

• Expected function value:
∑∞
k=0 E[f(xk) + g(xk)− p?] <∞

• If g = 0, expected gradient norm:
∑∞
k=0 E[‖∇f(xk)‖22] <∞

• Sometimes arrive at weaker conclusion, when g = 0, that, e.g.,:
• Expected smallest function value: E[ min

l∈{0,...,k}
f(xl)− p?]→ 0

• Expected smallest gradient norm: E[ min
l∈{0,...,k}

‖∇f(xl)‖2]→ 0

• Says what happens with expected value of different quantities

12

Algorithm realizations – Summable case

• Will conclude that sequence of expected values containing, e.g.,:

E[‖xk − x?‖2] or E[f(xk) + g(xk)− p?] or E[‖∇f(xk)‖2]

is summable, where all quantities are nonnegative

• What happens with the actual algorithm realizations?

• We can make conclusions by the following result: If
• (Zk)k∈N is a stochastic process with Zk ≥ 0
• the sequence {E[Zk]}k∈N is summable:

∑∞
k=0 E[Zk] <∞

then almost sure convergence to 0:

P ( lim
k→∞

Zk = 0) = 1

i.e., convergence to 0 with probability 1

13

Algorithm realizations – Convergent case

• Will conclude that sequence of expected values containing, e.g.,:

E[ min
l∈{0,...,k}

f(xl)− p?] or E[ min
l∈{0,...,k}

‖∇f(xl)‖2]

converges to 0, where all quantities are nonnegative

• What happens with the actual algorithm realizations?

• We can make conclusions by the following result: If
• (Zk)k∈N is a stochastic process with Zk ≥ 0
• the expected value E[Zk]→ 0 as k →∞

then convergence to 0 in probability; for all ε > 0

lim
k→∞

P (Zk > ε) = 0

which is weaker than almost sure convergence to 0

14

Convergence rates

• We have only talked about convergence, not convergence rate

• Rates indicate how fast (in iterations) algorithm reaches solution

• Typically divided into:
• Sublinear rates
• Linear rates (also called geometric rates)
• Quadratic rates (or more generally superlinear rates)

• Sublinear rates slowest, quadratic rates fastest

• Linear rates further divided into Q-linear and R-linear

• Quadratic rates further divided into Q-quadratic and R-quadratic

15

Linear rates

• A Q-linear rate with factor ρ ∈ [0, 1) can be:

f(xk+1) + g(xk+1)− p? ≤ ρ(f(xk) + g(xk)− p?)
E[‖xk+1 − x?‖2] ≤ ρE[‖xk − x?‖2]

• An R-linear rate with factor ρ ∈ [0, 1) and some C > 0 can be:

‖xk − x?‖2 ≤ ρkC

this is implied by Q-linear rate and has exponential decrease

• Linear rate is superlinear if ρ = ρk and ρk → 0 as k →∞
• Examples:

• (Accelerated) proximal gradient with strongly convex cost
• Randomized coordinate descent with strongly convex cost
• BFGS has local superlinear with strongly convex cost
• but SGD with strongly convex cost gives sublinear rate

16
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Linear rates – Comparison

• Different rates in log-lin plot

0 200 400 600 800 1000
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

ρ = 0.99

ρ = 0.96

ρ = 0.93

ρ = 0.90

• Called linear rate since linear in log-lin plot

17

Quadratic rates

• Q-quadratic rate with factor ρ ∈ [0, 1) can be:

f(xk+1) + g(xk+1)− p? ≤ ρ(f(xk) + g(xk)− p?)2

‖xk+1 − x?‖2 ≤ ρ‖x− x?‖22
• R-quadratic rate with factor ρ ∈ [0, 1) and some C > 0 can be:

‖xk − x?‖2 ≤ ρ2
k

C

• Quadratic (ρ2
k

) vs linear (ρk) rate with factor ρ = 0.9:

Quadratic
1.000000000000
0.810000000000
0.656099945000
0.430467133000
0.185302002000
0.034336821000
0.001179017030
0.000001390081
0.000000000002

Linear
1.000000000000
0.900000000000
0.810000000000
0.729000000000
0.656099945000
0.590490005000
0.531440964000
0.478296936000
0.430467270000

• Example: Locally for Newton’s method with strongly convex cost

18

Quadratic rates – Comparison

• Different rates in log-lin scale

1 2 3 4 5 6 7 8 9 10 11
10 -10
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• Quadratic convergence is superlinear

19

Sublinear rates

• A rate is sublinear if it is slower than linear

• A sublinear rate can, for instance, be of the form

f(xk) + g(xk)− p? ≤ C
ψ(k)

‖xk+1 − xk‖22 ≤ C
ψ(k)

min
l=0,...,k

E[‖∇f(xl)‖22] ≤ C
ψ(k)

where C > 0 and ψ decides how fast it decreases, e.g.,
• ψ(k) = log k: Stochastic gradient descent γk = c/k
• ψ(k) =

√
k: Stochastic gradient descent: optimal γk

• ψ(k) = k: Proximal gradient, coordinate proximal gradient
• ψ(k) = k2: Accelerated proximal gradient method

with improved rate further down the list

• We say that the rate is O( 1
ψ(k) ) for the different ψ

• To be sublinear ψ has slower than exponential growth

20

Sublinear rates – Comparison

• Different rates on log-lin scale

0 2000 4000 6000 8000 10000
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• Many iterations may be needed for high accuracy
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Rate vs iteration cost

• Consider these classes of algorithms
• Second-order methods
• Quasi second-order methods
• First-order methods
• Stochastic and coordinate-wise first-order methods

• Rate deteriorates and iterations increase as we go down the list ⇓
• Iteration cost increases as we go up the list ⇑
• Performance is roughly (# iterations)×(iteration cost)

• This gives a tradeoff when selecting algorithm

• Rough advise for problem size: small (⇑) medium (⇑⇓) large (⇓)

22

Outline

Algorithm overview

Convergence and convergence rates

Proving convergence rates

23

Proving convergence rates

• To prove a convergence rate typically requires
• Using inequalities that describe problem class
• Using algorithm definition equalities (or inclusions)
• Combine these to a form so that convergence can be concluded

• Linear and quadratic rates proofs conceptually straightforward

• Sublinear rates implicit via a Lyapunov inequality

24
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Proving linear or quadratic rates

• If we suspect linear or quadratic convergence for Vk ≥ 0:

Vk+1 ≤ ρV pk
where ρ ∈ [0, 1) and p = 1 or p = 2 and Vk can, e.g., be

Vk = ‖xk − x?‖2 or Vk = f(xk) + g(xk)− p? or Vk = ‖∇f(xk)‖2

• Can prove by starting with Vk+1 (or V 2
k+1) and continue using

• function class inequalities
• algorithm equalities
• propeties of norms
• . . .

25

Sublinear convergence – Lyapunov inequality

• Assume we want to show sublinear convergence of some Rk ≥ 0

• This typically requires finding a Lyapunov inequality:

Vk+1 ≤ Vk +Wk −Rk

where
• (Vk)k∈N, (Wk)k∈N, and (Rk)k∈N are nonnegative real numbers
• (Wk)k∈N is summable, i.e., W :=

∑∞
k=0Wk <∞

• Such a Lyapunov inequality can be found by using
• function class inequalities
• algorithm equalities
• propeties of norms
• . . .

26

Lyapunov inequality consequences

• From the Lyapunov inequality:

Vk+1 ≤ Vk +Wk −Rk
we can conclude that
• Vk is nonincreasing if all Wk = 0
• Vk converges as k →∞ (will not prove)

• Recursively applying the inequality for l ∈ {k, . . . , 0} gives

Vk+1 ≤ V0 +
k∑

l=0

Wl −
k∑

l=0

Rl ≤ V0 +W −
k∑

l=0

Rl

where W is infinite sum of Wk, this implies

k∑

l=0

Rl ≤ V0 − Vk+1 +
k∑

l=0

Wl ≤ V0 +
k∑

l=0

Wl ≤ V0 +W

from which we can
• conclude that Rk → 0 as k →∞ since Rk ≥ 0
• derive sublinear rates of convergence for Rk towards 0

27

Concluding sublinear convergence

• Lyapunov inequality consequence restated

k∑

l=0

Rl ≤ V0 +

k∑

l=0

Wl ≤ V0 +W

• We can derive sublinear convergence for
• Best Rk: (k + 1) minl∈{0,...,k}Rl ≤

∑k
l=0Rl

• Last Rk (if Rk decreasing): (k + 1)Rk ≤
∑k
l=0Rl

• Average Rk: R̄k = 1
k+1

∑k
l=0Rl

• Let R̂k be any of these quantities, and we have

R̂k ≤
∑k
l=0Rl
k + 1

≤ V0 +W

k + 1

which shows a O(1/k) sublinear convergence

28

Deriving other than O(1/k) convergence (1/3)

• Other rates can be derived from a modified Lyapunov inequality:

Vk+1 ≤ Vk +Wk − λkRk

with λk > 0 when we are interested in convergence of Rk, then

k∑

l=0

λlRl ≤ V0 +
k∑

l=0

Wl ≤ V0 +W

• We have Rk → 0 as k →∞ if, e.g.,
∑∞
l=0 λl =∞

29

Deriving other than O(1/k) convergence (2/3)

• Restating the consequence:
∑k
l=0 λlRl ≤ V0 +W

• We can derive sublinear convergence for
• Best Rk: minl∈{0,...,k}Rl

∑k
l=0 λl ≤

∑k
l=0 λlRl

• Last Rk (if Rk decreasing): Rk
∑k
l=0 λl ≤

∑k
l=0 λlRl

• Weighted average Rk: R̄k = 1∑k
l=0

λl

∑k
l=0 λlRl

• Let R̂k be any of these quantities, and we have

R̂k ≤
∑k
l=0Rl∑k
l=0 λl

≤ V0 +W
∑k
l=0 λl

30

Deriving other than O(1/k) convergence (3/3)

• How to get a rate out of:

R̂k ≤
V0 +W
∑k
l=0 λl

• Assume ψ(k) ≤∑k
l=0 λl, then ψ(k) decides rate:

R̂k ≤
∑k
l=0Rl∑k
l=0 λl

≤ V0 +W

ψ(k)

which gives a O( 1
ψ(k) ) rate

• If λk = c is constant: ψ(k) = c(k + 1) and we have O(1/k) rate
• If λk is decreasing: slower rate than O(1/k)
• If λk is increasing: faster rate than O(1/k)

31

Estimating ψ via integrals

• Assume that λk = φ(k), then ψ(k) ≤∑k
l=0 φ(l) and

R̂k ≤
∑k
l=0Rl∑k
l=0 φ(l)

≤ V0 +W

ψ(k)

• To estimate ψ, we use the integral inequalities
• for decreasing nonnegative φ:

∫ k

t=0

φ(t)dt+ φ(k) ≤
k∑

l=0

φ(l) ≤
∫ k

t=0

φ(t)dt+ φ(0)

• for increasing nonnegative φ:

∫ k

t=0

φ(t)dt+ φ(0) ≤
k∑

l=0

φ(l) ≤
∫ k

t=0

φ(t)dt+ φ(k)

• Remove φ(k), φ(0) ≥ 0 from the lower bounds and use estimate:

ψ(k) =

∫ k

t=0

φ(t)dt ≤
k∑

l=0

φ(l)
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Sublinear rate examples

• For Lyapunov inequality Vk+1 ≤ Vk +Wk − λkRk, we get:

R̂k ≤
V0 +W

ψ(k)
where λk = φ(k) and ψ(k) =

∫ k

t=0

φ(t)dt

• Let us quantify the rate ψ in a few examples:
• Two examples that are slower than O(1/k):

• λk = φ(k) = c/(k + 1) gives slow O( 1
log k

) rate:

ψ(k) =

∫ k

t=0

c

t+ 1
dt = c[log(t+ 1)]kt=0 = c log(k + 1)

• λk = φ(k) = c/(k+1)α for α ∈ (0, 1), gives faster O( 1
k1−α ) rate:

ψ(k) =

∫ k

t=0

c

(t+ 1)α
dt = c[

(t+1)1−α
(1−α) ]kt=0 = c

1−α ((k + 1)1−α − 1)

• An example that is faster than O(1/k)
• λk = φ(k) = c(k + 1) gives O( 1

k2
) rate:

ψ(k) =

∫ k

t=0
c(t+ 1)dt = c[ 1

2
(t+ 1)2]kt=0 = c

2
((k + 1)2 − 1)

33

Stochastic setting and law of total expectation

• In the stochastic setting, we analyze the stochastic process

xk+1 = Ak(ξk)xk

• We will look for inequalities of the form

E[Vk+1|xk] ≤ E[Vk|xk] + E[Wk|xk]− λkE[Rk|xk]

to see what happens in one step given xk (but not given ξk)

• We use law of total expectation E[E[X|Y ]] = E[X] to get

E[Vk+1] ≤ E[Vk] + E[Wk]− λkE[Rk]

which is a Lyapunov inequality

• We can draw rate conclusions, as we did before, now for E[Rk]
• For realizations we can say:

• If E[Rk] is summable, then Rk → 0 almost surely
• If E[Rk]→ 0, then Rk → 0 in probability

34

Rates in stochastic setting

• Lyapunov inequality E[Vk+1] ≤ E[Vk] + E[Wk]− λkE[Rk] implies:

k∑

l=0

λlE[Rl] ≤ V0 +
∞∑

l=0

E[Wl] ≤ V0 + W̄

• Same procedure as before gives sublinear rates for
• Best E[Rk]: minl∈{0,...,k} E[Rl]

∑k
l=0 λl ≤

∑k
l=0 λlE[Rl]

• Last E[Rk] (if E[Rk] decreasing): E[Rk]
∑k
l=0 λl ≤

∑k
l=0 λlE[Rl]

• Weighted average: E[R̄k] = 1∑k
l=0

λl

∑k
l=0 λlE[Rl]

