Convex Sets

Pontus Giselsson

Outline

* Definition and convex hull

o Examples of convex sets

o Convexity preserving operations

o Concluding convexity — Examples

e Separating and supporting hyperplanes

Convex sets — Definition

® A set C is convex if for every z,y € C and 6 € [0, 1]:
bz +(1-0yeC

® “Every line segment that connect any two points in C'is in C"

Nonconvex Convex
.
. .
. .
Nonconvex Nonconvex

® Will assume that all sets are nonempty and closed

Convex combination and convex hull

Convex hull (convS) of S is smallest convex set that contains S:

Mathematical construction:
® Convex combinations of xy, ..., xy are all points x of the form
=011 + O0sw0 + ... + Oy

where 01 + ...+ 0, =1and 6, >0
® Convex hull: set of all convex combinations of points in S

QOutline

e Definition and convex hull

e Examples of convex sets

o Convexity preserving operations

o Concluding convexity — Examples

o Separating and supporting hyperplanes

Affine sets

® Take any two points z,y € V: V is affine if full line in V:

T

Lines and planes are affine sets

® Definition: A set V is affine if for every x,y € V and o € R:
ar+(l—a)yeV (1)

hence convex this holds in particular for o € [0, 1]

Affine hyperplanes

o Affine hyperplanes in R™ are affine sets that cut R™ in two halves

® Dimension of affine hyperplane in R™ is n — 1 (If s # 0)

All affine sets in R™ of dimension n — 1 are hyperplanes

® Mathematical definition:
hep:={zeR":sTe =1}

where s € R" and r € R, i.e., defined by one affine function

® Vector s is called normal to hyperplane

Halfspaces

® A halfspace is one of the halves constructed by a hyperplane

® Mathematical definition:
H,s={zeR": sTe < r}

® Halfspaces are convex, and vector s is called normal to halfspace

Polytopes

® A polytope is intersection of halfspaces and hyperplanes

Mathematical representation:
C={zecR":s'c<riforic{l,...,m}and
ste=r; forie{m+1,..p}}

Cones

® Aset Kisaconeifforallz € Kanda>0: axr € K
® |f x is in cone K, so is entire ray from origin passing through x:

L

® Examples:

Cone Cone Not cone

® Polytopes convex since intersection of convex sets
9 10
Convex cones Sublevel sets
® Suppose that g : R™ — R is a real-valued function
L] : .
Cones can be convex or nonconvex: ® The (Oth) sublevel set of g is defined as
S:={zreR":g(x) <0}
® Example: construction giving 1D interval S = [a,]
Nonconvex cone Convex cone
g(x)
® Convex cone examples:
® Linear subspaces {x € R" : Az = 0} (but not affine subspaces) P A e
® Halfspaces based on linear (not affine) hyperplanes {z : sz < 0}
® Positive semi-definite matrices
{X € R™*™ : X symmetric and 27 Xz > 0 for all z € R"}
® Nonnegative orthant {z € R" : > 0}
® Second order cone {(z,7) € R" X R : ||z][2 < 7} ® Sis a convex set if g is a convex function
® S is not necessarily nonconvex although ¢ is
11 12
Sublevel sets — Examples QOutline
® |evelset of convex quadratic function
4
3
2
A ® Definition and convex hull
e Examples of convex sets
o Convexity preserving operations
e Concluding convexity — Examples
e Separating and supporting hyperplanes
{z e R": La" Pz + ¢"z +r < 0}, with P positive definite
® Norm balls {z € R" : ||z|| —r < 0}
® Second-order cone {(z,7) € R" x R: [|z|] — r < 0}
® Halfspaces {x € R" : ¢z — r < 0}
13 14
Convexity preserving operations Intersection and union
® |ntersection C =C1NCymeansz € C if z € C; and z € Oy
® Union C=C1UCymeansz € Cifx € Cy or z € Oy
® Intersection (but not union)
® Affine image and inverse affine image of a set
Intersection Union
® [ntersection of any number of, e.g., infinite, convex sets is convex
® Union of convex sets need not be convex
15 16

Image sets and inverse image sets

® Let L(z) = Az + b be an affine mapping defined by
® matrix A € R™*"
® vector b € R™

® Let C be a convex set in R™ then the image set of C' under L
{Az+b:2 € C}

is convex

® Let D be a convex set in R™ then the inverse image of D under L
{z:Az+be D}

is convex

Outline

® Definition and convex hull

o Examples of convex sets

o Convexity preserving operations

e Concluding convexity — Examples

e Separating and supporting hyperplanes

17 18
Ways to conclude convexity Example — Nonnegative orthant
® Nonnegative orthant is set C' = {z € R" : > 0}
® Prove convexity from definition:
. N ® Let x > 0 and y > 0 be arbitrary points in C'
® Use convexity definition ® Forall 6 €[0,1]:
® Show that set is sublevel set of a convex function
. . . 0x >0 and (1-0)y>0
® Show that set constructed by convexity preserving operations
® All convex combinations therefore also satisfy
Oz +(1—-0)y>0
i.e., they belongs to C' and the set is convex
19 20
Example — Positive semidefinite cone Example — Linear matrix inequality
® The positive semidefinite (PSD) cone is
{X € R™™ : X symmetric} ﬂ{X eR™": 27Xz >0 for all z € R"}
® This can be written as the following intersection over all z € R™ . . - .
& ® Let us consider a linear matrix inequality (LMI) of the form
{X e R™"™: X symmetric} ﬂ {X eR™:2TXz >0} .
=R {zERk:AJrZLBLEO}
which, by noting that 27 Xz = tr(27 X z) = tr(z27 X), is equal to i=1
{X e R™*™: X symmetric} ﬂ {X e RV : (227 X) > 0} where A and B; are fixed matrices in R"*"
zER™ ® Convex since inverse image of PSD cone under affine mapping
where tr(z27X) > 0 is a halfspace in R"*" (except when z = 0)
® The PSD cone is convex since it is intersection of
® symmetry set, which is a finite set of (convex) linear equalities
® an infinite number of (convex) halfspaces in R™*™
® Notation: If X belong to the PSD cone, we write X > 0
21 22
Outline Separating hyperplane theorem
® Suppose that C,; D C R™ are two non-intersecting convex sets
® Then there exists hyperplane with C' and D in opposite halves
¢ Definition and convex hull
o Examples of convex sets
o Convexity preserving operations
o Concluding convexity — Examples
o Separating and supporting hyperplanes Counter-example
Example D nonconvex
® Mathematical formulation: There exists s # 0 and 7 such that
sfe<r for allx € C
sTa>r forallz € D
® The hyperplane {z : s”z = r} is called separating hyperplane
23 24

A strictly separating hyperplane theorem

® Suppose that C, D C R™ are non-intersecting closed and convex
sets and that one of them is compact (closed and bounded)

® Then there exists hyperplane with strict separation

C={(z,y) :y <0}

Example Counter example
C, D not compact

D= {(z,y):y >z t,x>0}

® Mathematical formulation: There exists s # 0 and r such that

Consequence — C' is intersection of halfspaces

‘a closed convex set C' is the intersection of all halfspaces that contain it

proof:

® let H be the intersection of all halfspaces containing C'

® =: obviouslyz e C =z e H

® &: assume x & C, since C closed and convex and {z} compact
singleton, there exists a strictly separating hyperplane, i.e., x & H:

z
T
stx<r forallz € C
sTe>r forallz € D
=
25 26
Supporting hyperplanes Supporting hyperplane theorem
® Supporting hyperplanes touch set and have full set on one side: Let C be a nonempty convex set and let € bd(C). Then there exists
a supporting hyperplane to C' at x.
® Does not exist for all point on boundary for nonconvex sets
s ® Many supporting hyperplanes exist for points of nonsmoothness
S
® We call the halfspace that contains the set supporting halfspace
® s is called normal vector to C at x
e Definition: Hyperplane {y : sy = r} supports C at = € bd C if
sTe=r and sTy<rforallyeC
27 28

Normal cone operator

® Normal cone to C' at & € bd(C') is set of normals at x

® Normal cone operator N to C' takes point input and returns set:
® 2 € bd(C)NC: set of normal vectors to supporting halfspaces
® 1 € int(C): returns zero set {0}
® 1 & C: returns emptyset ()

® Mathematical definition: The normal cone operator to a set C' is

s:sT(y—z)<0forallyecC} ifxeC
Ne(e) = {é) () } else

i.e., vectors that form obtuse angle between s and all y —z, y € C
® For all z € C: the N¢ outputs a set that contains 0
29

Convex Functions

Pontus Giselsson

Outline

« Definition, epigraph, convex envelope

e First- and second-order conditions for convexity
o Convexity preserving operations

o Concluding convexity — Examples

e Strict and strong convexity

® Smoothness

Extended-valued functions and domain

® We consider extended-valued functions f : R" — RU {oo} =: R

® Example: Indicator function of interval [a, b]