• Jensen’s inequality for concave minl in best residual reads

E[ min
l∈{0,...,k}

Rl] ≤ min
l∈{0,...,k}

E[Rl]

• Let R̂k be any of the above quantities, and we have

E[R̂k] ≤ V0 + W̄
∑k
l=0 λl
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2

Proximal gradient method

• We consider composite optimization problems of the form

minimize
x

f(x) + g(x)

• The proximal gradient method is

xk+1 = argmin
y

(
f(xk) +∇f(xk)T (y − xk) + 1

2γk
‖y − xk‖22 + g(y)

)

= argmin
y

(
g(y) + 1

2γk
‖y − (xk − γk∇f(xk))‖22

)

= proxγkg(xk − γk∇f(xk))

3

Proximal gradient – Optimality condition

• Proximal gradient iteration is:

xk+1 = proxγkg(xk − γk∇f(xk))
= argmin

y
(g(y) + 1

2γk
‖y − (xk − γk∇f(xk))‖22︸ ︷︷ ︸

h(y)

)

where xk+1 is unique due to strong convexity of h

• Fermat’s rule gives, since g convex, optimality condition:

0 ∈ ∂g(xk+1) + ∂h(xk+1)

= ∂g(xk+1) + γ−1k (xk+1 − (xk − γk∇f(xk)))

since h differentiable

• A consequence is that ∂g(xk+1) is nonempty

4

Proximal gradient method – Convergence rates

• We will analyze proximal gradient method in different settings:
• Nonconvex

• O(1/k) convergence for squared residual
• Convex

• O(1/k) convergence for function values
• Strongly convex

• Linear convergence in distance to solution

• First two rates based on a fundamental inequality for the method

5

Assumptions for fundamental inequality

(i) f : Rn → R is continuously differentiable (not necessarily convex)

(ii) For every xk and xk+1 there exists βk ∈ [η, η−1], η ∈ (0, 1]:

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk
2 ‖xk − xk+1‖22

where βk is a sort of local Lipschitz constant

(iii) g : Rn → R ∪ {∞} is closed convex

(iv) A minimizer x? exists and p? = f(x?) + g(x?) is optimal value

(v) Proximal gradient method parameters γk > 0

• Assumption (ii) satisfied with βk ≥ β if f is β-smooth

• Assumptions will be strengthened later

6

A fundamental inequality

For all z ∈ Rn, the proximal gradient method satisfies

f(xk+1) + g(xk+1) ≤ f(xk) +∇f(xk)T (z − xk)− γ−1
k −βk

2 ‖xk+1 − xk‖22
+ g(z) + 1

2γk
(‖xk − z‖22 − ‖xk+1 − z‖22)

where xk+1 = proxγkg(xk − γk∇f(xk))

7

A fundamental inequality – Proof (1/2)

Using

(a) Upper bound assumption on f , i.e., Assumption (ii)
(b) Prox optimality condition: There exists sk+1 ∈ ∂g(xk+1)

0 = sk+1 + γ−1k (xk+1 − (xk − γk∇f(xk)))
(c) Subgradient definition: ∀z, g(z) ≥ g(xk+1) + sTk+1(z − xk+1)

f(xk+1) + g(xk+1)

(a)

≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk
2 ‖xk+1 − xk‖22 + g(xk+1)

(c)

≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk
2 ‖xk+1 − xk‖22 + g(z)

− sTk+1(z − xk+1)

(b)
= f(xk) +∇f(xk)T (xk+1 − xk) + βk

2 ‖xk+1 − xk‖22 + g(z)

+ γ−1k (xk+1 − (xk − γk∇f(xk)))T (z − xk+1)

= f(xk) +∇f(xk)T (z − xk) + βk
2 ‖xk+1 − xk‖22 + g(z)

+ γ−1k (xk+1 − xk)T (z − xk+1)
8
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A fundamental inequality – Proof (2/2)

• The proof continues by using the equality

(xk+1 − xk)T (z − xk+1)

= 1
2 (‖xk − z‖22 − ‖xk+1 − z‖22 − ‖xk+1 − xk‖22)

• Applying to previous inequality gives

f(xk+1) + g(xk+1)

≤ f(xk) +∇f(xk)T (z − xk) + βk
2 ‖xk+1 − xk‖22 + g(z)

+ γ−1k (xk+1 − xk)T (z − xk+1)

= f(xk) +∇f(xk)T (z − xk) + βk
2 ‖xk+1 − xk‖22 + g(z)

+ 1
2γk

(‖xk − z‖22 − ‖xk+1 − z‖22 − ‖xk − xk+1‖22)

which after rearrangement gives the fundamental inequality

9
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10

Nonconvex setting

• We will analyze the proximal gradient method

xk+1 = proxγkg(xk − γk∇f(xk))

in a nonconvex setting for solving

minimize f(x) + g(x)

• Will show sublinear O(1/k) convergence

• Analysis based on A fundamental inequality

11

Nonconvex setting – Assumptions

(i) f : Rn → R is continuously differentiable (not necessarily convex)

(ii) For every xk and xk+1 there exists βk ∈ [η, η−1], η ∈ (0, 1]:

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk
2 ‖xk − xk+1‖22

where βk is a sort of local Lipschitz constant

(iii) g : Rn → R ∪ {∞} is closed convex

(iv) A minimizer x? exists and p? = f(x?) + g(x?) is optimal value

(v) Algorithm parameters γk ∈ [ε, 2
βk
− ε], where ε > 0

• Differs from assumptions for fundamental inequality only in (v)

• Assumption (ii) satisfied with βk ≥ β if f is β-smooth

12

Nonconvex setting – Analysis

• Use fundamental inequality

f(xk+1) + g(xk+1) ≤ f(xk) +∇f(xk)T (z − xk)− γ−1
k −βk

2 ‖xk+1 − xk‖22
+ g(z) + 1

2γk
(‖xk − z‖22 − ‖xk+1 − z‖22)

• Set z = xk to get

f(xk+1) + g(xk+1) ≤ f(xk) + g(xk)− (γ−1k − βk
2 )‖xk+1 − xk‖22

13

Step-size requirements

• Step-sizes γk should be restricted for inequality to be useful:

f(xk+1) + g(xk+1) ≤ f(xk) + g(xk)− (γ−1k − βk
2 )‖xk+1 − xk‖22

• Requirements βk ∈ [η, η−1] and γk ∈ [ε, 2
βk
− ε]:

• upper bound γk ≤ 2
βk
− ε can be written as

γk ≤ 2
βk+2δk

where δk = βkε

2

(
2
βk
−ε

) ≥ β2
kε

4
≥ η2ε

4
> 0

since upper bound βk ≤ η−1 gives 2
βk
− ε ≥ 2η − ε > 0 and ε > 0

• Inverting upper step-size bound and letting δ := η2ε
4
≤ δk:

γ−1
k ≥ βk+2δk

2
≥ βk

2
+ δ ⇒ γ−1

k − βk
2
≥ δ > 0

• This implies, by subtracting p? from both sides to have Vk ≥ 0,

f(xk+1) + g(xk+1)− p?︸ ︷︷ ︸
Vk+1

≤ f(xk) + g(xk)− p?︸ ︷︷ ︸
Vk

− δ‖xk+1 − xk‖22︸ ︷︷ ︸
Rk

where bounds on γk imply that all Rk are nonnegative
14

Lyapunov inequality consequences

• Restating Lyapunov inequality

f(xk+1) + g(xk+1)− p?︸ ︷︷ ︸
Vk+1

≤ f(xk) + g(xk)− p?︸ ︷︷ ︸
Vk

− δ‖xk+1 − xk‖22︸ ︷︷ ︸
Rk

• Consequences:
• Function value is decreasing sequence (may not converge to p?)
• Fixed-point residual converges to 0 as k →∞:

‖xk+1 − xk‖2 = ‖proxγkg(xk − γk∇f(xk))− xk‖2 → 0

• Best fixed-point residual norm square converges as O(1/k):

min
i∈{0,...,k}

‖xi+1 − xi‖22 ≤
f(x0) + g(x0)− p?

δ(k + 1)

15

Lyapunov inequality consequences – g = 0

• For g = 0, then xk+1 = xk − γk∇f(xk) and

‖xk+1 − xk‖2 = γk‖∇f(xk)‖2 and Rk = δγ2k‖∇f(xk)‖22
• Lyapunov inequality consequences in this setting:

• Gradient converges to 0 (since γk ≥ ε): ‖∇f(xk)‖2 → 0
• Smallest gradient norm square converges as:

min
i∈{0,...,k}

‖∇f(xi)‖22 ≤
f(x0)− p?
δ
∑k
i=0 γ

2
i

• If, in addition, f is β-smooth and γk = 1
β

:

min
i∈{0,...,k}

‖∇f(xi)‖22 ≤
2β(f(x0)− p?)

k + 1

since then βk = β and γ−1
k − βk

2
= β

2
= δ > 0

• So, will approach local maximum, minimum, or saddle-point

16
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Fixed-point residual convergence – Implication

What does ‖proxγkg(xk − γk∇f(xk))− xk‖2 → 0 imply?

• By prox-grad optimality condition and ‖xk+1 − xk‖2 → 0:

∂g(xk+1) +∇f(xk) 3 γ−1k (xk − xk+1)→ 0

as k →∞ (since γk ≥ ε, i.e., 0 < γ−1k ≤ ε−1) or equivalently

∂g(xk+1) +∇f(xk+1) 3 γ−1k (xk − xk+1) +∇f(xk+1)−∇f(xk)︸ ︷︷ ︸
uk

→ 0

where uk → 0 is concluded by continuity of ∇f
• Critical point definition for nonconvex f satisfied in the limit

17
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Convex setting

• We will analyze the proximal gradient method

xk+1 = proxγkg(xk − γk∇f(xk))

in the convex setting for solving

minimize f(x) + g(x)

• Will show sublinear O(1/k) convergence for function values

• Analysis based on A fundamental inequality

19

Convex setting – Assumptions

(i) f : Rn → R is continuously differentiable and convex

(ii) For every xk and xk+1 there exists βk ∈ [η, η−1], η ∈ (0, 1]:

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk
2 ‖xk − xk+1‖22

where βk is a sort of local Lipschitz constant

(iii) g : Rn → R ∪ {∞} is closed convex

(iv) A minimizer x? exists and p? = f(x?) + g(x?) is optimal value

(v) Algorithm parameters γk ∈ [ε, 2
βk
− ε], where ε > 0

• Assumptions as for fundamental inequality plus
• convexity of f
• restricted step-size parameters γk (as in nonconvex setting)

• Assumption (ii) satisfied with βk ≥ β if f is β-smooth

20

Convex setting – Analysis

• Use fundamental inequality with z = x?, where x? is solution

f(xk+1) + g(xk+1) ≤ f(xk) +∇f(xk)T (x? − xk)

− γ−1
k −βk

2 ‖xk+1 − xk‖22 + g(x?)

+ 1
2γk

(‖xk − x?‖22 − ‖xk+1 − x?‖22)
• and convexity of f

f(x?) ≥ f(xk) +∇f(xk)T (x? − xk)
• This gives

f(xk+1) + g(xk+1) ≤ f(x?)− γ−1
k −βk

2 ‖xk+1 − xk‖22 + g(x?)

+ 1
2γk

(‖xk − x?‖22 − ‖xk+1 − x?‖22)
which, by multiplying by 2γk and using p? = f(x?) + g(x?), gives

‖xk+1 − x?‖22 ≤ ‖xk − x?‖22 + (βkγk − 1)‖xk+1 − xk‖22
− 2γk(f(xk+1) + g(xk+1)− p?)

21

Lyapunov inequality – Convex setting

• The last inequality on previous slide is Lyapunov inequality

‖xk+1 − x?‖22︸ ︷︷ ︸
Vk+1

≤ ‖xk − x?‖22︸ ︷︷ ︸
Vk

+(βkγk − 1)‖xk+1 − xk‖22︸ ︷︷ ︸
Wk

− 2γk (f(xk+1) + g(xk+1)− p?)︸ ︷︷ ︸
Rk

• Will divide analysis two cases: Short and long step-sizes
• Step-sizes γk ∈ [ε, 1

βk
]: gives βkγk ≤ 1 and Wk ≤ 0

• Step-sizes γk ∈ [ 1
βk
, 2
βk
− ε]: gives βkγk ≥ 1 and Wk ≥ 0

since Wk contribute differently

22

Short step-sizes

• For step-sizes γk ∈ [ε, 1
βk

], the Lyapunov inequality implies:

‖xk+1 − x?‖22︸ ︷︷ ︸
Vk+1

≤ ‖xk − x?‖22︸ ︷︷ ︸
Vk

−2γk (f(xk+1) + g(xk+1)− p?)︸ ︷︷ ︸
Rk

where we have used Wk = 0 (which is OK since Wk ≤ 0)

• Nonconvex analysis says function value decreases in every iteration
• Consequences:

• Distance to solution ‖xk − x?‖2 converges as k →∞
• Function value decreases to optimal function value as:

f(xk+1) + g(xk+1)− p? ≤ ‖x0 − x?‖22
2
∑k
i=0 γi

if f is β-smooth and γk = 1
β

, then converges as O(1/k):

f(xk+1) + g(xk+1)− p? ≤ β‖x0 − x?‖22
2(k + 1)

23

Long step-sizes

• For step-sizes γk ∈ [ 1
βk
, 2
βk
− ε], the Lyapunov inequality is:

‖xk+1 − x?‖22︸ ︷︷ ︸
Vk+1

≤ ‖xk − x?‖22︸ ︷︷ ︸
Vk

+(βkγk − 1)‖xk+1 − xk‖22︸ ︷︷ ︸
Wk

− 2γk (f(xk+1) + g(xk+1)− p?)︸ ︷︷ ︸
Rk

• From nonconvex analysis can conclude that Wk is summable
• We showed for γk ∈ [ε, 2