0 ifa<ax<b
L[a.b](-T) =
oo else

® The (effective) domain of f : R™ — RU {oc} is the set
dom f={z € R": f(z) < oo}

® (Will always assume domf # (), this is called proper)

Convex functions

® Graph below line connecting any two pairs (z, f(z)) and (y, f(y))

convex function nonconvex function
® Function f : R™ — R is convex if for all z,y € R™ and 0 € [0, 1]:
0z +(1=0)y) <0f(x) + (1 -0)f(y)

(in extended valued arithmetics)

® A function f is concave if —f is convex

Epigraphs

® The epigraph of a function f is the set of points above graph
epif

® Mathematical definition:

epif = {(z,1) | fla) <1}
® The epigraph is a set in R” x R

Epigraphs and convexity

® Let f : R" - RU{oo}

® Then f is convex if and only epif is a convex set in R™ x R

epif

® fis called closed (lower semi-continuous) if epif is closed set

Convex envelope

® Convex envelope of f is largest convex minorizer
f(z) env f(x)

RN
s

® Definition: The convex envelope env f satisfies: envf convex,

envf < f and envf > g for all convex g < f

Convex envelope and convex hull

® Assume f:R" = RU {0} is closed

® Epigraph of convex envelope of f is closed convex hull of epif

N

® ¢pif in light gray, epienvf includes dark gray

Outline

e Definition, epigraph, convex envelope

e First- and second-order conditions for convexity
o Convexity preserving operations

o Concluding convexity — Examples

o Strict and strong convexity

® Smoothness

Affine functions

® Affine functions f : R™ — R are of the form

f)=sTy+r

® Affine functions f : R" — R cut R” x R in two halves

f)=sTy+r

(s,-1)

® s defines slope of function
® Upper halfspace is epigraph with normal vector (s, —1):

epif = {(y.t) ¢ > sy +r} ={(y.) : (s,~1)7(y.1) < —r}

9 10
Affine functions — Reformulation First-order condition for convexity
® A differentiable function f : R™ — R is convex if and only if
. .) T . > flx)+V Ty —4
® Pick any fixed € R"; affine f(y) = sTy +r can be written as Fw) 2 f(@) + V@) (y - 2)
T for all z,y € R™
) = f(@) + 5"y —) o
(since r = f(z) — sTx)
V()T (y —
F) = F@) + 5Ty — o) /- @)+ V()" (y—x)
_X(z, (=)
(5-1) PR)
® Function f has for all z € R™ an affine minorizer that:
® Affine function of this form is important in convex analysis ® coincides with function f at =
® has slope s defined by V f, which coincides the function slope
® s supporting hyperplane to epigraph of f
® defines normal (Vf(z),—1) to epigraph of f
11 12
Second-order condition for convexity Outline
® A twice differentiable function is convex if and only if
V2f(z) = 0
for all z € R™ (i.e., the Hessian is positive semi-definite) * Definition, epigraph, convex envelope
e “The function has non-negative curvature” o First- and second-order conditions for convexity
® Nonconvex example: f(z) =™ [} %]2 with V2f(z) # 0 * Convexity preserving operations
e Concluding convexity — Examples
e Strict and strong convexity
® Smoothness
13 14
Operations that preserve convexity Positive sum
® Assume that f; are convex for all j € {1,...,m}
® Positive sum ® Assume that there exists « such that f;(x) < oo for all j
® Marginal function ® Then the positive sum
® Supremum of family of convex functions m
e Composition rules f= thfj
® Prespective of convex function J=1
with t; > 0 is convex
15 16

Marginal function

® Let f:R" x R™ = RU{oo} be convex

® Define the marginal function
g(x) := inf f(z,y)
y

® The marginal function g is convex if f is

Supremum of convex functions

® Point-wise supremum of convex functions from family {f;};e:
f(@) :=sup{f;(x) : jeJ}

® Supremum is over functions in family for fixed x
® Example:

® Convex since epigraph is intersection of convex epigraphs

17 18
Scalar composition rule Vector composition rule
® Consider the function f: R" — R U {oo} defined as ® Consider the function f : R" — R U {oo} defined as
f@) = h(g(x)) f(@) = h(g1(2), g2(), ... g (2))
where h: R — RU {oo} is convex and g : R" — R where h : R — R U {oc} is convex and g; : R* — R
® Suppose that one of the following holds: ® Suppose that for each i € {1,...,k} one of the following holds:
® h is nondecreasing and g is convex ® h is nondecreasing in the ith argument and g; is convex
® h is nonincreasing and g is concave ® h is nonincreasing in the ith argument and g; is concave
® g is affine ® g; is affine
Then f is convex Then f is convex
19 20
Perspective of function Outline
Let . .
- o Definition, epigraph, convex envelope
® /:R" = R be convex o First- and second-order conditions for convexity
® i be positive, i.e, t € Ry o Convexity preserving operations
then the perspective function g : R” x R — R, defined by e Concluding convexity — Examples
e Strict and strong convexity
tf(z/t) ift>0
g(z,t) := f(@/) ® Smoothness
00 else
is convex
21 22
Ways to conclude convexity Conclude convexity — Some examples
® From definition:
® indicator function of convex set C'
0 ifzeC
to(@) = {oc else
® Use convexity definition
® Show that epigraph is convex set ® norms: ||z
® Use first or second order condition for convexity ® From first- or second-order conditions:
) L o7
® Show that function constructed by convexity preserving operations * affine functions: f(zl) o +r . o)
® quadratics: f(z) = 3@ Qu with Q positive semi-definite matrix
® From convex epigraph:
Ty —1 .
Y 'z ifY =0
® matrix fractional function: f(z,Y) = {JE e
[else
® From marginal function:
® (shortest) distance to convex set C: distc(z) = infyec(||y — z||)
23 24

Example — Convexity of norms

Show that f(z) := ||z|| is convex from convexity definition
® Norms satisfy the triangle inequality
llw + vl < [lull + vl
® For arbitrary z,y and 6 € [0, 1]:
f(bx+ (1 =0)y) =6z + (1 -0yl

< 10z + [1(1 =)yl
= 0ll=ll + (1 = 0)llyll
=0f(x) + (1-0)f(y)

which is definition of convexity
® Proof uses triangle inequality and 6 € [0,1]

Example — Matrix fractional function

Show that the matrix fractional function is convex via its epigraph

® The matrix fractional function

2TY 'z ifY =0

f@Y) = {oo else

® The epigraph satisfies

epif (2, Y1) = {(5,V,0) : f(w,Y) < 1}
={(z,Y,t) : 2Ty 'z <tand Y ~ 0}

® Schur complement condition says for Y - 0 that

Y =z
Ty —ly <t o
'Y x <t & [xT t]70

which is a (convex) linear matrix inequality (LMI) in (z,Y,t)
® Epigraph is intersection between LMI and positive definite cone

25 26
Example — Composition with matrix Example — Image of function under linear mapping
® let
® f:R" = R be convex
® L € R™ " be a matrix
® Let then image function (sometimes called infimal postcomposition)
® f:R™ — R be convex .
® L € R™*™ be a matrix (L) (@) = Hsf{f(u) : Ly =ua}
then composition with a matrix
is convex
(foL)(x) = f(Lx) ® Proof: Define
is convex h(z,y) = f(y) + 1oy (Ly — @)
® \ector composition with convex function and affine mappings
which is convex in (z,y), then
(Lf)(z) = inf h(z,y)
Yy
which is convex since marginal of convex function
27 28
Example — Nested composition Example — Conjugate function
Show that: f(z) := ellL==bI3 is convex where L is matrix b vector:
o Let Show that the conjugate f*(s) := su]]%) (sTx — f(z)) is convex:
xzER™
0 ifu<O ® Define (uncountable) index set J and z; such that U;cjz; = R"
g = el o@=4% TS0 gw=e ine () index set J and z; such that Use,;
w' ifu>0 ® Define r; := f(z;) and affine (in s): a;(s) :=s"z; —r;
® Therefore f*(s) = sup(a;(s) :j € J)
then f(z) = g3(g2(91(Lz — b)) . ’ . , .
. ® Convex since supremum over family of convex (affine) functions
® gi(Lxz —b) convex: convex g; and Lz — b affine])
. ® Note convexity of f* not dependent on convexity of f
® g>(g1(Lz — b)) convex: cvx nondecreasing g and cvx g1 (Lz — b)
® f(z) convex: convex nondecreasing gs and convex g2(g1(Lxz — b))
29 30
Outline Strict convexity
® A function is strictly convex if
FOz+(1=0)y) <O0f(x) +(1-6)f(y)
. for all z # y and 6 € (0,1)
* Definition, epigraph, convex envelope ® Convexity definition with strict inequality
e First- and second-order conditions for convexity ® No flat (affine) regions
o Convexity preserving operations ® Example: f(z) =1/z forz >0
o Concluding convexity — Examples
e Strict and strong convexity f@)
® Smoothness
xr
31 32

Strong convexity

Let 0 >0
A function f is J—strong/){ convex if f— || - |3 is convex
Alternative equivalent definition of o-strong convexity:

FOz + (1= 0)y) < 0f(x) + (L= 6)f(y) — §0(1 = O)l|l= —y|>
holds for every z,y € R™ and 6 € [0, 1]

® Strongly convex functions are strictly convex and convex
® Example: f 2-strongly convex since f — || - ||3 convex:

f@) =Nzl

Uniqueness of minimizers

® Strictly (strongly) convex functions have unique minimizers
® Strictly convex functions may not have a minimizing point

® Strongly convex functions always have a unique minimizing point

33 34
First-order condition for strict convexity First-order condition for strong convexity
® Let f : R™ — R be differentiable e Let f : R" — R be differentiable
® [s strictly convex if and only if ® fis o-strongly convex with o > 0 if and only if
y) > f(z) + V@) (y—= -
J) = J@) + V@) =) 1) 2 @)+ V@)~) + Sle — vl
for all z,y € R™ where z # y
for all z,y € R™
f(y)
f(y)
) f@) + V@) Ty —)+ e - yll3
@)+ V@) (y - =)
@, 1))
\ ~ Xz, f(2))
; (Vf(z),-1) X
. ' - (Vf(=z),-1)
® Function f has for all x € R™ an affine minorizer that:
® has slope s defined by V ® Function f has for all x € R™ a quadratic minorizer that:
® coincides with function f only at ® has curvature defined by o
® is supporting hyperplane to epigraph of f ® coincides with function f at z
® defines normal (V f(z), —1) to epigraph of f ® defines normal (V f(x),—1) to epigraph of f
35 36
Second-order condition for strict/strong convexity Examples of strictly/strongly convex functions
Strictly convex
Let f: R™ — R be twice differentiable
o _ o f(z) = —log(x) + 120(x)
® fis strictly convex if o f(a)=1/z + 150(z)
V2f(z) =0 * flw)=e"
for all z € R™ (i.e., the Hessian is positive definite) Strongly convex
® fis o-strongly convex if and only if * flz) = %HIH%
* f(z) = 22TQx where Q positive definite
V2f(x) = ol
® f(z) = fi(z) + f2(x) where f; strongly convex and fo convex
for all z € R™ ® f(z) = fi(z) + fa(z) where f1, fo strongly convex
* f(z) = 227Qx + 1c(x) where Q positive definite and C convex
37 38
Proofs for two examples QOutline
o Definition, epigraph, convex envelope
Strict convexity of f(z) = e™": o First- and second-order conditions for convexity
o Vf(x)=—e Vif(z)=e">0forallz cR o Convexity preserving operations
Strong convexity of f(z) = %xTQm with @ positive definite * Concluding convexity — Examples
) o Strict and strong convexity
® Vf(z)=Qr, V*f(z) = Q = Mnin(Q)I where A\in(Q) > 0 ¢ Smoothness
39

40

Smoothness

® A function is called 3-smooth if its gradient is 8-Lipschitz:

IVi(z) = VW)l < Bllz -yl
for all z,y € R™ (it is not necessarily convex)
Alternative equivalent definition of S-smoothness

fOz+ (1 =0)y) > 0f(z) + (1—0)f(y) — 01— 0)[|l= — y||
FOz+(1—0)y) <Of(x)+ (1 0)f(y) + 2001 — 0)]|z — y||

hold for every z,y € R™ and 6 € [0, 1]
® Smoothness does not imply convexity
Example:

First-order condition for smoothness
® fis S-smooth with 5 > 0 if and only if
FW) < f@) + V@) (y—2) + Sl -yl
@) > f@) + V@) (y—=) - Sz —yl3
for all z,y € R™
| @)+ V@ T (y—2) + Sz — 3
[1)

L5 @) + V1@ T - o) - Lo — i3

® Quadratic upper/lower bounds with curvatures defined by
® Quadratic bounds coincide with function f at x

41 42
First-order condition for smooth convex Second-order condition for smoothness
® fis f-smooth with 3 > 0 and convex if and only if
f) < f@) + V@) (y—a) + §llz -yl
. o T
fy) = f@)+ Vi) (y —x) Let f: R™ — R be twice differentiable
n
forallz,y € R) ® fis B-smooth if and only if
| F@) + V@) T (y - 2) + 5l - yl3
~BI X V2 f(x) < BI
/) f)
for all z € R™
. fic A . .
/. F@) + VI — o) [is B-smooth and convex if and only if
0= V2f(x) < B
(2, f(x)
b n
(V) -1) forallz € R
® Quadratic upper bounds and affine lower bound
® Bounds coincide with function f at x
® Quadratic upper bound is called descent lemma
43 44
Composite optimization form
® We will consider optimization problem on composite form
Convex Optimization Problems i
minimize f(Lx) + g(z)
x
where f and g are convex functions and L is a matrix
® Convex problem due to convexity preserving operations
® Can model constrained problems via indicator function
® This model format is suitable for many algorithms
45 46

10

Subdifferentials and Proximal Operators

Pontus Giselsson

Outline

¢ Subdifferential and subgradient — Definition and basic properties
o Monotonicity

o Examples

e Strong monotonicity and cocoercivity

® Fermat’s rule

e Subdifferential calculus

e Optimality conditions

o Proximal operators

2
Gradients of convex functions Subdifferentials and subgradients
e Recall: A differentiable function f : R™ — R is convex iff ® Subgradients s define affine minorizers to the function that:
F) = f@) + V@) (y - 2)
for all z,y € R™
f(y)
e T (y —
@)+ V@) =) o coincide with f at x
o ® define normal vector (s, —1) to epigraph of f
:f’f(l)) ® can be one of many affiniminorizers at nondifferentiable points «
‘(Vf(z),—l) ® Subdifferential of f: R” — R at x is set of vectors s satisfying
T
® Function f has for all x € R™ an affine minorizer that: fly) = flx)+s (y—=z) forally eR", (1)
® has slope s defined by V f ® Notation:
¢ coincides with function f at ® subdifferential: df : R" — 28" (power-set notation 2%")
® defines normal (Vf(z), —1) to epigraph of f ¢ subdifferential at z: 0f(z) = {s: (1) holds}
® What if function is nondifferentiable? ® clements s € Of(x) are called subgradients of f at x
4
Relation to gradient Subgradient existence — Convex setting
‘ For finite-valued convex functions, a subgradient exists for every x
® In extended-valued setting, let f : R” — R U {oo} be convex:
(Vi@ -1 . (i) Subgradients exist for all z in relative interior of dom f
\(V/“S% N (ii) Subgradients sometimes exist for x on relative boundary of dom f
(iii) No subgradient exists for = outside dom f
® Examples for second case, boundary points of domf:
e If f differentiable at and df(z) # 0 then 0f(z) = {V f(z)}: | | | |
® If f convex but not differentiable at = € int domf, then =
Of (x) = cl(convS(z))
N/ 22 .
where S(z) is set of all s such that Vf(z)) — s when 2 — x 1=+ o,y @) R
® In general for convex f: df(x) = cl(convS(z)) + Naomy () ® No subgradient (affine minorizer) exists for left function at z =1
6
Subgradient existence — Nonconvex setting Outline
® Function can be differentiable at = but 9f(x) =0 X . R . R .
o Subdifferential and subgradient — Definition and basic properties
« Monotonicity
e Examples
e Strong monotonicity and cocoercivity
® Fermat'’s rule
e Subdifferential calculus
e Optimality conditions
® z1: Of(z1) = {0}, Vf(z1) =0 .
o 52 Of(z2) = 0, V(z2) = o Proximal operators
® 13 Of(x3) = 0, Vi(zs)=0
® Gradient is a local concept, subdifferential is a global property
8

11

Monotonicity of subdifferential

Subdifferential operator is monotone:
(50— ,)" (& —) 2 0
for all s, € 9f(x) and s, € Of(y)
Proof: Add two copies of subdifferential definition

f@) = f@) + sy —2)

with = and y swapped
® Jf : R — 2% Minimum slope 0 and maximum slope oo

of

Monotonicity beyond subdifferentials

e Let A:R™ — 28" be monotone, i.e.:
(w0 —y) >0

for all w € Az and v € Ay

® If n=1, then A= 09f for some function f: R — RU {oo}
® |f n > 2 there exist monotone A that are not subdifferentials