βk
− ε], (‖xk+1 − xk‖22)k∈N is summable

• Since βkγk bounded, also (Wk)k∈N is summable
• Let us define W =

∑∞
k=0 Wk

• Consequences:
• Distance to solution ‖xk − x?‖2 converges as k →∞
• Function value decreases to optimal function value as:

f(xk+1) + g(xk+1)− p? ≤ ‖x0 − x?‖22 +W

2
∑k
i=0 γi

for β-smooth f with γk = 1
β

, denominator replaced by 2(k+1)
β

24
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Strongly convex setting

• We will analyze the proximal gradient method

xk+1 = proxγkg(xk − γk∇f(xk))

in a strongly convex setting for solving

minimize f(x) + g(x)

• Will show linear convergence for distance to solution ‖xk − x?‖2
• Two ways to show linear convergence, we can:

(i) Base analysis on A fundamental inequality
(ii) Start by ‖xk+1 − x?‖22 and expand (which is what we will do)

26

Strongly convex setting – Assumptions

(i) f : Rn → R is continuously differentiable and σ-strongly convex

(ii) f is β-smooth

(iii) g : Rn → R ∪ {∞} is closed convex

(iv) A minimizer x? exists and p? = f(x?) + g(x?) is optimal value

(v) Algorithm parameters γk ∈ [ε, 2
β − ε], where ε > 0

• Assumptions as for fundamental inequality plus
• σ-strong convexity of f
• β-smoothness of f instead of upper bound for xk+1 and xk
• restricted step-size parameters γk (as in (non)convex setting)

• But will not use fundamental inequality in analysis

27

Strongly convex setting – Analysis

Use that

(a) x? = proxγg(x
? − γ∇f(x?)) for all γ > 0

(b) the proximal operator is nonexpansive
(c) gradients of β-smooth σ-strongly convex functions f satisfy

(∇f(x)−∇f(y))T (x− y) ≥ 1
β+σ‖∇f(x)−∇f(y)‖22 +

σβ
β+σ‖x− y‖22

to get

‖xk+1 − x?‖22
(a)
= ‖proxγkg(xk − γk∇f(xk))− proxγkg(x

? − γk∇f(x?))‖22
(b)

≤ ‖(xk − γk∇f(xk))− (x? − γk∇f(x?))‖22
= ‖xk − x?‖22 − 2γk(∇f(xk)−∇f(x?))T (xk − x?)
+ γ2k‖∇f(xk)−∇f(x?)‖22

(c)

≤ ‖xk − x?‖22 − 2γk
β+σ (‖∇f(xk)−∇f(x?)‖22 + σβ‖xk − x?‖22)

+ γ2k‖∇f(xk)−∇f(x?)‖22
= (1− 2γkσβ

β+σ )‖xk − x?‖22 − γk( 2
β+σ − γk)‖∇f(xk)−∇f(x?)‖22

28

Lyapunov inequality – Strongly convex setting

• Lyapunov inequality from previous slide is

‖xk+1 − x?‖22 ≤ (1− 2γkσβ
β+σ )‖xk − x?‖22

− γk( 2
β+σ − γk)‖∇f(xk)−∇f(x?)‖22︸ ︷︷ ︸

Wk

• Will divide analysis into two cases: Short and long step-sizes
• Step-sizes γk ∈ [ε, 2

β+σ
]: gives Wk ≥ 0

• Step-sizes γk ∈ [ 2
β+σ

, 2
β
− ε]: gives Wk ≤ 0

29

Short step-sizes

• Lyapunov inequality

‖xk+1 − x?‖22 ≤ (1− 2γkσβ
β+σ )‖xk − x?‖22

− γk( 2
β+σ − γk)‖∇f(xk)−∇f(x?)‖22︸ ︷︷ ︸

Wk

for γk ∈ [ε, 2
β+σ ] implies Wk ≥ 0

• Strong monotonicity with modulus σ of ∇f implies

‖∇f(xk)−∇f(x?)‖2 ≥ σ‖xk − x?‖2
• So we have linear convergence since

‖xk+1 − x?‖22 ≤ (1− 2γkσβ
β+σ − σ2γk(

2
β+σ − γk))‖xk − x?‖22

= (1− 2γkσ(β+σ)
β+σ + σ2γ2k)‖xk − x?‖22

= (1− σγk)2‖xk − x?‖22
where (1− σγk)2 ∈ [0, 1) for full range of γk

30

Long step-sizes

• Lyapunov inequality

‖xk+1 − x?‖22 ≤ (1− 2γkσβ
β+σ )‖xk − x?‖22

− γk( 2
β+σ − γk)‖∇f(xk)−∇f(x?)‖22︸ ︷︷ ︸

Wk

for γk ∈ [ 2
β+σ ,

2
β − ε] implies Wk ≤ 0

• That f is β-smooth implies ∇f is β-Lipschitz continuous:

‖∇f(xk)−∇f(x?)‖2 ≤ β‖xk − x?‖2
• So we have linear convergence since

‖xk+1 − x?‖22 ≤ (1− 2γkσβ
β+σ − β2γk(

2
β+σ − γk))‖xk − x?‖22

= (1− 2γkβ(σ+β)
β+σ + β2γ2k)‖xk − x?‖22

= (1− βγk)2‖xk − x?‖22
where (1− βγk)2 ∈ [0, 1) for full range of γk

31

Unified rate

• By removing the square and checking sign, we have
• for step-sizes γk ∈ [ε, 2

β+σ
]:

‖xk+1 − x?‖2 ≤ (1− σγk)‖xk − x?‖2
• for step-sizes γk ∈ [ 2

β+σ
, 2
β
− ε]:

‖xk+1 − x?‖2 ≤ (βγk − 1)‖xk − x?‖2

• The linear convergence result can be summarized as

‖xk+1 − x?‖2 ≤ max(1− σγk, βγk − 1)‖xk − x?‖2

32
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Optimal step-size

• For fixed-step-sizes γk = γ, the rate result is

‖xk+1 − x?‖2 ≤ max(1− σγ, βγ − 1)︸ ︷︷ ︸
ρ

‖xk − x?‖2

• Optimal γ that gives smallest contraction is γ = 2
β+σ :

• (1− σγ) decreasing in γ, optimal at upper bound γ = 2
β+σ

• (βγ − 1) increasing in γ, optimal at lower bound γ = 2
β+σ

• Bounds coincide at γ = 2
β+σ

to give rate factor ρ = β−σ
β+σ

33

Outline

A fundamental inequality

Nonconvex setting

Convex setting

Strongly convex setting

Backtracking

Stopping conditions

Accelerated gradient method

Scaling

34

Choose βk and γk

• In nonconvex and convex analysis, we assume βk known such that

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk
2 ‖xk − xk+1‖22

for consecutive iterates xk and xk+1

• This is an assumption on the function f

• We call it descent condition (DC)

• If f is β-smooth, then βk = β is valid choice since

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖22

for all x, y, then we can select γk ∈ [ε, 2
β − ε]
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Choose βk and γk – Backtracking

• Backtracking: choose κ > 1, βk,0 ∈ [η, η−1], let lk = 0, and loop

1. choose γk ∈ [ε, 2
βk,lk

− ε]
2. compute xk+1 = proxγkg(xk − γk∇f(xk))
3. if descent condition (DC) satisfied

set k ← k + 1 // increment algorithm counter

set l̄k ← lk // store final backtrack counter

set βk ← βk,lk // store final β variable

break backtrack loop
else

set βk,lk+1 ← κβk,lk // increase backtrack parameter

set lk ← lk + 1 // increment backtrack counter

end

• Larger βk,lk gives smaller upper bound for step-size γk
• Forwardtracking on βk,lk , backtracking for γk upper bound

36

When to use backtracking

• f is β-smooth but constant β unknown:
• initialize βk,0 = βk−1,l̄k−1

to previously used value
• then (βk)k∈N nondecreasing
• finally βk ≥ β (if needed), then

• step-size bound γk ∈ [ε, 2
βk,l̄k

− ε] makes (DC) hold directly

• so will have constant βk after finite number of algoritm iterations

• ∇f locally Lipschitz and sequence bounded (as in convex case):
• initialize βk,0 = β̄, for some pre-chosen β̄ > 0
• reset to same value β̄ in every algorithm iteration
• will find a local Lipschitz constant
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When to stop algorithm?

• Consider minimize
x

f(x) + g(x)

• Apply proximal gradient method xk+1 = proxγkg(xk− γk∇f(xk))
• Algorithm sequence satisfies

∂g(xk+1) +∇f(xk+1) 3 γ−1k (xk − xk+1) +∇f(xk+1)−∇f(xk)︸ ︷︷ ︸
uk

→ 0

is ‖uk‖2 small a good measure of being close to fixed-point?

39

When to stop algorithm – Scaled problem

Let a > 0 and solve equivalent problem minimize
x

af(x) + ag(x):

• Denote algorithm parameter γa,k = γk
a

• Algorithm satisfies:

xk+1 = proxγa,kag(xk − γa,k∇af(xk)) = proxγkg(xk − γk∇f(xk))

i.e., the same algorithm as before

• However, ua,k in this setting satisfies

ua,k = γ−1a,k(xk − xk+1) +∇af(xk+1)−∇af(xk)
= a(γ−1k (xk − xk+1) +∇f(xk+1)−∇f(xk))
= auk

i.e., same algorithm but different optimality measure

• Optimality measure should be scaling invariant

40
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Scaling invariant stopping condition

• For β-smooth f , use scaled condition 1
βuk

1
βuk := 1

β (γ
−1
k (xk − xk+1) +∇f(xk+1)−∇f(xk))

that we have seen before

• Let us scale problem by a to get minimize af(x) + ag(x), then
• smoothness constant βa = aβ scaled by a ⇒ use γa,k = γk

a• optimality measure 1
βa
ua,k = 1

aβ
auk = 1

β
uk remains the same

so it is scaling invariant

• Problem considered solved to optimality if, say, 1
β ‖uk‖2 ≤ 10−6

• Often lower accuracy 10−3 to 10−4 is enough

41

Example – SVM

• Classification problem from SVM lecture, SVM with
• polynomial features of degree 2
• regularization parameter λ = 0.00001
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Example – Optimality measure

• Plots β−1‖uk‖2 = β−1‖γ−1k (xk −xk+1)+∇f(xk+1)−∇f(xk)‖2
• Shows β−1‖uk‖2 up to 20’000 iterations

• Quite many iterations needed to converge
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Example – SVM higher degree polynomial

• Classification problem from SVM lecture, SVM with
• polynomial features of degree 6
• regularization parameter λ = 0.00001
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Example – Optimality measure

• Plots β−1‖uk‖2 = β−1‖γ−1k (xk −xk+1)+∇f(xk+1)−∇f(xk)‖2
• Shows β−1‖uk‖2 up to 200’000 iterations (10x more than before)

• Many iterations needed for high accuracy
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Accelerated proximal gradient method

• Consider convex composite problem

minimize
x

f(x) + g(x)

where
• f : Rn → R is β-smooth and convex
• g : Rn → R ∪ {∞} is closed and convex

• Proximal gradient descent

xk+1 = proxγg(xk − γ∇f(xk))

achieves O(1/k) convergence rate in function value

• Accelerated proximal gradient method

yk = xk + θk(xk − xk−1)
xk+1 = proxγg(yk − γ∇f(yk))

(with specific θk) achieves faster O(1/k2) convergence rate

47

Accelerated proximal gradient method – Parameters

• Accelerated proximal gradient method

yk = xk + θk(xk − xk−1)
xk+1 = proxγg(yk − γ∇f(yk))

• Step-sizes are restricted γ ∈ (0, 1
β ]

• The θk parameters can be chosen either as

θk = k−1
k+2

or θk = tk−1−1
tk

where

tk =
1+
√

1+4t2k−1

2

these choices are very similar

• Algorithm behavior in nonconvex setting not well understood
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Not a descent method

• Descent method means function value is decreasing every iteration

• We know that proximal gradient method is a descent method

• However, accelerated proximal gradient method is not

49

Accelerated gradient method – Example

• Accelerated vs nominal proximal gradient method

• Problem from SVM lecture, polynomial deg 6 and λ = 0.0215
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Accelerated gradient method – Example

• Accelerated vs nominal proximal gradient method

• Problem from SVM lecture, polynomial deg 6 and λ = 0.0215
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Scaled proximal gradient method

• Proximal gradient method:

xk+1 = argmin
y

(
f(xk) +∇f(xk)T (y − x) + 1

2γk
‖y − xk‖22︸ ︷︷ ︸

f̂xk (y)

+g(y)

)

approximates function f(y) around xk by f̂xk(y)

• The better the approximation, the faster the convergence

• By scaling: we mean to use an approximation of the form

f̂xk(y) = f(xk) +∇f(xk)T (y − xk) + 1
2γk
‖y − xk‖2H

where H ∈ Rn×n is a positive definite matrix and ‖x‖2H = xTHx
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Gradient descent – Example

• Gradient descent on β-smooth quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]

• Step-size γ = 1
β and norm ‖ · ‖2 in model
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Gradient descent – Example

• Gradient descent on β-smooth quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]

• Step-size γ = 1
β and norm ‖ · ‖2 in model

53

93



Gradient descent – Example

• Gradient descent on β-smooth quadratic problem

minimize
x

1

2
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Gradient descent – Example
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Gradient descent – Example

• Gradient descent on β-smooth quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]

• Step-size γ = 1
β and norm ‖ · ‖2 in model
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Scaled gradient descent – Example

• Gradient descent on β-smooth quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]

• Scaling H = diag(∇2f), γ is inverse smoothness w.r.t. ‖ · ‖H
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Scaled gradient descent – Example

• Gradient descent on β-smooth quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]

• Scaling H = diag(∇2f), γ is inverse smoothness w.r.t. ‖ · ‖H

54

Scaled gradient descent – Example

• Gradient descent on β-smooth quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]

• Scaling H = diag(∇2f), γ is inverse smoothness w.r.t. ‖ · ‖H
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Scaled gradient descent – Example

• Gradient descent on β-smooth quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]

• Scaling H = diag(∇2f), γ is inverse smoothness w.r.t. ‖ · ‖H
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Scaled gradient descent – Example

• Gradient descent on β-smooth quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]

• Scaling H = diag(∇2f), γ is inverse smoothness w.r.t. ‖ · ‖H
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Scaled gradient descent – Example

• Gradient descent on β-smooth quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]

• Scaling H = diag(∇2f), γ is inverse smoothness w.r.t. ‖ · ‖H
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Smoothness w.r.t. ‖ · ‖H
What is ‖ · ‖H?