9 10
Maximal monotonicity Minty’s theorem
o letdf :R* = 28" and a >0
® Jf is maximally monotone if and only if range(af + df) = R™
® Let the set gphdf := {(z,u) : u € Of(x)} be the graph of df af Ofa
® Jf is maximally monotone if no other function g exists with [’/
gphdf C gphdy, e .
with strict inclusion maximally monotone not maximally monotone
® A result (due to Rockafellar):
Ofi +al Afs +al
‘ f is closed convex if and only if Of is maximally monotone (
T xT
full range not full range
® Interpretation: No “holes” in gphdf
11 12
Outline Example — Absolute value
® The absolute value:
fx) = |z
e Subdifferential and subgradient — Definition and basic properties
* Monotonicity
o Examples
o Strong monotonicity and cocoercivity o Subdifferential
® Fermat's rule ® For z > 0, f differentiable and V f(z) =1, so 0f(z) = {1}
o Subdifferential calculus ® For z < 0, f differentiable and V f(z) = —1, so 8f(z) = {—1}
L .. ® For z =0, f not differentiable, but since f convex:
o Optimality conditions
« Proximal operators 8f(0) = cl(convS(0)) = cl(conv({—1,1}) = [-1,1]
® The subdifferential operator:
of (=)
13 14
A nonconvex example Example — Separable functions
® Nonconvex function:
e Consider the separable function f(z) = Y"1, fi(z;)
® Subdifferential
Of(x) = {s = (s1,---,8n) : 5i € Ofi(z:)}
‘ ‘ ® The subgradient s € df(x) if and only if each s; € df;(x;)
“ b ® Proof:
® Subdifferential ® Assume all s; € Of (x:):
® For z > b, f differentiable and Vf(z) =1, so df(z) = {1}
® For z < a, f differentiable and Vf(z) = —1, so f(z) = {—1} B e B SN
® For x € (a,b), no affine minorizer, 9f(z) = 0 1) = f(@) = Z}fl(yz) filw) = ;SZ(M @) =s -2
® For z = a, f not differentiable, df(x) = [—1,0] = =
® For x = b, f not differentiable, df(x) = [0, 1] ® Assume s; € Of(x;) and x; = y; for all i # j:
® The subdifferential operator: i) — f(@3) < 3(5y — 23)
J\J3) — Ji\+tg VAN
I which gives
Q ‘ f(y)—f(z):f7(y7)—f_7(z_7)<S‘7(y_7—z]):sT(y—z)
15 16

12

Example — 1-norm

e Consider the 1-norm f(z) = ||z = Y1, |24
® |t is a separable function of absolute values

® From previous examples, we conclude that the subdifferential is

si =—1 if x; <0
Of(x) =< (s1,---,8n) 1< s, € [-1,1] ifx; =0
s;i =1 ifz; >0

Example — 2-norm

® Consider the 2-norm f(z) = ||z||l2 = /||=]]3

® The function is differentiable everywhere except for when x =0
® Divide into two cases; x =0 and = # 0

® Subdifferential for x # 0: 9f(z) = {Vf(z)}:

® Let h(u) = /u and g(z) = [|z|3, then f(z) = (ho g)(z)
® The gradient for all # 0 by chain rule (since h: Ry — R):

1 x

V(@) = Vhig(@))Vy(e) = srmme = Tl

17 18
Example cont’d — 2-norm Outline
Subdifferential of ||z||2 at z =0
(i) educated guess of subdifferential from df(0) = cl(convS(0)) X . X . X .
o recall S(0) is set of all limit points of (V f(zx))xcs when zx — 0 . Subd|fFerfen.t|aI and subgradient — Definition and basic properties
® let 7 = t*d with ¢ € (0,1) and d € R™\0, then V f(a+) = it * Monotonicity
® since d arbitrary, (V f(z1)) can converge to any unit norm vector e Examples
® 50 5(0) ={s: ||s|l2 =1} and F(0) = {s : ||s]|> < 1}? « Strong monotonicity and cocoercivity
(i) verlfyLusmg subgra(:llenfc definition f(y) > £(0)+sT(y—0) = sTy o Fermat's rule
® Let 2 > 1, ,eg.,y=2s . .
et flsll2 enton &g y i e Subdifferential calculus
sTy =2||s]|3 > 2||s]l2 = f(v) e Optimality conditions
so such s are not subgradients * Proximal operators
® Let ||s||2 < 1, then for all y:
sTy < llsll2llyllz < lyllz = f(y)
so such s are subgradients
19 20
Strong convexity revisited Strong monotonicity
® Recall that f is o-strongly convex if f — Z|| - [|3 is convex ® If f o-strongly convex function, then Of is o-strongly monotone:
® If fis o-strongly convex then (52— 5) (& —) > allz — yl|3
f@) > f@) +s"(y—2) + e —yl3 for all s, € Of(x) and s, € DF(y)
holds for all = € domdf, s € Of(x), and y € R” ® Proof: Add two copies of strong convexity inequality
® The function has convex quadratic minorizers instead of affine fly) > fz)+ 5{(7/ —x)+ %H»T - U”%
) with = and y swapped
 f(@2) + 535 (y — x2) + Gllw2 — ylI3 ® Jf is o-strongly monotone if and only if 9f — ol is monotone
® Jf : R — 2% Minimum slope o and maximum slope oo
, fx2) + 83 (y —22) + Sllz2 — yl3
/ ,‘ of
, f@) + st (y—21) + §llzs — w3
\/\/\ . -
¥ 7\
01, — 7 (52,2,
(Lﬂl) PR -
® Multiple lower bounds at x5 with subgradients s 1 and s2 2
21 22
Strongly convex functions — An equivalence Smooth convex functions
e A differentiable function f : R™ — R is convex and [3-smooth if
f) < f@) + V@) (y—a) + §llz - yl3
T —
The following are equivalent for f : R™ — R U {c0} fy) 2 f(2) + V()" (y - 2)
. is closed and | hold for all z,y € R™
(i) fis closed and o-strongly convex ® f has convex quadratic majorizers and affine minorizers
(ii) @f is maximally monotone and o-strongly monotone
F@) + VH@)T 4 -) + §lla1 - vll3
Proof: F) F@2) + V(@) T (y = w2) + 522 — yll3
(i)=-(ii): we know this from before !
(i)=(@): (i) = 08f—0al=09(f— 5| -I|I3) maximally monotone
= f— %I - || closed convex
= f closed and o-strongly convex (o), =1)
J/
(V5 (@), 1)
® Quadratic upper bound is called descent lemma
23 24

13

Cocoercivity of gradient

® Gradient of smooth convex function is monotone and Lipschitz
(V@)= Vi) (z—y) =0
Vi) = VE@)ll2 < Bllz -yl
® Vf:R— R: Minimum slope 0 and maximum slope /3

Vi(x)

‘ T
. 1 .. .
® Actually satisfies the stronger 5-cocoercivity property:

(VI(@) = Vi) (@ —y) 2 5IVI(y) - V@3

due to the Baillon-Haddad theorem

Smooth convex functions — An equivalence

Let f: R™ — R be differentiable. The following are equivalent:
(i) Vfis 4-cocoercive
(ii) Vf is maximally monotone and S-Lipschitz continuous

(iii) f is closed convex and satisfies descent lemma (is 3-smooth)

Will later connect smooth convexity and strong convexity via conjugates

25 26
Smooth strongly convex functions Gradient of smooth strongly convex function
® Let f : R" — R be differentiable ® Gradient of 3-smooth o-strongly convex function f satisfies
® fis S-smooth and o-strongly convex with 0 < o < g if
T 5 3 IVF(y) = V@)l < Bllz =yl
FW) < @)+ V@) (y—2)+ 5lz —yls . N (s — > ol — 2
2 : (Vf(2) = VI@) (@ —y) = ol — yl3
fW) =2 f@)+ V@) (y—2) + Zlz —yl; o)
N so is -Lipschitz continuous and o-strongly monotone
hold for all Y € R . . . ® Vf:R — R: Minimum slope ¢ and maximum slope /3
® f has quadratic minorizers and quadratic majorizers)
x
| @)+ Vi@ Ty —2)+ 5lle - yli3
f(y) /
J(@) + V@) (y—2) + §lle —yll3
‘ xT
\ (x, f(x)) ® Actually satisfies this stronger property:
. ‘)
(VF(@),~1) (V@) = Vi) (@ =) = g5 1V () = V@3 + 75z —yl3
® We say that the ratio g is the condition number for the function for all z,y € R®
27 28
Proof of stronger property Outline
® fis o-strongly convex if and only if g := f — || - ||3 is convex
* Since f is S-smooth g is (8 — o)-smooth o Subdifferential and subgradient — Definition and basic properties
® Since g convex and (8 — o)-smooth, Vg is 51—-cocoercive: * Monotonicity
') o Examples
(Vo(@) = Vg) (@ —v) > 525 Va(@) - Vg(»)l3 o Strong monotonicity and cocoercivity
which by using Vg = Vf — ol gives * Fermat’s rule
; e Subdifferential calculus
(Vi) = VI@) (@ =) —olle ~ vl = 75 V@) = VI() oz =y} oA £a e
o Optimality conditions
which by expanding the square and rearranging is equivalent to o Proximal operators
(Vi@ = Vi) (@ —y) > 7=V (@) - VI3 + 7z - yll3
29 30
Fermat'’s rule Fermat’s rule — Nonconvex example
Let f:R"™ — RU{oc}, then z minimizes f if and only if
0€df(z) ® Fermat’s rule holds also for nonconvex functions
® Example:
® Proof: x minimizes f if and only if
f) = f@) = f(z) +0T(y—x) forallyeR"
which by definition of subdifferential is equivalent to 0 € 9f(z)
® Example: several subgradients at solution, including 0
. ,) 3¢
: : (0, -1)
3 ® 9f(x1) =0 and Vf(z1) = 0 (global minimum)
| ® 9f(z2) =0 and V f(z2) = 0 (local minimum)
® For nonconvex f, we can typically only hope to find local minima
©,-1)
31 32

14

Outline

o Subdifferential and subgradient — Definition and basic properties
o Monotonicity

o Examples

e Strong monotonicity and cocoercivity

® Fermat’s rule

* Subdifferential calculus

e Optimality conditions

o Proximal operators

Subdifferential calculus rules

® Subdifferential of sum 9(f1 + f2)
® Subdifferential of composition with matrix 9(g o L)

33 34
Subdifferential of sum Subdifferential of composition
If f1, fo closed convex and relint dom f; N relint dom fo # 0: If f closed convex and relint dom(f o L) # (:
fi+fo)=0fi+0f2 A(f o L)(z) = LTof(Lx)
® One direction always holds: if 2 € domdfi; N domd fa: ® One direction always holds: If Lz € domf, then
O(fr+ f2)(@) 2 0fi(z) + Of2(x) A(f o L)(x) D LTaf(Lx)
Proof: let s; € f;(x), add subdifferential definitions: Proof: let s € f(Lz), then by definition of subgradient of f:
Ay + £2(9) 2 fi(2) + fol) + (514 52) (y — @) (Fo L)) = (f o L)(@) + 57 (Ly — L) = (f o L)(2) + (L) (y —)
ie s1+s2€0(f1+ f2)(@) ie, LTs € d(foL)(x)
® If f1 and f, differentiable, we have (without convexity of f) o If f differentiable, we have chain rule (without convexity of f)
Vit) =Vi+Vh V(foL)(x)= LTV f(Lx)
35 36
Outline Composite optimization problems
e Subdifferential and subgradient — Definition and basic properties
* Monotonicity ® \We consider optimization problems on composite form
e Examples
o Strong monotonicity and cocoercivity mlngmch(L;r,) +9(@)
* Fermat's rule where f: R™ — RU {c0}, g: R" — RU {00}, and L € R™*"
e Subdifferential calculus . N .
A) L. ® Can model constrained problems via indicator function
o Optimality conditions . - .
. ® This model format is suitable for many algorithms
o Proximal operators
37 38
A sufficient optimality condition A necessary and sufficient optimality condition
Let f:R™ 5 R, g:R" >R, and L € R™™ then: Let f:R™ =R, g :']R” —R, Le R’”X'.‘ with f, g closed convex
and assume relint dom(f o L) Nrelint domg # () then:
inimize £(La) 1
minimize f(Lz) + g(z) (1) minimize f(Lz) + g(x) 1)
is solved b x € R" that satisfi
19 solved by every at satishies is solved by « € R™ if and only if & satisfies
0€ LT0f(Lx) + dg(z 2
f(La) + 9g(x) @ 0 LTaf(Le) + dg(x) @)
® Subdifferential calculus inclusi :
ubditterential calculus inclusions say ® Subdifferential calculus equality rules say:
0 LTof(Lx) + dg(x) CO((f o L)(x) + g(x)) P .
((e 0 € LT0f(Lx) + g(x) = O((f o L)(@) + (x))
which by Fermat's rule is equivalent to z solution to (1) . , . . .
. . o which by Fermat'’s rule is equivalent to « solution to (1)
® Note: (1) can have solution but no x exists that satisfies (2) . . T .
® Algorithms search for x that satisfy 0 € L* 9 f(Lz) + dg(x)
39 40

15

A comment on constraint qualification

® The condition
relint dom(f o L) N relint domg # 0

is called constraint qualification and referred to as CQ

® |t is a mild condition that rarely is not satisfied

Evaluating subgradients of convex functions

® Obviously need to evaluate subdifferentials to solve
0 LTof(Lx) + dg(x)

® Explicit evaluation:

® |f function is differentiable: V f (unique)
® |f function is nondifferentiable: compute element in 9 f

e ® Implicit evaluation:
® Proximal operator (specific element of subdifferential)
no solution solution solution
no CQ cQ
41 42
Outline
o Subdifferential and subgradient — Definition and basic properties
o Monotonicity .
« Examples Proximal operators
o Strong monotonicity and cocoercivity
® Fermat’s rule
e Subdifferential calculus
e Optimality conditions
e Proximal operators
43 44
roximal operator — Definition rox is generalization of projection
P | operat Definiti P g lizat f project
® Recall the indicator function of a set C'
. 0 ifzeC
® Proximal operator of g defined as: vo(z) = 0o otherwise
— ororni Ay — |12
prox,(2) = argmin(g(a) + 3 lo = =13) . Then
where v > 0 is a parameter prox, . (z) = argmin(} ||z — z[[3 + ¢c(z))
® Evaluating prox requires solving optimization problem o 1 N o
® For convex g, prox is well-defined and single-valued B drg,grrmn(ﬂz —lz:weC)
® Why? Objective is strongly convex = argmin exists and is unique = argmin(||z — z|[2: 2 € C)
*
=1c(2)
® Projection onto C' equals prox of indicator function of C'
45 46
Prox computes a subgradient Prox is 1-cocoercive
® For convex g, the proximal operator is 1-cocoercive:
(=)7 (prox, ,(x) — prox, ;(y)) > [[prox, , () — prox, ()13
® Proof
e Fermat's rule on prox definition: z = proxw(z) if and only if ® Combine monotonicity of dg, that for all z, € dg(u), z, € dg(v):
1 1 (2w — 20) (w—v) >0
0€dg(z)+vy " (z—2) & 7 (z—x)€dg(x)
® with Fermat's rule on prox that evalutes subgradients of g:
(s)i 1 Dol
Hence, . (2 —) s element in 9g(z) . u = prox, . (z) if and only if 7N @ —u) € g(u)
® A subgradient dg(x) where x = prox, ,(2) is computed . . 1 ;
v = prox,,(y) if and only if v (y —v) € dg(v)
® which gives, by letting 2z, = 7~ '(z —u) and z, =y ' (y — v):
T H@-w) = (y—v) (u=v) >0
& (z—prox,,(z) = (y = prox.,(y)))" (prox, , () — prox,, (y)) > 0
& (z—y) " (prox, () — prox,, (y)) > |[prox,, (z) — prox.,(y)3
47 48

16

Prox is (firmly) nonexpansive Proximal operator — Separable functions

® We know 1-cocoercivity implies nonexpansiveness (1-Lipschitz) L (J and g(x) = " (2] b ble. th
® Letz = (xy,...,2,) and g(x) =) ,_, gi(x;) be separable, then

Iprose, (2) — prox,,(4)]lz < I — o

prox.,(z) = (prox,,, (z1),...,prox,, (zn))
which was shown using Cauchy-Schwarz inequality 7 o T
® Actually the stronger firm nonexpansive inequality holds decomposes into n individual proxes
. ® Why? Since also || - ||3 is separable:
Ipros. () — pros., ()3 < llo — I3 Y I sep
— e = prox, o (a) — (y — prox,, ()3 prox, () = argmin(g(x) + 2 [l — 2[3)
x
which implies nonexpansiveness n 5
« Proof: = argmin | 3 (gi(es) + 2 (@ — 20)?)
® take 1-cocoercivity and multiply both sides by 2: v =1
3(z —)7 (prox.,(z) — prox. ; () > 2|lprox., (z) — prox, ;(4)|3 which gives n independent optimization problems
® use the following equality with u = prox_ (z) and v = prox.,(y): argmin(g; (z;) + %(M —z)H) = prox.,,, ()
i
(=9 (w=v) =1 (lz =yl + lu—vl3 = e —y - (w=0)]3)
49
Proximal operator — Example 1 Proximal operator — Example 1 cont’'d
® Consider the function g with subdifferential Og: ® Let 2 <0, then Fermat’s rule reads
. 0= -1+~ (z— o =24
iz <0 -1 ifz<0 e —z) r=ET
glz) = -z ' > dg(x) ={[-1,0] fz=0 which is valid (z < 0) if z < —y
0 ifz>0 0 >0 ® Let 2 = 0, then Fermat's rule reads
; - 0€[-1,0]+710-2
® Graphical representations [=1,0]+97)
(@) which is valid (z = 0) if z € [—7,0]
dg(zx) ® | et z > 0, then Fermat's rule reads

0=0+71"Yz—2) & a=:z

= °¢ which is valid (z > 0) if 2 >0
The prox satisfies

(=1, -1

(=1, -1 .