• Requirement: H ∈ Rn×n is symmetric positive definite (H � 0)
• The norm ‖x‖2H := xTHx, for H = I, we get ‖x‖2I = ‖x‖22

Smoothness

• Function f : Rn → R is β-smooth if for all x, y ∈ Rn:

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖22

f(y) ≥ f(x) +∇f(x)T (y − x)− β
2 ‖x− y‖22

• We say f βH -smoothness w.r.t. scaled norm ‖ · ‖H if

f(y) ≤ f(x) +∇f(x)T (y − x) + βH
2 ‖x− y‖2H

f(y) ≥ f(x) +∇f(x)T (y − x)− βH
2 ‖x− y‖2H

for all x, y ∈ Rn
• If f is smooth (w.r.t. ‖ · ‖2) it is also smooth w.r.t. ‖ · ‖H

55

Example – A quadratic

• Let f(x) = 1
2x

THx = 1
2‖x‖2H with H � 0

• f is 1-smooth w.r.t ‖ · ‖H (with equality):

f(x) +∇f(x)T (y − x) + 1
2‖x− y‖2H

= 1
2x

THx+ (Hx)T (y − x) + 1
2‖x− y‖2H

= 1
2x

THx+ (Hx)T (y − x) + 1
2 (‖x‖2H − 2(Hx)T y + ‖y‖2H)

= 1
2‖y‖2H = f(y)

which holds also if adding linear term qTx to f

• f is λmax(H)-smooth (w.r.t. ‖ · ‖2), continue equality:

f(y) = f(x) +∇f(x)T (y − x) + 1
2‖x− y‖2H

≤ f(x) +∇f(x)T (y − x) + λmax(H)
2 ‖x− y‖22

much more conservative estimate of function!
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Scaled proximal gradient for quadratics

• Let f(x) = 1
2x

THx with H � 0, which is 1-smooth w.r.t. ‖ · ‖H
• Approximation with scaled norm ‖ · ‖H and γk = 1 satisfies ∀xk:

f̂xk(y) = f(xk) +∇f(xk)T (y − xk) + 1
2‖xk − y‖2H = f(y)

since f is 1-smooth w.r.t. ‖ · ‖H with equality

• An iteration then reduces to solving problem itself:

xk+1 = argmin
y

(f̂xk(y) + g(y)) = argmin
y

(f(y) + g(y))

• Model very accurate, but very expensive iterations

57

Scaled proximal gradient method reformulation

• Proximal gradient method with scaled norm ‖ · ‖H :

xk+1 = argmin
y

(
f(xk) +∇f(xk)T (y − x) + 1

2γk
‖y − xk‖2H + g(y)

)

= argmin
y

(
g(y) + 1

2γk
‖y − (xk − γkH−1∇f(xk)‖2H

)

=: proxHγkg(xk − γkH−1∇f(xk))

where H = I gives nominal method

• Computational difference per iteration:

1. Need to invert H−1 (or solve Hdk = ∇f(xk))
2. Need to compute prox with new metric

proxHγkg(z) := argmin
x

(g(x) + 1
2γk
‖x− z‖2H)

that may be very costly
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Computational cost

• Assume that H is dense or general sparse
• H−1 dense: cubic complexity (vs maybe quadratic for gradient)
• H−1 sparse: lower than cubic complexity
• proxHγkg: difficult optimization problem

• Assume that H is diagonal
• H−1: invert diagonal elements – linear complexity
• proxHγkg: often as cheap as nominal prox (e.g., for separable g)
• this gives individual step-sizes for each coordinate

• Assume that H is block-diagonal with small blocks
• H−1: invert individual blocks – also cheap
• proxHγkg: often quite cheap (e.g., for block-separable g)

• If H = I, method is nominal method

59

Convergence

• We get similar results as in the nominal H = I case

• We assume βH smoothness w.r.t. ‖ · ‖H
• We can replace all ‖ · ‖2 with ‖ · ‖H and ∇f with H−1∇f :

• Nonconvex setting with γk = 1
βH

min
l∈{0,...,k}

‖∇f(xl)‖2H−1 ≤ 2βH(f(x0) + g(x0)− p?)
k + 1

• Convex setting with γk = 1
βH

f(xk) + g(xk)− p? ≤ βH‖x0 − x?‖2H
2(k + 1)

• Strongly convex setting with f σH -strongly convex w.r.t. ‖ · ‖H

‖xk+1 − x?‖H ≤ max(βHγ − 1, 1− σHγ)‖xk − x?‖H
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Example – Logistic regression

• Logistic regression with θ = (w, b):

minimize
θ

N∑

i=1

log(1 + ew
Tφ(xi)+b)− yi(wTφ(xi) + b) + λ

2 ‖w‖22

on the following data set (from logistic regression lecture)
• Polynomial features of degree 6, Tikhonov regularization λ = 0.01
• Number of decision variables: 28
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Algorithms

Compare the following algorithms, all with backtracking:

1. Gradient method

2. Gradient method with fixed diagonal scaling

3. Gradient method with fixed full scaling

62

Fixed scalings

• Logistic regression gradient and Hessian satisfy with L = [X,1]

∇f(θ) = LT (σ(Lθ)− Y ) + λIwθ ∇2f(θ) = LTσ′(Lθ)L+ λIw

where σ is the (vector-version of) sigmoid, and Iw(w, b) = (w, 0)

• The sigmoid function σ is 0.25-Lipschitz continuous

• Gradient method with fixed full scaling (3.) uses

H = 0.25LTL+ λIw

• Gradient method with fixed diagonal scaling (2.) uses

H = diag(0.25LTL+ λIw)
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Example – Numerics

Logistic regression polynomial features of degree 6, λ = 0.01

Standard gradient method with backtracking (GM)

0 2000 4000 6000 8000 10000 12000
10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

0 2000 4000 6000 8000 10000 12000
10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

GM

64

Example – Numerics

Logistic regression polynomial features of degree 6, λ = 0.01

Gradient method with diagonal scaling (GM DS)

GM
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Example – Numerics

Logistic regression polynomial features of degree 6, λ = 0.01

Gradient method with full matrix scaling (GM FS)

GM
GM DS
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Comments

• Smaller number of iterations with better scaling

• Performance is roughly (iteration cost)×(number of iterations)
• We have only compared number of iterations
• Iteration cost for (GM) and (GM DS) are the same
• Iteration cost for (GM FS) higher
• Need to quantify iteration cost to assess which is best

• In general, can be difficult to find H that performs better
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Stochastic Gradient Descent

Qualitative Convergence Behavior

Pontus Giselsson

1

Outline

Stochastic gradient descent
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SGD convergence

2

Notation

• Optimization (decision) variable notation:
• Optimization literature: x, y, z
• Statistics literature: β
• Machine learning literature: θ, w, b

• Data and labels in statistics and machine learning are x, y

• Training problems in supervised learning

minimize
θ

N∑

i=1

L(m(xi; θ), yi)

optimizes over decision variable θ for fixed data {(xi, yi)}Ni=1

• Optimization problem in standard optimization notation

minimize
x

f(x)

optimizes over decision variable x

• Will use optimization notation when algorithms not applied in ML

3

Gradient method

• Gradient method is applied problems of the form

minimize
x

f(x)

where f is differentiable and gradient method is

xk+1 = xk − γk∇f(xk)

where γk > 0 is a step-size

• f not differentiable in DL with ReLU but still say gradient method

• For large problems, gradient can be expensive to compute
⇒ replace by unbiased stochastic approximation of gradient

4

Unbiased stochastic gradient approximation

• Stochastic gradient estimator:
• notation: ∇̂f(x)
• outputs random vector in Rn for each x ∈ Rn

• Stochastic gradient realization:
• notation: ∇̃f(x) : Rn → Rn
• outputs, ∀x ∈ Rn, vector in Rn drawn from distribution of ∇̂f(x)

• An unbiased stochastic gradient estimator ∇̂f satisfies ∀x ∈ Rn:

E∇̂f(x) = ∇f(x)

• If x is random vector in Rn, unbiased estimator satisfies

E[∇̂f(x)|x] = ∇f(x)

(both are random vectors in Rn)

5

Stochastic gradient descent (SGD)

• The following iteration generates (xk)k∈N of random variables:

xk+1 = xk − γk∇̂f(xk)

since ∇̂f outputs random vectors in Rn

• Stochastic gradient descent finds a realization of this sequence:

xk+1 = xk − γk∇̃f(xk)

where (xk)k∈N here is a realization with values in Rn

• Sloppy in notation for when xk is random variable vs realization

• Can be efficient if evaluating ∇̃f much cheaper than ∇f

6

Stochastic gradients – Finite sum problems

• Consider finite sum problems of the form

minimize
x

1
N

(
N∑

i=1

fi(x)

)

︸ ︷︷ ︸
f(x)

where 1
N is for convenience and gives average loss

• Training problems of this form, where sum over training data

• Stochastic gradient: select fi at random and take gradient step

7

Single function stochastic gradient

• Let I be a {1, . . . , N}-valued random variable

• Let, as before, ∇̂f denote the stochastic gradient estimator

• Realization: let i be drawn from probability distribution of I

∇̃f(x) = ∇fi(x)

where we will use uniform probability distribution

pi = p(I = i) = 1
N

• Stochastic gradient is unbiased:

E[∇̂f(x)] =
N∑

i=1

pi∇fi(x) = 1
N

N∑

i=1

∇fi(x) = ∇f(x)

8
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Mini-batch stochastic gradient

• Let B be set of K-sample mini-batches to choose from:
• Example: 2-sample mini-batches and N = 4:

B = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
• Number of mini batches

(
N
K

)
, each item in

(
N−1
K−1

)
batches

• Let B be B-valued random variable
• Let, as before, ∇̂f denote stochastic gradient estimator
• Realization: let B be drawn from probability distribution of B

∇̃f(x) = 1
K

∑

i∈B
∇fi(x)

where we will use uniform probability distribution

pB = p(B = B) = 1

(N
K)

• Stochastic gradient is unbiased:

E∇̂f(x) = 1

(NK)

∑

B∈B

1
K

∑

i∈B
∇fi(x) =

(N−1
K−1)
(NK)K

N∑

i=1

∇fi(x) = 1
N

N∑

i=1

∇fi(x) = ∇f(x)

9

Stochastic gradient descent for finite sum problems

• The algorithm, choose x0 ∈ Rn and iterate:

1. Sample a mini-batch Bk ∈ B of K indices uniformly
2. Update

xk+1 = xk − γk
K

∑

j∈Bk

∇fj(xk)

• Can have B = {{1}, . . . , {N}} and sample only one function

• Gives realization of underlying stochastic process

10

Outline

Stochastic gradient descent

Convergence and distance to solution

Convergence and solution norms

Overparameterized vs underparameterized setting

Escaping not individually flat minima

SGD step-sizes

SGD convergence

11

Qualitative convergence behavior

• Consider single-function batch setting

• Assume that the individual gradients satisfy

(∇fi(x))T (∇fj(x)) ≥ µ

for all i, j and for some µ ∈ R (i.e., can be positive or negative)

∇f1(x)
∇f2(x)

∇f3(x)

µ = 0.5
∇f1(x)

∇f2(x)
∇f3(x)

µ = −0.77

Will larger or smaller µ likely give better SGD convergence? Why?

12

Qualitative convergence behavior

• Consider single-function batch setting

• Assume that the individual gradients satisfy

(∇fi(x))T (∇fj(x)) ≥ µ

for all i, j and for some µ ∈ R (i.e., can be positive or negative)

∇f(x)

µ = 0.5

∇f(x)

µ = −0.77

Will larger or smaller µ likely give better SGD convergence? Why?

Larger µ gives more similar to full gradient and faster convergence

12

Minibatch setting

• Larger minibatch gives larger µ and faster convergence

• Comes at the cost of higher per iteration count

• Limiting minibatch case is the gradient method

• Tradeoff in how large minibatches to use to optimize convergence

• Other reasons exist that favor small batches (later)

13

SGD – Example

Let c1 + c2 + c3 = 0

Solve minimizex( 1
2 (‖x− c1‖22 + ‖x− c2‖22 + ‖x− c3‖22)) = 3

2‖x‖22 + c

How will trajectory look for SGD with γk = 1/3?

Levelsets of summands Levelset of sum

14
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Levelsets of summands Levelset of sum
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2 (‖x− c1‖22 + ‖x− c2‖22 + ‖x− c3‖22)) = 3

2‖x‖22 + c

How will trajectory look for SGD with γk = 1/3?

Levelsets of summands Levelset of sum

Fast convergence outside “triangle” where gradients similar, slow inside

Constant step SGD converges to noise ball

14

SGD – Example

Let c1 + c2 + c3 = 0

Solve minimizex( 1
2 (‖x− c1‖22 + ‖x− c2‖22 + ‖x− c3‖22)) = 3

2‖x‖22 + c

How will trajectory look for SGD with γk = 1/3?

Levelsets of summands Levelset of sum

Constant step GD converges (in this case straight to) solution (right)

Difference is noise in stochastic gradient that can be measured by µ

14

SGD – Example zoomed out

Same example but zoomed out

Solve minimizex( 1
2 (‖x− c1‖22 + ‖x− c2‖22 + ‖x− c3‖22)) = 3

2‖x‖22 + c

How will trajectory look with γk = 1/3 from more global view?