(=0.5, ,1{ 0, —1) (0, —1)
® Fermat's rule for = = prox,,(2): S !f S
prox, (z) = 1 0 if z € [—7,0]
0€dg(x) +77 'z~ 2) z if2>0
51
Proximal operator — Example 2 Computational cost
Let g(z) = %.TTP.T + ¢"z with P positive semidefinite ® Evaluating prox requires solving optimization problem
® Gradient satisfies Vg(z) = Pz + ¢ prox,,(z) = argmin(g(x) + %Hm — 2|
® Fermat's rule for 2 = prox, (2): v
. . ® Prox often more expensive to evaluate than gradient
0=Vg(z)+7 (e—-2) & O0=Prtqg+7 (z-2) ® Example: Quadratic g(z) = 32" Px + ¢"a:
& (I4++9P)r=2z-1q)
=(I+4P) (2 — -pP
o x:(1+*yP)_l(z—'yq) PrOX«,g(Z) I +~vP)" (2 —79), Vy(z) z+q
.s)= P) ® But typically cheap to evaluate for separable functions
o = z2—7
ProXagl2 T zma ® Prox often used for nondifferentiable and separable functions
53

17

18

Conjugate Functions, Optimality
Conditions, and Duality

Pontus Giselsson

Outline

o Conjugate function — Definition and basic properties
o Examples

o Biconjugate

o Fenchel-Young's inequality

e Duality correspondence

e Moreau decomposition

e Duality and optimality conditions

o Weak and strong duality

1
Conjugate function — Definition
ConJUgate Functions ® The conjugate function of f: R™ — RU {oo} is defined as
J*(s) = sup (57 — £ ()
® |mplicit definition via optimization problem
3
Conjugate function properties Conjugate interpretation
® Conjugate f*(s) defines affine minorizer to f with slope s:
® Let a,(s) := sz — f(x) be affine function parameterized by z:)
F4(5) = supau(s)
z
is supremum of family of affine functions
® Epigraph of f* is intersection of epigraphs of (below three) a, sTe = f*(s)
epif* \/\i/
T Wy
azy(s)
where — f*(s) decides constant offset to get support
az2(s) o Why?
f*(s) = sup (sTw - f(z)) & f(s) > sTx — f(z) for all x

azy (s) “ -

' & f(z) > sTw — f*(s) forall z
® f* convex: epigraph intersection of convex halfspaces epia, o Maximizing argument z* gives support: f(z*) = sTa* — £*(s)
® f* closed: epigraph intersection of closed halfspaces epia, o We have fg(a’*§= T g —gf'*(s) ifpgnd .only i s_E’Bf(w*)

5

Consequence

® Conjugate of f and envf are the same, i.e., f* = (envf)*

f(=@) env f(x)

® Functions have same supporting affine functions

® Epigraphs have same supporting hyperplanes

Outline

o Conjugate function — Definition and basic properties
o Examples

e Biconjugate

e Fenchel-Young's inequality

o Duality correspondence

e Moreau decomposition

o Duality and optimality conditions

o Weak and strong duality

19

Example — Absolute value

® Compute conjugate of f(x) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis
|| 1*(s)

(-2.51

Slope, s =—2 f*(s)

Example — Absolute value

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|| 1*(s)
o ¢]

Slope, s =—2 f*(s) = o0

Example — Absolute value

® Compute conjugate of f(x) = |z|
® For given slope s: —f*(s) is point that crosses |z|-axis

|| I*(s)

(=1, -1)

Example — Absolute value

® Compute conjugate of f(x) = |z|
® For given slope s: —f*(s) is point that crosses |z|-axis

|| 1*(s)

(=1, -1

Slope, s =—1 f*(s)=0

Example — Absolute value

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

[| I*(s)

Slope, s =—0.5 f*(s)

Example — Absolute value

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

& 1*(s)

Slope, s =—0.5 f*(s) =0

Example — Absolute value

e Compute conjugate of f(x) = |z|

® For given slope s: —f*(s) is point that crosses |xz|-axis

|| 1 (s)

(0, -1)
Slope, s =0 f*(s)

Example — Absolute value

e Compute conjugate of f(x) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

& 1 (s)

0, —1)
Slope, s =0 f*(s)=0

20

Example — Absolute value

® Compute conjugate of f(x) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|| 1*(s)

A\l
(0.5, —1)

Slope, s =0.5 f*(s)

Example — Absolute value

® Compute conjugate of f(x) = |z|
® For given slope s: —f*(s) is point that crosses |z|-axis

|| F*(s)

A\l
(0.5, —1)

Slope, s =0.5 f*(s)=0

9 9
Example — Absolute value Example — Absolute value
® Compute conjugate of f(x) = |z| ® Compute conjugate of f(x) = |z|
® For given slope s: —f*(s) is point that crosses |z|-axis ® For given slope s: —f*(s) is point that crosses |z|-axis
ot I*(s) ot 1*(s)
xT S xT S
(1, —-1) (1,-1)
Slope, s =1 f*(s) Slope, s =1 f*(s)=0
9 9
Example — Absolute value Example — Absolute value
® Compute conjugate of f(z) = |z| ® Compute conjugate of f(z) = |z|
® For given slope s: —f*(s) is point that crosses |z|-axis ® For given slope s: —f*(s) is point that crosses |z|-axis
ot I*(s) ot IO
(\2. 1)1 s (\27 l):lj s
Slope, s =2 f*(s) Slope, s =2 f*(s) = o
o Conjugate is f*(s) = t[—1,1](5)
9 9
A nonconvex example A nonconvex example
® Draw conjugate of f (f(x) = oo outside points) ® Draw conjugate of f (f(x) = oo outside points)
f(=) f(x) f*(s)
—S S
A
AR
® Draw all affine a,(s) and select for each s the max to get f*(s)
f*(s) = sup(sz — f(x)) = max(—s — 0,0s — 0.2,s — 0)
@
= max(—s,—0.2,5) = |3
10 10

21

Example — Quadratic functions

Example — A piece-wise linear function

® Consider
Let g(z) = $27Qx + p”x with Q positive definite (invertible) 9(x)
. o —r—1 ifz<-1
® Gradient satisfies Vg(z) = Qz +p g(x) =10 ifrel-1,1]
® Fermat's rule for g*(s) = sup, (s’ — 327 Qz — pT2): e—1 ifz>1
T
0=5-Qr—p & z=Q '(s—p)
® Subdifferential satisfies
* So
* - — _ _ . da(z
7)) =5TQ s —p) — 36 -PTQTQQ (s~ p) +1TQ (5 - 1) -1 ifr<-l o)
=1s-p)TQ ' (s—p) [-1,0] ife=-1
dg(x) =<0 ifxe(-1,1) z
0,1 ifz=1
1 ifz>1
11 12
Example cont’d Example — Separable functions
e Let f(z) =Y, fi(z;) be a separable function, then
® We use g*(s) = sz — g(x) if s € dg(z): F(s) = Eﬂ*(%)
® < —1: s=—1, hence g*(-1) = -1z — (—z—1) =1 pat
® z=—1: s€[-1,0] hence g*(s) = —s — 0= —s i al bl
® 2 (—1,1): s =0 hence g*(0) = 0z — 0 =0 5 also separable
® x=1:s€[0,1] hence g*(s) =s—0=s ® Proof:
®r>1:s=1lhenceg"(l)=ac—(x—-1)=1 . n
e That is fr(s) = Sl;P(sTT/ - Z}f:‘(%))
im
. —s ifse[-1,0] -
5) = = su Si%i — JilZi
) { et (3 (o~ i)
n
® Fors<—1lands>1, g*(s) = oc: = ZSHMSM‘z — filz)
® s<—liletz=t— —occand g*(s) > ((s+ 1)t +1) = o0 i=1 ¥
® s>1:letx=t—o00and g*(s) > ((s—1)t+1) > o0 n
= Z Ii(si)
i=1
13 14
Example — 1-norm Outline
® Let f(z) = |lz|ly = X i, |zi| be the 1-norm
® |t is a separable sum of absolute values . . L . .
o Conjugate function — Definition and basic properties
® Use separable sum formula and that | - [* = ¢[_1 1)
e Examples
wrn - -~ - v J0if maxy(fsg]) <1 « Biconjugate
fr(s) = Z;fz (s:) = Z; i-1)(s0) = {oo else o Fenchel-Young's inequality
i= i=
o Duality correspondence
® We have max;(|s;]) = ||s]loc, let o Moreau decomposition
Boo(r) = {s: |s]loc <7} o Duality and optimality conditions
o Weak and strong duality
be the infinity norm ball of radius r, then
I7(s) = tp.1)(s)
is the indicator function for the unit infinity norm ball
15 16
Biconjugate Biconjugate and convex envelope
® Biconjuate f** := (f*)* is conjugate of conjugate
w0 (T e (o
(@) = b‘jpu 5= [f"(s)) ® Biconjugate is closed convex envelope of f
® For every z, it is largest value of all affine minorizers @
f(z)
X f(zo)
/0 f**(x0)
x
x
o Why?: o f** < fand f** = fif and only if f (closed and) convex
o 275 — f*(s): supporting affine minorizer to f with slope s
® f**(x) picks largest over all these affine minorizers evaluated at x
17 18

22

Biconjugate — Example

® Draw the biconjugate of f (f(z) = oo outside points)
f(x)

Biconjugate — Example

® Draw the biconjugate of f (f(z) = oo outside points)
f(=@) ()

® Biconjugate is convex envelope of f
® We found before f*(s) = |s|, and now (f*)*(x) = ¢[—1,17(2)
® Therefore also Liil.l](s) = |s]

(since f* = (envf)" = ()" =)

19 19
Outline Fenchel-Young's inequality
. ® Going back to conjugate interpretation:
o Conjugate function — Definition and basic properties)
&
e Examples
o Biconjugate
¢ Fenchel-Young’s inequality
o Duality correspondence sTa — f*(s)
o Moreau decomposition \/\d =
e Duality and optimality conditions - \
e Weak and strong duality (=1
® Fenchel-Youngs's inequality: f(z) > s7x — f*(s) for all a, s
® Follows immediately from definition: f*(s) = sup,(s”x — f(x))
20 21
Fenchel-Young's equality Proof — Fenchel-Young’s equality
® When is do we have equality in Fenchel-Young? ‘f(i) = T2 — f*(s) holds if and only if s € af(.L)‘
fl@)=s"z— f*(s)
® s df(x) if and only if (by defintion of subgradient)
7) 2 f@)+5"(y — @) for all y
& sTa — f(x) > sTy — f(y) forall y
< s — f(x) = sup (s"y - f(y))
T — f*(s) . !
\/\)/ S (CEINO)
(\ 1 which is Fenchel-Young's inequality with inequality reversed
s—
® Fenchel-Young's inequality always holds:
® Fenchel-Young's equality and equivalence: T
f(s)zs = f(a)
‘ f(a*) = s"a” — f*(s) holds if and only if s € Of(a") so we have equality if and only if s € 0f(x)
22 23
A subdifferential formula for convex f Subdifferential formulas for f*
Assume f closed convex, then df(z) = Argmax,(s”x — f*(s)) ‘ ® For general f, we have that
Af*(s) = Argmax(sTz — f**(z))
® Since f** = f, we have f(z) = sup,(27's — f*(s)) and ©
e Argmax(sz) e f(a) = 275" — (5% by previous formula and since f* closed and convex
) s S ’ T l ® For closed convex f, we have, since f = f**, that
— s e€df(x)
df*(s) = Argmax(s’z — f(x))
® The last equivalence is from previous slide v
24 25

23

Relation between 0f and J0f* — General case

‘s € 0f(z) implies that x € Of*(s) \

® Since f** < f and s € df(z), Fenchel-Young's equality gives:
0= f*(s) + f(@) — 5T > [*(s) + f** (@) = 5T > 0

where last step is Fenchel-Young's inequality
® Hence f*(s) + f**(z) — sTe =0 and FY = z € 9f*(s)

Inverse relation between 0f and 0f* — Convex case

Suppose f closed convex, then s € Of(z) <= = € df*(s) ‘

® Using implication on previous slide twice and f** = f:
sedf(x) =z cdf(s)=scdf™(x) = secdf(x)
® Another way to write the result is that for closed convex f:
of = (@0f)

(Definition of inverse of set-valued A: x € A~ u <= u € Ax)

26 27
Example 1 — Relation between 0f and 0f* Example 1 — Relation between 0f and 0f*
® What is O f* for below 0f7? ® What is 0f* for below 0f7?
o
S S
x x S
s € df(x) s € df(x)
z € df*(s)
e Since Of* = (0f)~!, we flip the figure
28
Example 2 — Relation between Jf and 0f* Outline
x
s
o Conjugate function — Definition and basic properties
e Examples
o Biconjugate
ZT — S
o Fenchel-Young's inequality
s € df(x) o Duality correspondence
o Moreau decomposition
v 0f(s) o Duality and optimalityl conditions
o Weak and strong duality
® region with slope o in 9f(z) < region with slope é in 0f*(s)
® Implication: df o-strong monotone < Jf*(s) o-cocoercive?
(Recall: o-cocoercivity < %—Lipschitz and monotone)
29 30
Cocoercivity and strong monotonicity Duality correspondance
Let f:R™ — RU{oo}. Then the following are equivalent:
Of : R — 28" maximal monotone and o-strongly monotone (I) f |s.closed' and o-strongly convex
— (ii) @f is maximally monotone and o-strongly monotone
Of* =V f*:R" — R" single-valued and o-cocoercive (iii) Vf* is o-cocoercive
(iv) Vf* is maximally monotone and %—Lipschitz continuous
® g-strong monotonicity: for all u € 8f(z) and v € df (y) (v) f*is closed convex and satisfies descent lemma (is 1-smooth)
where Vf*: R" — R" and f*: R" - R
(w—=v)"(z—y) = ollz - yl3 ¢y
Comments:
or iq.uivfa\lently for all z € 9f*(u) and y € 0f*(v) ® (i) « (ii) and (iii) & (iv) & (v): Previous lecture
*of ES'ngk-Va'l:c)ed-) et (L e (i) < (iii): This lecture
. . o _
. .ssume T e _f () and y € 8f *(u), then ths of (2 0 ar-1d v=y ® Since f = f** the result holds with f and f* interchanged
® Vf*is o-cocoercive: plug x =V f*(u) and y = V f*(v) into (1) o Full proof available on course webpage
® That df* has full domain follows from Minty's theorem
31 32

24

Example — Proximal operator is 1-cocoercive

Assume g closed convex, then prox

g is 1-cocoercive ‘

® Prox definition prox, /() = argmin, (g(z) + ﬁHT —z|13)

® Letr =g+ 3 - 13, then
prox,(2) = argmin(9(2) + 3 12 — =13)
= argmax(—79(z) — 3o - 2II3)
= argmax(="s — (313 + 20(+))
= argvlynax(zTr —r(z))
P
=Vr*(z)

where last step is subdifferential formula for r* for convex r
® Now, r is 1-strongly convex and Vr* = prox, is 1-cocoercive

Example — Proximal operator for strongly convex g

Assume g is o-strongly convex, then prox, , is (1 + yo)-cocoercive

® Let 7 =g+ 3| - I3, and use prox.,(z) = Vr*(2)
® 1 is (14 ~o)-strongly convex and Vr* is (1 + yo)-cocoercive

g
33 34
Outline Moreau decomposition — Statement
o Conjugate function — Definition and basic properties
o Examples Assume g closed convex, then prox,(z) + proxg. (2) = 2
o Biconjugate
o Fenchel-Young's inequality ® When g scaled by v > 0, Moreau decomposition is
o Duality correspondence 1
* Moreau decomposition # = Prox (2) + Prox(yy)- (2) = proxyg(2) + 9prox,—1y- (77°2)
e Duality and optimality conditions (since PLOX()+ = YPTOX, 1,0 © y~11d)
» Weak and strong duality ® Don't need to know g* to compute prox., .
35 36
Moreau decomposition — Proof
¢ letu=z2—2x
® Fermat's rule: = = prox,(z) if and only if
0edgx)+e—2 & z-xcdylx) Optimality Conditions and Duality
& u € dg(x)
& z € 0g*(u)
& z—u € dg*(u)
& 0€dg"(u)+u—=z
if and only if u = prox,.(z) by Fermat's rule
® Using z = = + u, we get
z =z +u = prox,(z) + prox,. (z)
37 38
Outline Composite optimization problem
o Conjugate function — Definition and basic properties
e Examples
« Biconjugate ® Consider primal composite optimization problem
e Fenchel-Young's inequality minimize f(Lz) + g(z)
o Duality correspondence
« Moreau decomposition where f, g closed convex and L is a matrix
« Duality and optimality conditions ® We will derive primal-dual optimality conditions and dual problem
o Weak and strong duality
39 40