Levelsets of summands Levelset of sum

15

SGD – Example zoomed out

Same example but zoomed out

Solve minimizex( 1
2 (‖x− c1‖22 + ‖x− c2‖22 + ‖x− c3‖22)) = 3

2‖x‖22 + c

How will trajectory look with γk = 1/3 from more global view?

Levelsets of summands Levelset of sum

Far form solution ∇fi more similar to ∇f , larger µ ⇒ faster convergence

15

Qualitative convergence behavior

• Often fast convergence far from solution, slow close to solution

• Fixed-step size converges to noise ball in general

• Need diminishing step-size to converge to solution in general

16

Drawback of diminishing step-size

• Diminishing step-size typically gives slow convergence

• Often better convergence with constant step (if it works)

• Is there a setting in which constant step-size works?

17

Outline

Stochastic gradient descent

Convergence and distance to solution

Convergence and solution norms

Overparameterized vs underparameterized setting

Escaping not individually flat minima

SGD step-sizes

SGD convergence

18

Fixed step-size SGD does not converge to solution

• We can at most hope for finding point x̄ such that

∇f(x̄) = 0

• Let xk = x̄, and assume ∇fi(xk) 6= 0, then

xk+1 = xk − γk∇fi(xk) 6= xk

i.e., moves away from solution x̄

• Only hope with fixed step-size if all ∇fi(x̄) = 0, since for xk = x̄

xk+1 = xk − γk∇fi(xk) = xk

independent on γk and algorithm stays at solution

• How does norm of individual gradients affect local convergence?

19
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Example – Large gradients at solution

• Individal gradients at solution 0: ∇f1(0) = 0.83, ∇f2(0) = −0.83

• SGD with γ = 0.07 and cyclic update order:

f1(x)f2(x)

(0.83,−1)(−0.83,−1)

f(x0)− f? = 2.45

x0x1

f(x1)− f? = 0

x2

f(x2)− f? = 1.82

x3

f(x3)− f? = 0.11

x4

f(x4)− f? = 1.47

x5

f(x5)− f? = 0.18

x6

f(x6)− f? = 1.31

x7

f(x7)− f? = 0.28

x8

f(x8)− f? = 1.16

x9

f(x9)− f? = 0.35

x10

f(x10)− f? = 1.07

(f1 + f2)(x)

(0,−1)

20
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Will not converge to solution with constant step-size
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Example – Small gradients at solution

• Shift f1 and f2 “outwards” to get new problem

• Individal gradients at solution 0: ∇f1(0) = 0.02, ∇f2(0) = −0.02

• SGD with γ = 0.07 and cyclic update order:

f1(x)f2(x)

(0.02,−1) (−0.02,−1)

f(x0)− f? = 2.45

x0x1

f(x1)− f? = 0.13

x2

f(x2)− f? = 0.13

x3

f(x3)− f? = 0.06

x4

f(x4)− f? = 0.06

x5

f(x5)− f? = 0.03

x6

f(x6)− f? = 0.03

x7

f(x7)− f? = 0.02

x8

f(x8)− f? = 0.02

x9

f(x9)− f? = 0.01

x10

f(x10)− f? = 0.01

(f1 + f2)(x)

(0,−1)

21
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• Shift f1 and f2 “outwards” to get new problem
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(f1 + f2)(x)

Much faster to reach small loss
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Convergence and individual gradient norm

Local convergence of stochastic gradient descent is:

• slow if individual functions do not agree on minima
• individual norms “large” at and around minima

• faster if individual functions do agree on minima
• individual norms “small” at and around minima

22
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Over- vs under-parameterized models

• Model overparameterized if:
• in regression, zero loss is possible
• in classification, correct classification with margin possible

• logistic loss gives close to 0 loss
• hinge loss gives 0 loss

• Model underparameterized if the above does not hold

24

Overparameterization – LS example

• Data A ∈ RN×n, b ∈ RN , and x ∈ Rn

• Consider least squares problem

minimize
x

1
2‖Ax− b‖22︸ ︷︷ ︸

f(x)

=
N∑

i=1

1
2 (aix− bi)2︸ ︷︷ ︸

fi(x)

where ai ∈ R1×n are rows in A and problem is
• overparameterized if n > N (infinitely many 0-loss solutions)
• underparameterized if n ≤ N (unique solution if A full rank)

25

Convergence – LS example

• Random problem data: A ∈ R200×100, b ∈ R200 from Gaussian

• Underparameterized setting and unique solution

• Local convergence of SGD quite slow:
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Convergence – LS example

• Random problem data: A ∈ R200×100, b ∈ R200 from Gaussian

• Underparameterized setting and unique solution

• Norms of ∇fi(x?) = 1
2 (aix

? − bi) quite large:
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Convergence – LS example

• Random problem data: A ∈ R200×1000, b ∈ R200 from Gaussian

• Overparameterized, many 0-loss solutions, larger problem

• Convergence of SGD much faster:
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Convergence – LS example

• Random problem data: A ∈ R200×1000, b ∈ R200 from Gaussian

• Overparameterized, many 0-loss solutions, larger problem

• Individual norms ∇fi(x?) = 1
2 (aix

? − bi) = 0:

0 50 100 150 200

0

2

4

6

8

10

12

14

16

18

20

index i

∇
f
i
(x
?
)

26

Convergence – DL example

• Classification problem: logistic loss

• Network: Residual, ReLU, 3x5,2,1 widths (5 layers)

• Underparameterized:
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Convergence – DL example

• Classification problem: logistic loss

• Network: Residual, ReLU, 15x25,2,1 widths (17 layers)

• Overparameterized:
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Convergence – DL example

• Classification problem: logistic loss

• Network: Residual, ReLU, 3x5,2,1 vs 15x25,2,1

• Convergence of “best gradient” (final loss: 0.17 vs 0.00018):
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Convergence – DL example

• Classification problem: logistic loss

• Network: Residual, ReLU, 3x5,2,1 vs 15x25,2,1

• Final norm of individual gradients (final loss: 0.17 vs 0.00018):
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Overparameterized networks and convergence

• Overparameterized models seems to give faster SGD convergence

• Reason: individual gradients agree better!

28
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Step-length

• The step-length in constant step SGD is given by

‖xk+1 − xk‖2 = γ‖∇fi(xk)‖2

i.e., proportional to individual gradient norm

• The step-length in constant step GD is given by

‖xk+1 − xk‖2 = γ‖∇f(xk)‖2

i.e., proportional to full (average) gradient norm

30

Flatness of minima

• Is SGD or GD more likely to escape the sharp minima?

Average training loss

θ

31

Flatness of minima

• Is SGD or GD more likely to escape the sharp minima?

Average training loss

θ

Impossible to say only from average training loss

31

Example

• Flat (local) minima can be different
• Is SGD or GD more likely to escape right/left minima?
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Example

• Flat (local) minima can be different
• Is SGD or GD more likely to escape right/left minima?

xk

GD will stay in both minima (∇f(xk) = 0⇒ xk+1 = xk)

SGD will stay in right minima (∇fi(xk) = 0⇒ xk+1 = xk)

SGD may escape left minima (‖∇fi(xk)‖2 6= 0⇒ xk+1 6= xk)

xk = 0.8 and γ = 0.5
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Example

• Flat (local) minima can be different
• Is SGD or GD more likely to escape right/left minima?

xk

GD will stay in both minima (∇f(xk) = 0⇒ xk+1 = xk)

SGD will stay in right minima (∇fi(xk) = 0⇒ xk+1 = xk)

SGD may escape left minima (‖∇fi(xk)‖2 6= 0⇒ xk+1 6= xk)

xk = 0.8 and γ = 0.5, i = 4 and ∇fi(xk) = −2.77
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Example

• Flat (local) minima can be different
• Is SGD or GD more likely to escape right/left minima?

xk xk+1

GD will stay in both minima (∇f(xk) = 0⇒ xk+1 = xk)

SGD will stay in right minima (∇fi(xk) = 0⇒ xk+1 = xk)

SGD may escape left minima (‖∇fi(xk)‖2 6= 0⇒ xk+1 6= xk)

xk = 0.8 and γ = 0.5, i = 4 and ∇fi(xk) = −2.77, xk+1 = 2.18

32

Mini-batch vs single-batch

• Is escape property effected by mini-batch size?

• How large mini-batch size is best for escaping?

33

Mini-batch setting

• Use mini-batches of size 2:

Functions in batch loss 1

34

Mini-batch setting

• Use mini-batches of size 2:

Functions in batch loss 2

34

Mini-batch setting

• Use mini-batches of size 2:

Batch losses

Larger mini-batch ⇒ smaller gradients ⇒ worse at escaping

Single-batch better at escaping

34

Connection to generalization

• Argued that individually flat minima generalize better, i.e.,

all ‖∇fi(x)‖2 small in region around minima

• SGD more likely to escape if individual gradients not small

• Smaller batch size increases chances of escaping “bad” minima

Have also argued for:

• Good convergence properties towards individually flat minima

In summary:

• Single-batch SGD well suited for overparameterized training
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Step-sizes

• Diminising step-sizes are needed for convergence in general
• Common static step-size rules

• redude step-size every K epochs:

γk =
γ0

1 + dk/Ke γk =
γ0

1 +
√
dk/Ke

where dk/Ke increases by 1 every K epochs
• Convergence analysis under smoothness or convexity requires

∞∑

k=0

γk =∞ and
∞∑

k=0

γ2
k <∞

which is satisfied by first but not second above
• Refined analysis gives requirements

∞∑

k=0

γk =∞ and

∑∞
k=0 γk∑∞
k=0 γ

2
k

=∞

which is satisfied by all the above

37
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Large gradients

• Fixed step-size rules does not take gradient size into account
• Gradients can be very large:

• Step-size rule

γk =
γ0

α‖∇̃f(xk)‖2 + 1

with γ0, α > 0 gives
• small steps if ‖∇̃f(xk)‖2 large
• approximately γ0 steps if ‖∇̃f(xk)‖2 small

38

Combined step-size rule

• Combination the two previous rules

γk =
γ0

(1 + ψ(dk/Ke))(α‖∇̃f(xk)‖2 + 1)

where, e.g., ψ(x) = 1
x or ψ(x) = 1√

x
(as before)

• Properties
• ‖∇̃f(xk)‖2 large: small step-sizes
• ‖∇̃f(xk)‖2 small: diminshing step-sizes according to γ0

1+ψ(dk/Ke)

39

Step-size rules and convergence

• Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)

• Step-size parameters: ψ(x) = 0.5
√
x, K = 50, α = γ0 = 0.1

• Iteration data:

# epoch step-size batch norm full norm

0 4.8 · 10−8 2.1 · 107 6.8 · 105
10 1.4 · 10−5 7.2 · 104 1.4 · 104
50 0.097 0.31 1.4

100 0.016 0.28 3.2

200 0.012 6.8 · 10−5 0.72

300 0.01 0.33 11.8

500 0.008 0 0.529

700 0.007 1.2 · 10−6 0.0008

1000 0.006 3.1 · 10−6 0.0003

• Large initial gradients dampened

• Diminishing step-size gives local convergence

40

Step-size rules and convergence

• Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)

• Step-size parameters: ψ(x) = 0.5
√
x, K = 50, α = 0, γ0 = 0.1

• Iteration data:

# epoch step-size batch norm full norm

1 0.1 1.2 · 106 6.8 · 105
2 - NaN NaN

50 - NaN NaN

100 - NaN NaN

200 - NaN NaN

300 - NaN NaN

500 - NaN NaN

700 - NaN NaN

1000 - NaN NaN

• No adaptation to large gradients – Gradient explodes

• Diminishing step-size does of course not help

40

Step-size rules and convergence

• Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)

• Step-size parameters: ψ ≡ 0, α = γ0 = 0.1
• Iteration data:

# epoch step-size batch norm full norm

0 1.4 · 10−7 7.0 · 106 4.7 · 105
10 0.004 257 39.4

50 0.10 6.2 · 10−10 4.1

100 0.087 1.5 1.3

200 0.089 1.2 0.26

300 0.1 2.0 · 10−12 1.3

500 0.1 5.1 · 10−12 0.198

700 0.1 2.4 · 10−13 0.16

1000 0.087 1.5 0.013

• Large initial gradients dampened

• Larger final full norm than first choice since not diminishing γk

40
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Convergence analysis

• Need some inequality that function satisfies to analyze SGD

• Convexity inequality not applicable in deep learning

• Smoothness inequality not applicable in deep learning in general
• ReLU networks are not differentiable and therefore not smooth
• Tanh networks with smooth loss are cont. diff. ⇒ locally smooth

• We have seen that training problem is piece-wise polynomial if
• L2 loss and piece-wise linear activation functions
• hinge loss and piece-wise linear activation functions

but does not provide an inequality for proving convergence

42

Error bound

• In absence of convexity, an error bound is useful in analysis:

δ(f(x)− f(x?)) ≤ ‖∇f(x)‖22

that holds locally around solution x? with δ > 0

• Gradient in error bound can be replaced by
• sub-gradient for convex nondifferentiable f
• limiting sub-gradient for nonconvex nondifferentiable f

43
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Kurdyka-Lojasiewicz

• Error bound is instance of the Kurdyka-Lojasiewicz (KL) property

• KL property has exponent α ∈ [0, 1), α = 1
2 gives error bound

• Examples of KL functions:
• Continuous (on closed domain) semialgebraic functions are KL:

graphf = ∪ri=1

(
∩qj=1{x : hij(x) = 0} ∩pl=1 {x : gil(x) < 0}

)

graph is union of intersection, where hij and gil polynomials
• Continuous piece-wise polynomials (some DL training problems)
• Strongly convex functions

• Often difficult to decide KL-exponent

• Result: descent methods on KL functions converge
• sublinearly if α ∈ ( 1

2
, 1)

• linearly if α ∈ (0, 1
2
] (the error bound regime)

44

Strongly convex functions satisfy error bound

• s+ σx ∈ ∂f(x) with s ∈ ∂g(x) for convex g = f − σ
2 ‖ · ‖22

• Therefore

‖s+ σx‖22 = ‖s‖22 + 2σsTx+ σ2‖x‖22
≥ ‖s‖22 + 2σsTx? + 2σ(g(x)− g(x?)) + σ2‖x‖22
= ‖s‖22 + 2σsTx? + σ‖x?‖22 + 2σ(f(x)− f(x?))

= ‖s+ σx?‖22 + 2σ(f(x)− f(x?))

≥ 2σ(f(x)− f(x?))

where we used
• subgradient definition g(x?) ≥ g(x) + sT (x?−x) in first inequality
• nonnegativity of norms in the second inequality

45

Implications of error bound

• Restating error bound for differentiable case

δ(f(x)− f(x?)) ≤ ‖∇f(x)‖22
• Assume it holds for all x in some ball X around solution x?

• What can you say about local minima and saddle-points in X?

• There are none! Proof by contradiction:
• Assume local minima or saddle-point x̄
• Then ∇f(x̄) = 0 ⇒ f(x̄) = f(x?) and x̄ is global minima
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Convergence analysis – Smoothness and error bound

• Convergence analysis of gradient method

• β-smoothness and error bound assumptions (f? = f(x?)):

f(xk+1)− f? ≤ f(xk)− f? +∇f(xk)T (xk+1 − xk) + β
2 ‖xk − xk+1‖22

= f(xk)− f? − γk‖∇f(xk)‖22 +
βγ2

k

2 ‖∇f(xk)‖22
= f(xk)− f? − γk(1− βγk

2 )‖∇f(xk)‖22
≤ (1− γkδ(1− βγk

2 ))(f(xk)− f?)

where
• β-smoothness of f is used in first inequality
• gradient update xk+1 = xk − γk∇f(xk) in first equality
• error bound is used in the final inequality

• Linear convergence in function values if γk ∈ [ε, 2
β − ε], ε > 0

47

Semi-smoothness

• Typical DL training problems are not smooth
• E.g.: overparameterized ReLU networks with smooth loss

• But semi-smooth1 in neighborhood around random initialization2:

f(x) ≤ f(y) +∇f(y)T (x− y) + c‖x− y‖2
√
f(y) + β

2 ‖x− y‖22
for some constants c and β
• Holds locally for large enough c, β if cont. piece-wise polynomial
• Constants and neighborhood quantified in [1]2

• c = 0 gives smoothness

• c small gives close to smoothness but allows nondifferentiable

1 Semismoothness definition not a standard semismoothness definition
2 [1] A Convergence Theory for Deep Learning via Over-Parameterization. Z. Allen-Zhu et al.
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Convergence – Error bound and semi-smoothness

• Convergence analysis of gradient descent method

• Assumptions: (c,β)-semi-smooth, δ-error bound, f? = 0 (w.l.o.g.)

• Parameters c ≤
√
δγβ
2 and γ ∈ (0, 1

β ):

f(xk+1)

≤ f(xk) +∇f(xk)T (xk+1 − xk) + c‖xk+1 − xk‖
√
f(xk) + β

2
‖xk+1 − xk‖22

= f(xk)− γ‖∇f(xk)‖22 + cγ‖∇f(xk)‖
√
f(xk) + βγ2

2
‖∇f(xk)‖22

≤ f(xk)− γ‖∇f(xk)‖22 + cγ√
δ
‖∇f(xk)‖2 + βγ2

2
‖∇f(xk)‖22

≤ f(xk)− γ‖∇f(xk)‖22 + βγ2‖∇f(xk)‖2

≤ f(xk)− γ(1− βγ)‖∇f(xk)‖22
≤ (1− cγ(1− βγ))f(xk)

which shows linear convergence to 0 loss

• Need the nonsmooth part of upper bound c to be small enough

• Can analyze SGD in similar manner

49

Convergence in deep learning

• Setting: ReLU network, fully connected, smooth loss

• c is small enough when model overparameterized enough [1]1

• Linear convergence (with high prob.) for random initialization [1]

• In practice:
• β will be big – relies on small enough (≤ 1

β
) constant step-size

• need to find “correct” step-size by diminishing rule
• need to control steps to not depart from linear convergence region
• hopefully achieved by previous step-size rule

1 [1] A Convergence Theory for Deep Learning via Over-Parameterization. Z. Allen-Zhu et al.
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Stochastic Gradient Descent

Implicit Regularization

Pontus Giselsson

1

Outline

Variable metric methods

Convergence to projection point

Convergence to sharp or flat minima

2

Gradient method interpretation

• Gradient method minimizes quadratic approximation of function

xk+1 = argmin
x

(
f(xk) +∇f(xk)T (x− xk) + 1

2γk
‖x− xk‖22

)

= argmin
x

(
1

2γk
‖x− (xk − γk∇f(xk))‖22

)

= xk − γk∇f(xk)

• Graphical illustration of one step

f(x)

f(xk) +∇f(xk)T (x− xk) + 1
2γk
‖x− xk‖22

xk

3
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f(x)

f(xk) +∇f(xk)T (x− xk) + 1
2γk
‖x− xk‖22
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3

Scaled gradient method

• Quadratic approximation same in all directions due to ‖ · ‖22

xk+1 = argmin
x

(
f(xk) +∇f(xk)T (x− xk) + 1

2γk
‖x− xk‖22

)

• Scaled gradient method minimizes scaled quadratic approximation

xk+1 = argmin
x

(
f(xk) +∇f(xk)T (x− xk) + 1

2γk
‖x− xk‖2H

)

= argmin
x

(
1

2γk
‖x− (xk − γkH−1∇f(xk))‖2H

)

= xk − γkH−1∇f(xk)

where H is a positive definite matrix and ‖x‖2H = xTHx

• Nominal gradient method obtained by H = I

• Better quadratic approximation (good H) ⇒ faster convergence

4

Gradient descent – Example

• (Unscaled) Gradient descent on convex quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]

• Graphical illustration:
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Scaled gradient descent – Example

• Scaled gradient descent on convex quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]

• Scaling H = diag(∇2f) := P :

6

How to select metric H?

• A priori: Use a fixed H thoughout iterations
• can be difficult to find a good performing H
• does not adapt to local geometry

• Adaptively: Iteration-dependent Hk that adapts to local geometry

7

Adaptive metric methods

• Algorithms with full Hk:
• (Regularized) Newton methods
• Quasi-Newton methods

• Algorithms with diagonal Hk (in stochastic setting):
• Adagrad
• RMSProp
• Adam
• Adamax/Adadelta
• . . .

8

SGD variations with adaptive diagonal scaling

• Diagonal scaling gives one step-size (learning rate) per variable

• SGD type methods with diagonal Hk = diag(h1,k, . . . , hN,k):

xk+1 = xk − γkH−1k ∇̂f(xk)

where
• the inverse is H−1

k = diag( 1
h1,k

, . . . , 1
hN,k

)

• ∇̂f(xk) is a stochastic gradient approximation

• Methods called variable metric methods since Hk defines a metric

• Introduced to improve convergence compared to SGD

• Can have worse generalization properties?

9

Metrics – RMSprop and Adam

• Estimate coordinate-wise variance:

v̂k = bv v̂k−1 + (1− bv)(∇̃f(xk−1))2

where v̂0 = 0, bv ∈ (0, 1)

• Metric Hk is chosen (approximately) as standard deviation:
• RMSprop: biased estimate Hk = diag(

√
v̂k + ε)

• Adam: unbiased estimate Hk = diag(
√

v̂k
1−bkv

+ ε)

• Intuition:
• Reduce step size for high variance coordinates
• Increase step size for low variance coordinates

• Alternative intuition:
• Reduce step size for “steep” coordinate directions
• Increase step size for “flat” coordinate directions

10

Filtered stochastic gradients

• Adam also filters stochastic gradients for smoother updates
• Let m̂0 = 0 and bm ∈ (0, 1), and update

m̂k = bmm̂k−1 + (1− bm)∇̃f(xk−1)

• Adam uses unbiased estimate: m̂k

1−bkm• Fixed step-size without filtered gradient

Levelsets of summands

11

Filtered stochastic gradients

• Adam also filters stochastic gradients for smoother updates
• Let m̂0 = 0 and bm ∈ (0, 1), and update

m̂k = bmm̂k−1 + (1− bm)∇̃f(xk−1)

• Adam uses unbiased estimate: m̂k

1−bkm• Fixed step-size with filtered gradient

Levelsets of summands

11

Adam – Summary

• Initialize m̂0 = v̂0 = 0, bm, bv ∈ (0, 1), and select γ > 0

1. gk = ∇̃f(xk−1) (stochastic gradient)
2. m̂k = bmm̂k−1 + (1− bm)gk
3. v̂k = bv v̂k−1 + (1− bv)g2k
4. mk = m̂k/(1− bkm)
5. vk = v̂k/(1− bkv)
6. xk+1 = xk − γmk./(

√
vk + ε1)

• Suggested choices: bm = 0.9, bv = 0.999, ε = 10−8, γ = 0.001

• More succinctly

xk+1 = xk − γH−1k mk

where metric Hk = diag(
√
vk,1 + ε, . . . ,

√
vk,n + ε)

12
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Adam vs SGD

• Adam designed to converge faster than SGD by adaptive scaling

• Often observed to give worse generalization than SGD

• Two possible reasons for worse generalization:
• Convergence to larger norm solutions?
• Convergence to sharper minima?

13

Outline

Variable metric methods

Convergence to projection point

Convergence to sharp or flat minima

14

Generalization in neural networks

• Recall: Lipschitz constant L of neural network

L = ‖Wn‖2 · ‖Wn−1‖2 · · · ‖W1‖2

or with ‖Wj‖2 replaced by (1 + ‖Wj‖2) for residual layers

• Can use ‖θ‖2 where θ = {(Wi, bi)}ni=1 as proxy

• Overparameterized networks
• Infinitely many solutions exist
• Want a solution with small ‖θ‖2 for good generalization

15

Explicit vs implicit regularization

• Tikhonov adds ‖ · ‖22 norm penalty for better generalization

minimize
θ

N∑

i=1

L(m(xi; θ), yi) + λ
2 ‖θ‖22

which gives a smaller θ and is a form of explicit regularization

• Deep learning has no explicit regularization ⇒ training problem:

minimize
θ

N∑

i=1

L(m(xi; θ), yi)

with many 0-loss solutions in overparameterized setting

• Implicit regularization if algorithm finds small norm solution

16

(S)GD limit points

• Assume overparameterized convex least squares problem

• Gradient descent converges to projection point of initial point

• If SGD converges, it converges to same projection point

17

Least squares

• Consider least squares problem of the form

minimize
x

1
2‖Ax− b‖22

where A ∈ Rm×n, b ∈ Rm, m < n, and ∃x̄ such that Ax̄ = b

• Problem is overparameterized and has many solutions

• Since m < n, solution set is

X := {x : Ax = b}

which is (at least) n−m-dimensional affine set

18

Gradient method convergence to projection point

• Will show that scaled gradient method

xk+1 = xk − γkH−1∇f(xk)

converges to ‖ · ‖H -norm projection onto solution set from x0
• Means that scaled gradient method converges to solution of

minimizex ‖x− x0‖2H
subject to Ax = b

where H decides metric in which to measure distance from x0
• If x0 = 0, we get minimum ‖ · ‖H -norm solution in {x : Ax = b}

19

Characterizing projection point

• The unique projection point x̂ = argmin
x∈X

(‖x−x0‖2H) if and only if

Hx̂−Hx0 ∈ R(AT ) and Ax̂ = b

where R(AT ) is the range space of AT

• The range space is R(AT ) = {v ∈ Rn : v = ATλ and λ ∈ Rm}

20
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Convergence to projection point

• The scaled gradient method can be written as

Hxk+1 = Hxk − γkAT (Axk − b),
if all γk > ε > 0 are small enough, it converges to a solution x̄:

xk → x̄ and Ax̄ = b

• Letting λk = −∑k
l=0 γl(Axl − b) ∈ Rm and unfolding iteration:

Hxk+1 −Hx0 = −
k∑

l=0

γlA
T (Axl − b) = ATλk ∈ R(AT )

• In the limit xk → x̄, we get

Hx̄−Hx0 ∈ R(AT )

which with Ax̄ = b gives optimality conditions for projection
• If x0 = 0, the algorithm converges to argmin

x∈X
(‖x‖H)

21

Graphical interpretation

• What happens with scaled gradient method?

• Solution set X extends infinitely
• sequence is perpendicular to X in scalar product (Hx)T y
• algorithm converges to projection point argminx∈X(‖x− x0‖H)

{x : Ax = b}

Gradient method

{x : Ax = b}

A scaled gradient method

22

SGD – Convergence to projection point

• Least squares problem on finite sum form

minimize
x

1
2‖Ax− b‖22 = 1

2

m∑

i=1

(aTi x− bi)2

where A = [a1, . . . , am]T

• Applying single-batch scaled SGD:

xk+1 = xk − γkH−1aik(aTikxk − bik)

• The iteration can be unfolded as

Hxk+1 −Hx0 = −
k∑

l=0

ailγl(a
T
ilxl − bil) = AT




−
k∑

l=0

χ
il=1

(γl(a
T
1 xl − b1))

...

−
k∑

l=0

χ
il=m

(γl(a
T
mxl − bm))




where χ
il=j

(v) = v if il = j, else 0, so Hxk+1 −Hx0 ∈ R(AT )

• Assume xk → x̄ with Ax̄ = b ⇒ convergence to projection point
23

SGD vs Adam

This analysis hints towards that SGD gives smaller norm solutions and
better generalization than variable metric Adam. Is this true?

24

How about deep learning?

• The analysis does not carry over to nonconvex DL settings

• However, often convergence to similar norm as initial point

25

How to select initial point?

• For standard networks:
• To avoid vanishing and exploding gradient, we want:

L‖Wj‖2 ≈ 1 and ‖bj‖2 small

where L is average activation Lipschitz constant (L = 0.5 for
ReLU)

• Initialization for ReLU:
• (Wj)il ∼ N (0, 2√

mjnj
) gives average ‖Wj‖2 = 2

• (bj)i small or 0

• For residual networks:
• To avoid vanishing and exploding gradient, we want

L(1 + ‖Wj‖2) ≈ 1 and ‖bj‖2 small

where L is average activation Lipschitz constant
• Use smaller initilization than for standard networks

26

Initialization in next example

• Set scaling of weights by σ

• For the residual layers (all square layers)
• (Wj)ij ∼ N (0, 1), normalize Wj , scale by σ
• (bj)i ∼ N (0, 1), normalize bj , scale by σ

• For the non-residual layers (non-square layers)
• (Wj)ij ∼ N (0, 1), normalize Wj , scale by max(1, σ)
• (bj)i ∼ N (0, 1), normalize bj , scale by max(1, σ)
• use max(1, σ) for gradient to not vanish in non-residual layers

27

Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 0.01 Algorithm: SGD
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 0.1 Algorithm: SGD
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 1 Algorithm: SGD
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 5 Algorithm: SGD
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 10 Algorithm: SGD
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 0.01 Algorithm: Adam
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 0.1 Algorithm: Adam
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 1 Algorithm: Adam
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 5 Algorithm: Adam
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 10 Algorithm: Adam
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Conclusions

• Choice of initial point is significant for generalization

• Here, Adam gives models with larger Lipschitz constant Lm

Adam SGD

scaling σ ‖θ0‖2 ‖θend‖2 Lm ‖θ0‖2 ‖θend‖2 Lm

0.01 3.6 17.4 9.3 · 107 3.57 9.9 8.4 · 104

0.1 3.9 16.2 4.5 · 107 3.8 10.4 2.0 · 105

1 10.7 18.7 4.3 · 107 10.8 14.4 2.4 · 105

5 54.61 54.61 1.9 · 1012 54.2 49.5 1.9 · 1012

10 109.278 109.282 3.8 · 1016 107.2 96.2 1.6 · 1015

29

Outline

Variable metric methods

Convergence to projection point

Convergence to sharp or flat minima

30

Convergence to sharp or flat minima

• Have argued flat minima generalize well, sharp minima poorly

• Is Adam or SGD most likely to converge to sharp minimum?

31

Variable metric methods – Interpretation

• Variable metric methods

xk+1 = xk − γkH−1k ∇f(xk) (1)

can be interpreted as taking pure (stochastic) gradient step on

fHk
= (f ◦H−1/2k )(x)

• Why? Gradient method on fHk
is

vk+1 = vk − γk∇fHk
(vk) = vk − γkH−1/2k f(H

−1/2
k vk)

which after
• multiplication with H−1/2

• and change of variables according to xk = H
−1/2
k vk

gives (1)

32

Interpretation consequence

• Variable metric methods choose Hk to make fHk
well conditioned

• Consequences:
• Sharp minima in f become less sharp in fHk

• (Flat minima in f become less flat in fHk )

• Adam maybe more likely to converge to sharp minima than SGD

• This can be a reason for worse generalization in Adam than SGD

33

Adam vs SGD – Flat or sharp minima

• Data from previous classification example with σ = 10

• Loss landscape around final point θend for SGD and Adam

• SGD and Adam reach 0 loss but Adam minimum much sharper

• Same θ1, θ2 directions, same axes, zmax = 1000

SGD Adam

34

Adam vs SGD – Flat or sharp minima

• Data from previous classification example with σ = 10

• Loss landscape around final point θend for SGD and Adam

• SGD and Adam reach 0 loss but Adam minimum much sharper

• Same θ1, θ2 directions, same axes, zmax = 100000

SGD Adam
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Adam vs SGD – Flat or sharp minima

• Data from previous classification example with σ = 10

• Loss landscape around final point θend for SGD and Adam

• SGD and Adam reach 0 loss but Adam minimum much sharper

• Same θ1, θ2 directions, same axes, zmax = 109

SGD Adam
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Recap

Pontus Giselsson

1

Outline

• Convex analysis

• Composite optimization and duality

• Solving composite optimization problems – Algorithms

2

Convex Analysis

3

Convex sets

• A set C is convex if for every x, y ∈ C and θ ∈ [0, 1]:

θx+ (1− θ)y ∈ C

• “Every line segment that connect any two points in C is in C”

Nonconvex Convex

Nonconvex Nonconvex

• Will assume that all sets are nonempty and closed

4

Separating hyperplane theorem

• Suppose that R,S ⊆ Rn are two non-intersecting convex sets
• Then there exists hyperplane with S and R in opposite halves

{x : sTx = r}

R

S

Example

R

S

Counter-example
R nonconvex

• Mathematical formulation: There exists s 6= 0 and r such that

sTx ≤ r for all x ∈ R
sTx ≥ r for all x ∈ S

• The hyperplane {x : sTx = r} is called separating hyperplane

5

A strictly separating hyperplane theorem

• Suppose that R,S ⊆ Rn are non-intersecting closed and convex
sets and that one of them is compact (closed and bounded)

• Then there exists hyperplane with strict separation

{x : sTx = r}

R

S

Example

R = {(x, y) : y ≥ x−1, x > 0}

S = {(x, y) : y ≤ 0}

Counter example
R,S not compact

• Mathematical formulation: There exists s 6= 0 and r such that

sTx < r for all x ∈ R
sTx > r for all x ∈ S

6

Consequence – S is intersection of halfspaces

a closed convex set S is the intersection of all halfspaces that contain it

proof:

• let H be the intersection of all halfspaces containing S
• ⇒: obviously x ∈ S ⇒ x ∈ H
• ⇐: assume x 6∈ S, since S closed and convex and x compact (a

point), there exists a strictly separating hyperplane, i.e., x 6∈ H:

S

⇒

S x

⇐
7

Supporting hyperplanes

• Supporting hyperplanes touch set and have full set on one side:

s
s
s

s

• We call the halfspace that contains the set supporting halfspace

• s is called normal vector to S at x

• Definition: Hyperplane {y : sT y = r} supports S at x ∈ bd S if

sT y ≤ r for all y ∈ S and sTx = r

8
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Supporting hyperplane theorem

Let S be a nonempty convex set and let x ∈ bd(S). Then there exists
a supporting hyperplane to S at x.

• Does not exist for all point on boundary for nonconvex sets

• Many supporting hyperplanes exist for points of nonsmoothness

s
s
s

s

9

Connection to duality and subgradients

Supporting hyperplanes are at the core of convex analysis:

• Subgradients define supporting hyperplanes to epif

• Conjugate functions define supporting hyperplanes to epif

• Duality is based on subgradients, hence supporting hyperplanes:
• Consider minimizex(f(x) + g(x)) and primal solution x?

• Dual problem minimizeµ(f
∗(µ) + g∗(−µ)) solution µ? satisfies

µ? ∈ ∂f(x?) −µ? ∈ ∂g(x?)

i..e, dual problem finds subgradients at optimal point1

1When solving minx(f(Lx) + g(x)) dual problem finds µ such that LT µ ∈ ∂(f ◦ L)(x) and −LT µ ∈ ∂g(x).

10

Convex functions

• Graph below line connecting any two pairs (x, f(x)) and (y, f(y))

nonconvex function convex function

• Function f : Rn → R is convex if for all x, y ∈ Rn and θ ∈ [0, 1]:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

(in extended valued arithmetics)

• A function f is concave if −f is convex

11

Epigraphs and convexity

• Let f : Rn → R ∪ {∞}
• Then f is convex if and only epif is a convex set in Rn × R

epif epif

• f is called closed (lower semi-continuous) if epif is closed set

12

First-order condition for convexity

• A differentiable function f : Rn → R is convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x)

(∇f(x),−1)

(x, f(x))

• Function f has for all x ∈ Rn an affine minorizer that:
• has slope s defined by ∇f
• coincides with function f at x
• is supporting hyperplane to epigraph of f
• defines normal (∇f(x),−1) to epigraph of f

13

Subdifferentials and subgradients

• Subgradients s define affine minorizers to the function that:

(s,−1)
(s,−1)

(s,−1)

• coincide with f at x
• define normal vector (s,−1) to epigraph of f
• can be one of many affine minorizers at nondifferentiable points x

• Subdifferential of f : Rn → R at x is set of vectors s satisfying

f(y) ≥ f(x) + sT (y − x) for all y ∈ Rn, (1)

• Notation:
• subdifferential: ∂f : Rn → 2R

n

(power-set notation 2R
n

)
• subdifferential at x: ∂f(x) = {s : (1) holds}
• elements s ∈ ∂f(x) are called subgradients of f at x

14

Subgradient existence – Nonconvex example

• Function can be differentiable at x but ∂f(x) = ∅

x1

x2
x3

• x1: ∂f(x1) = {0}, ∇f(x1) = 0
• x2: ∂f(x2) = ∅, ∇f(x2) = 0
• x3: ∂f(x3) = ∅, ∇f(x3) = 0

• Gradient is a local concept, subdifferential is a global property

15

Existence for extended-valued convex functions

• Let f : Rn → R ∪ {∞} be convex, then:

1. Subgradients exist for all x in relative interior of domf
2. Subgradients sometimes exist for x on boundary of domf
3. No subgradient exists for x outside domf

• Examples for second case, boundary points of domf :

−
√
1− x2 + ι[−1,1](x) x2 + ι[−2,2](x)

• No subgradient (affine minorizer) exists for left function at x = 1

16
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Fermat’s rule

Let f : Rn → R ∪ {∞}, then x minimizes f if and only if

0 ∈ ∂f(x)

• Proof: x minimizes f if and only if

f(y) ≥ f(x) + 0T (y − x) for all y ∈ Rn

which by definition of subdifferential is equivalent to 0 ∈ ∂f(x)

• Example: several subgradients at solution, including 0

(0,−1)

17

Fermat’s rule – Nonconvex example

• Fermat’s rule holds also for nonconvex functions

• Example:

x1
x2

(0,−1)

• ∂f(x1) = 0 and ∇f(x1) = 0 (global minimum)
• ∂f(x2) = ∅ and ∇f(x2) = 0 (local minimum)

• For nonconvex f , we can typically only hope to find local minima

18

Subdifferential calculus rules

• Subdifferential of sum ∂(f1 + f2)

• Subdifferential of composition with matrix ∂(g ◦ L)

19

Subdifferential of sum

If f1, f2 closed convex and relint domf1 ∩ relint domf2 6= ∅:
∂(f1 + f2) = ∂f1 + ∂f2

• One direction always holds: if x ∈ dom∂f1 ∩ dom∂f2:

∂(f1 + f2)(x) ⊇ ∂f1(x) + ∂f2(x)

Proof: let si ∈ ∂fi(x), add subdifferential definitions:

f1(y) + f2(y) ≥ f1(x) + f2(x) + (s1 + s2)T (y − x)

i.e. s1 + s2 ∈ ∂(f1 + f2)(x)

• If f1 and f2 differentiable, we have (without convexity of f)

∇(f1 + f2) = ∇f1 +∇f2

20

Subdifferential of composition

If f closed convex and relint dom(f ◦ L) 6= ∅:
∂(f ◦ L)(x) = LT∂f(Lx)

• One direction always holds: If Lx ∈ domf , then

∂(f ◦ L)(x) ⊇ LT∂f(Lx)

Proof: let s ∈ ∂f(Lx), then by definition of subgradient of f :

(f ◦ L)(y) ≥ (f ◦ L)(x) + sT (Ly − Lx) = (f ◦ L)(x) + (LT s)T (y − x)

i.e., LT s ∈ ∂(f ◦ L)(x)

• If f differentiable, we have chain rule (without convexity of f)

∇(f ◦ L)(x) = LT∇f(Lx)

21

A sufficient optimality condition

Let f : Rm → R, g : Rn → R, and L ∈ Rm×n then:

minimize f(Lx) + g(x) (1)

is solved by every x ∈ Rn that satisfies

0 ∈ LT∂f(Lx) + ∂g(x) (2)

• Subdifferential calculus inclusions say:

0 ∈ LT∂f(Lx) + ∂g(x) ⊆ ∂((f ◦ L)(x) + g(x))

which by Fermat’s rule is equivalent to x solution to (1)

• Note: (1) can have solution but no x exists that satisfies (2)

22

A necessary and sufficient optimality condition

Let f : Rm → R, g : Rn → R, L ∈ Rm×n with f, g closed convex
and assume relint dom(f ◦ L) ∩ relint domg 6= ∅ then:

minimize f(Lx) + g(x) (1)

is solved by x ∈ Rn if and only if x satisfies

0 ∈ LT∂f(Lx) + ∂g(x) (2)

• Subdifferential calculus equality rules say:

0 ∈ LT∂f(Lx) + ∂g(x) = ∂((f ◦ L)(x) + g(x))

which by Fermat’s rule is equivalent to x solution to (1)

• Algorithms search for x that satisfy 0 ∈ LT∂f(Lx) + ∂g(x)

23

Evaluating subgradients of convex functions

• Obviously need to evaluate subdifferentials to solve

0 ∈ LT∂f(Lx) + ∂g(x)

• Explicit evaluation:
• If function is differentiable: ∇f (unique)
• If function is nondifferentiable: compute element in ∂f

• Implicit evaluation:
• Proximal operator (specific element of subdifferential)

24
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Proximal operator

• Proximal operator of (convex) g defined as:

proxγg(z) = argmin
x

(g(x) + 1
2γ ‖x− z‖22)

where γ > 0 is a parameter

• Evaluating prox requires solving optimization problem

• Objective is strongly convex ⇒ solution exists and is unique

25

Prox evaluates the subdifferential

• Fermat’s rule on prox definition: x = proxγg(z) if and only if

0 ∈ ∂g(x) + γ−1(x− z) ⇔ γ−1(z − x) ∈ ∂g(x)

Hence, γ−1(z − x) is element in ∂g(x)

• A subgradient in ∂g(x) where x = proxγg(z) is computed

• Often used in algorithms when g nonsmooth (no gradient exists)

26

Conjugate functions

• The conjugate function of f : Rn → R ∪ {∞} is defined as

f∗(s) := sup
x

(
sTx− f(x)

)

• Implicit definition via optimization problem

27

Conjugate interpretation

• Conjugate f∗(s) defines affine minorizer to f with slope s:

f(x)

sT x− f∗(s)

(s,−1)

x∗

−f∗(s)

where f∗(s) decides the constant offset to have support at x∗

• “Affine minorizor generator: Pick slope s, get offset for support”
• Why? Consider f∗(s) = sup

x

(
sTx− f(x)

)
with maximizer x∗:

f∗(s) = sTx∗ − f(x∗) ⇔ f∗(s) ≥ sTx− f(x) for all x

⇔ f(x) ≥ sTx− f∗(s) for all x

• Support at x∗ since f(x∗) = sTx∗ − f∗(s)
28

Fenchel Young’s equality

• Going back to conjugate interpretation:

f(x)

sT x− f∗(s)

(s,−1)

x∗

• Fenchel’s inequality: f(x) ≥ sTx− f∗(s) for all x, s

• Fenchel-Young’s equality and equivalence:

f(x∗) = sTx∗ − f∗(s) holds if and only if s ∈ ∂f(x∗)

29

A subdifferential formula

Assume f closed convex, then ∂f(x) = Argmaxs(s
Tx− f∗(s))

• Since f∗∗ = f , we have f(x) = sups(x
T s− f∗(s)) and

s∗ ∈ Argmax
s

(xT s− f∗(s)) ⇐⇒ f(x) = xT s∗ − f∗(s∗)

⇐⇒ s∗ ∈ ∂f(x)

• The last equivalence is Fenchel-Young

30

Subdifferential of conjugate – Inversion formula

Suppose f closed convex, then s ∈ ∂f(x)⇐⇒ x ∈ ∂f∗(s)

• Consequence of Fenchel-Young

• Another way to write the result is that for closed convex f :

∂f∗ = (∂f)−1

(Definition of inverse of set-valued A: x ∈ A−1u⇐⇒ u ∈ Ax)

31

Strong convexity

• Let σ > 0
• A function f is σ-strongly convex if f − σ

2 ‖ · ‖22 is convex
• Alternative equivalent definition of σ-strong convexity:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− σ
2 θ(1− θ)‖x− y‖2

holds for every x, y ∈ Rn and θ ∈ [0, 1]
• Strongly convex functions are strictly convex and convex
• Example: f 2-strongly convex since f − ‖ · ‖22 convex:

f(x) f(x)− ‖x‖22
32
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First-order condition for strong convexity

• Let f : Rn → R be differentiable
• f is σ-strongly convex with σ > 0 if and only if

f(y) ≥ f(x) +∇f(x)T (y − x) + σ
2 ‖x− y‖22

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x) + σ
2
‖x− y‖22

(∇f(x),−1)

(x, f(x))

• Function f has for all x ∈ Rn a quadratic minorizer that:
• has curvature defined by σ
• coincides with function f at x
• defines normal (∇f(x),−1) to epigraph of f

33

Smoothness

• A function is called β-smooth if its gradient is β-Lipschitz:

‖∇f(x)−∇f(y)‖2 ≤ β‖x− y‖2
for all x, y ∈ Rn (it is not necessarily convex)

• Alternative equivalent definition of β-smoothness

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)− β
2 θ(1− θ)‖x− y‖2

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) + β
2 θ(1− θ)‖x− y‖2

hold for every x, y ∈ Rn and θ ∈ [0, 1]
• Smoothness does not imply convexity
• Example:

34

First-order condition for smoothness

• f is β-smooth with β ≥ 0 if and only if

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖22

f(y) ≥ f(x) +∇f(x)T (y − x)− β
2 ‖x− y‖22

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x)− β
2
‖x− y‖22

f(x) +∇f(x)T (y − x) + β
2
‖x− y‖22

• Quadratic upper/lower bounds with curvatures defined by β
• Quadratic bounds coincide with function f at x

35

First-order condition for smooth convex

• f is β-smooth with β ≥ 0 and convex if and only if

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖22

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x) + β
2
‖x− y‖22

f(x) +∇f(x)T (y − x)

(∇f(x),−1)

(x, f(x))

• Quadratic upper bound and affine lower bound
• Bounds coincide with function f at x
• Quadratic upper bound is called descent lemma

36

Duality correspondance

Let f : Rn → R ∪ {∞}. Then the following are equivalent:

(i) f is closed and σ-strongly convex

(ii) ∂f is maximally monotone and σ-strongly monotone

(iii) ∇f∗ is σ-cocoercive

(iv) ∇f∗ is maximally monotone and 1
σ -Lipschitz continuous

(v) f∗ is closed convex and satisfies descent lemma (is 1
σ -smooth)

where ∇f∗ : Rn → Rn and f∗ : Rn → R
Comments:

• Relation (i) ⇔ (v) most important for us

• Since f = f∗∗ the result holds with f and f∗ interchanged

• Full proof available on course webpage

37

Composite Optimization

38

Composite optimization

We consider composite optimization problems of the form

minimize
x

f(Lx) + g(x)

39

Optimality conditions and dual problem

• Assume f, g closed convex and that CQ holds
• Problem minimizex(f(Lx) + g(x)) is solved by x iff

0 ∈ LT ∂f(Lx)︸ ︷︷ ︸
µ

+∂g(x)

where dual variable µ has been defined
• Primal dual necessary and sufficient optimality conditions:

{
µ ∈ ∂f(Lx)

−LTµ ∈ ∂g(x)

{
Lx ∈ ∂f∗(µ)

−L∗µ ∈ ∂g(x)
{
µ ∈ ∂f(Lx)

x ∈ ∂g∗(−LTµ)

{
Lx ∈ ∂f∗(µ)

x ∈ ∂g∗(−LTµ)

• Dual optimality condition

0 ∈ ∂f∗(µ) + ∂(g∗ ◦ −LT )(µ) (1)

solves dual problem minimizeµ f
∗(µ) + g∗(−LTµ)

• If CQ-D holds, all dual problem solutions satisfy (1)
• Dual searches for µ such that LTµ ∈ ∂f(x) and −LTµ ∈ ∂g(x) 40
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Solving the primal via the dual

• Why solve dual? Sometimes easier to solve than primal

• Only interesting if primal solution can be recovered

• Assume f, g closed convex and CQ

• Assume optimal dual µ known: 0 ∈ ∂f∗(µ) + ∂(g∗ ◦ −LT )(µ)

• Optimal primal x must satisfy any and all primal-dual conditions:

{
µ ∈ ∂f(Lx)

−LTµ ∈ ∂g(x)

{
Lx ∈ ∂f∗(µ)

−LTµ ∈ ∂g(x)
{
µ ∈ ∂f(Lx)

x ∈ ∂g∗(−LTµ)

{
Lx ∈ ∂f∗(µ)

x ∈ ∂g∗(−LTµ)

• If one of these uniquely characterizes x, then must be solution:
• ∂g∗ is differentiable at −LTµ for dual solution µ
• ∂f∗ is differentiable at dual solution µ and L invertible
• · · ·

41

Algorithms

42

Proximal gradient method

• Consider minimize
x

f(x) + g(x) where

• f is β-smooth f : Rn → R (not necessarily convex)
• g is closed convex

• Due to β-smoothness of f , we have

f(y) + g(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖22 + g(y)

for all x, y ∈ Rn, i.e., r.h.s. is majorizing function for fixed x

• Majorization minimization with majorizer if γk ∈ [ε, β−1], ε > 0:

xk+1 = argmin
y

(
f(xk) +∇f(xk)T (y − x) + 1

2γk
‖y − xk‖22 + g(y)

)

= argmin
y

(
g(y) + 1

2γk
‖y − (xk − γk∇f(xk))‖22

)

= proxγkg(xk − γk∇f(xk))

gives proximal gradient method

43

Proximal gradient – Fixed-points

• Denote T γPG := proxγg(I − γ∇f), gives algorithm xk+1 = T γPGxk
• Proximal gradient fixed-point set definition

fixT γPG = {x : x = T γPGx} = {x : x = proxγg(x− γ∇f(x))}

i.e., set of points for which xk+1 = xk

Let γ > 0. Then x̄ ∈ fixT γPG if and only if 0 ∈ ∂g(x̄) +∇f(x̄).

• Consequence: fixed-point set same for all γ > 0

• We call inclusion 0 ∈ ∂g(x̄) +∇f(x̄) fixed-point characterization
• For convex problems: global solutions
• For nonconvex problems: critical points

44

Applying proximal gradient to primal problems

Problem minimize
x

f(x) + g(x):

• Assumptions:
• f β-smooth
• g closed convex and prox friendly1

• γk ∈ [ε, 2
β
− ε]

• Algorithm: xk+1 = proxγkg(xk − γk∇f(xk))

Problem minimize
x

f(Lx) + g(x):

• Assumptions:
• f β-smooth (implies f ◦ L β‖L‖22-smooth)
• g closed convex and prox friendly1

• γk ∈ [ε, 2
β‖L‖22

− ε]
• Gradient ∇(f ◦ L)(x) = LT∇f(Lx)
• Algorithm: xk+1 = proxγkg(xk − γkLT∇f(Lxk))

1Prox friendly: proximal operator cheap to evaluate, e.g., g separable
45

Applying proximal gradient to dual problem

Dual problem minimize
ν

f∗(ν) + g∗(−LT ν):

• Assumptions:
• f closed convex and prox friendly

• g σ-strongly convex (which implies g∗ ◦ −LT ‖L‖
2
2

σ
-smooth)

• γk ∈ [ε, 2σ
‖L‖22

− ε]
• Gradient: ∇(g∗ ◦ −LT )(ν) = −L∇g∗(−LT ν)

• Prox (Moreau): proxγkf∗(ν) = ν − γkproxγ−1
k f (γ−1

k ν)

• Algorithm:

νk+1 = proxγkf∗(νk − γk∇(g∗ ◦ −LT )(νk))

= (I − γkproxγ−1
k f (γ−1

k ◦ I))(νk + γkL∇g∗(−LT νk))

• Problem must be convex to have dual!

• Enough to know prox of f

46

What problems cannot be solved (efficiently)?

Problem minimize
x

f(x) + g(x)

• Assumptions: f and g convex and nonsmooth
• No term differentiable, another method must be used:

• Subgradient method
• Douglas-Rachford splitting
• Primal-dual methods

Problem minimize
x

f(x) + g(Lx)

• Assumptions:
• f smooth
• g nonsmooth convex
• L arbitrary structured matrix

• Can apply proximal gradient method, but

proxγk(g◦L)(z) = argmin
x

g(Lx) + 1
2γ ‖x− z‖22)

often not “prox friendly”, i.e., it is expensive to evaluate

47

Training problems

• Training problem format

minimize
θ

N∑

i=1

L(m(xi; θ), yi)

︸ ︷︷ ︸
f(Xθ)

+
n∑

j=1

gj(θj)

︸ ︷︷ ︸
g(θ)

where f is data misfit term and g is regularizer
• Regularizers (θ = (w, b))

• Tikhonov g(θ) = ‖w‖22 is prox-friendly
• Sparsity inducing 1-norm g(θ) = ‖w‖1 is prox-friendly

• Data misfit terms (with m(x; θ) = φ(x)T θ for convex problems)
• Least squares L(u, y) = ‖u− y‖22 smooth, hence f smooth
• Logistic L(u, y) = log(1 + eu)− yu smooth, hence f smooth
• SVM L(u, y) = max(0, 1− yu) not smooth, hence f not smooth

• Proximal gradient method
• Least squares: can efficiently solve primal
• Logistic regression: can solve primal
• SVM: add strongly convex regularization and solve dual

• Strongly convex regulariztion to have one conjugate smooth
• If bias term not regularized, only strongly convex in w
• SVM with ‖ · ‖1-regularization not solvable with prox-grad 48
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Dual training problem

• Convex training problem

minimize
θ

N∑

i=1

L(φ(xi)
T θ, yi)

︸ ︷︷ ︸
f(Xθ)

+

n∑

j=1

gj(θj)

︸ ︷︷ ︸
g(θ)

has dual

minimize
θ

N∑

i=1

L∗(µi)

︸ ︷︷ ︸
f∗(µ)

+
n∑

j=1

g∗j ((−XTµ)j)

︸ ︷︷ ︸
g∗(−XTµ)

where the conjugate of L is w.r.t. first argument

• Dual has same structure as primal, finite-sum plus separable

49

Training problem structure

• Primal training problem

minimize
θ

N∑

i=1

L(m(xi; θ), yi)

︸ ︷︷ ︸
f(Xθ)

+
n∑

j=1

gj(θj)

︸ ︷︷ ︸
g(θ)

• Dual training problem

minimize
θ

N∑

i=1

L∗(µi)

︸ ︷︷ ︸
f∗(µ)

+

n∑

j=1

g∗j ((−XTµ)j)

︸ ︷︷ ︸
g∗(−XTµ)

• Common structure, finite sum plus separable:

minimize
θ

N∑

i=1

fi((Xθ)i) +
n∑

j=1

ψj(θj)

• Primal: fi = L(m(xi; ·), yi) (one summand per training example)
• Dual: fi = g∗j ((−XT ·)j), ψj = L∗

50

Exploiting structure

• Common structure, finite sum plus separable:

minimize
θ

N∑

i=1

fi((Xθ)i) +

n∑

j=1

ψj(θj)

• Stochastic gradient descent exploits finite-sum structure:
• Computes stochastic gradient of smooth part f
• Pick summand fi at random and perform gradient step
• Primal formulations: Pick training example and compute gradient
• Deep learning: evaluted via backpropagation

• Coordinate gradient descent exploits separable structure:
• Coordinate-wise updates if nonsmooth φj separable
• Requires efficient coordinate-wise evaluations of ∇f

51
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