25

Primal optimality condition

Let f:R™ =R, g:R" =R, L € R™*™ with f, g closed convex
and assume CQ, then:

minimize f(Lz) + g(z)

is solved by z* € R™ if and only if 2* satisfies

0 € LTaf(Lz*) + dg(z*)

® Optimality condition implies that vector s exists such that
s € LTof(La*) and —s € dg(x)

® So CQ implies a subgradient exists for both functions at solution

Primal-dual optimality condition 1

® Introduce dual variable ;1 € Of(Lz), then optimality condition
0 LT df(Lz) +0g(z)
——
n
is equivalent to
pE€If(Lx)
—L" 1 € dg(x)

® This is a necessary and sufficient primal-dual optimality condition

® (Primal-dual since involves primal z and dual 1 variables)

41 42
Primal-dual optimality condition 2 Dual optimality condition
o Primal-dual optimality condition ® Using subdifferential inverse on other condition
T w(_ 7T
e of(La) L1y € dg(z) = x € dg*(—L")
—L"u € dg(x) gives equivalent primal dual optimality condition
® Using subdifferential inverse: Lz € 0f* (1)
o 9% (_ 17T
pedf(le) <« Leedf(n) v €0g" (=L p)
gives equivalent primal dual optimality condition ® This is equivalent to that:
Sex(N _ T k(7T
Lo € 35" (1) 0€df*(p) — LOg*(—L")
—L"p € dg(x) z
which is a dual optimality condition since it involves only p
43 44
Dual problem Why dual problem?
® The dual optimality condition
0€df*(u) — Log*(—L"
) 9 (2 ® Sometimes easier to solve than primal
is a sufficient condition for solving the dual problem ® Only useful if primal solution can be obtained from dual
minimize f* (1) + g* (—L" 1)
® Have also necessity under CQ on dual, which is mild
45 46
Solving primal from dual Optimality conditions — Summary
® Assume f, g closed convex and that CQ holds
® Assume f, g closed convex and CQ holds ® Problem min, f(Lz) + g(x) is solved by x if and only if
: . * _ w«(_ 7T
. ASSl.lme op.tlmal dual p kn<.>wn. 0€df*(n) ‘ Log*(—L u)“ 0e LTof(Lz) + dg(x)
® Optimal primal = must satisfy any and all primal-dual conditions:
® Primal dual necessary and sufficient optimality conditions:
i€ Of (L) La € 0f* () ‘ ,
—LTy € dg(x) —L*p € dg(x) nedf(lx) La € 0f*(n)
—L"p € 9g(x) —L"p € 9g(x)
w € Of (Lx) Lz € 0f*(p)
@€ dg*(—L p) ©edg(~Lp) e df(Lx) Lz € df*(n)
x € 09" (—L") z € dg*(—L"p)
® If one of these uniquely characterizes x, then must be solution: o o
® ¢* is differentiable at —L” 11 for dual solution p * Dual optimality condition
: f* is differentiable at dual solution p and L invertible 0e af*(/l,) - L(‘}g*(fLT,u,)
solves dual problem min,, f*(u) + g* (=L 1)
47 48

26

Outline

o Conjugate function — Definition and basic properties
e Examples

o Biconjugate

e Fenchel-Young's inequality

e Duality correspondence

e Moreau decomposition

o Duality and optimality conditions

e Weak and strong duality

Concave dual problem

® We have defined dual as convex minimization problem
mini‘}nize () + g (=L p)
® Dual problem can be written as concave maximization problem:
maximize —f*(w) —g* (L")
® Same solutions but optimal values minus of each other

® Concave formulation gives nicer optimal value comparisons

® To compare, we let the primal and dual optimal values be

d* = sup(—f*(u) — 9" (—L)

p* = inf(f(Lz) +g(z)) and
T M

49 50
Weak duality Strong duality
. . Assume f, g closed convex, solution z* exists, and CQ
Weak duality always holds meaning p* > d* then strong duality holds meaning p* = d*
® We have by Fenchel-Young's inequality for all y and a: ® Dual * and primal z* solutions exist such that
() + 9" (=L p) > p" L — f(La) + (=L")"z — g(x) p* € df(La*) and — LTp* € 9g(a*)
=—f(Lz) - g(x) ,)
® \We have by Fenchel-Young's equality:
® Negate, maximize lhs over y, minimize rhs over z, to get
, p* = f(Lz") +g(z*)
* = sup(—f*(p) — ¢*(— <i T z)) =p* * * (o T, o,k *
d mip() =g (=L p)) < inf(f(Lx) + g(x)) = p = ()T La* — f*(u*) + (=LTp") " — g* (LT)
=—f () - g (LTt =d"
51 52
Dual problem gives lower bound
® Consider again concave dual problem with optimal value
d* = sup(—f*() — g" (=L 1))
I
® \We know that for all dual variables p
pr=d > = (n)—g" (L)

® So can find lower bound to p* by evaluating dual objective

53

27

28

Proximal Gradient Method

Pontus Giselsson

Outline

o Introducing proximal gradient method and examples

o Solving composite problem — Fixed-points and convergence

o Application to primal and dual problems

2
Composite optimization problems Problem assumptions
® Proximal gradient method works, e.g., for problems that satisfy
® fis B-smooth f:R"™ — R (not necessarily convex)
® We have introduced the composite optimization problem ® g is closed convex
® Recall that if 3-smoothness implies that f satisfies
minimize f(Lx) + g(z)
x
J) < f(@) + V(@) (y—2) + §lly — I3
® Need an algorithm that solves it - proximal gradient method fy) > flz) + Vf(y:)T(y —z) - gHU _ THé
® We will consider the simpler composite optimization problem
it has convex quadratic upper and concave quadratic lower bounds
m1n1$m1zef(r,) +9(x) e If f in addition is convex, we instead have
that gives the former by letting f — fo L fy) < f(@)+ Vi) (y—a)+ SHU —z[l3
f) = f2) + V@) (y -2
where the concave quadratic lower bound is replaced by affine
4

Minimizing upper bound

® Due to 3-smoothness of f, we have
F@) +9(y) < f@) + V(@) (y —)+ Slly — I3+ 9(y)

for all z,y € R™, i.e., r.h.s. is upper bound to lh.s.

® Minimizing in every iteration the r.h.s. w.r.t. y for given x gives
v = argmin (£(2) + V(@) (y — @) + Sy — /3 + 9(v))
v
— argmin (9(y) + §ly - (= = BV / (@) [3)
Y

BV (x))

= proxg-1,(z —

Proximal gradient method

Let us replace 3 by 'y}:l, 2 by xy, and v by x4 to get:
@41 = argmin (£ (ee) + VS @0) (g = o) + 2 Iy — w3 + 90))
v
= argmin (g(y) + ﬁHy — (@ — "/kvf(l'k,))Hg)
v

= prox,, o (zx — %V f(zr))

This is exactly the proximal gradient method
The method replaces f by quadratic approximation and minimizes

(Note that we need an initial guess z(to start the iteration)

Proximal gradient — Example

® Proximal gradient iterations for problem minimize %(1 —a)? + |z|
T

® f(z) = i(z — a)? is smooth term and g(z) = |z| is nonsmooth

® |teration: zj41 = proxw(wk -V f(zk))

® Note: convergence in finite number of iterations (not always)

Proximal gradient — Example

Proximal gradient iterations for problem minimize & (z — a)® + |z|
E:

f(x) = 4(z — a)? is smooth term and g(z) = |z| is nonsmooth
Iteration: xj.11 = prox,,(z, — YV f(2x))

Note: convergence in finite number of iterations (not always)

/

29

Proximal gradient — Example

® Proximal gradient iterations for problem minimize 1(x — a)® + ||
xT

® f(z) = 3(z — a)? is smooth term and g(z) = |z| is nonsmooth

® |teration: zj41 = proxw(ack -V f(zk))

® Note: convergence in finite number of iterations (not always)

Proximal gradient — Example

® Proximal gradient iterations for problem minimize 1(z — a)® + ||
T

® f(z) = 3(z — a)? is smooth term and g(z) = |z| is nonsmooth

® lteration: xy11 = prox, (v, — YV f(2x))

® Note: convergence in finite number of iterations (not always)

Proximal gradient — Example

® Proximal gradient iterations for problem minimize 3(z — a)? + |z|
z

® f(z) = 3(x — a)? is smooth term and g(z) = |z| is nonsmooth

® lteration: xy41 = prox, ,(wx — YV f(2x))

® Note: convergence in finite number of iterations (not always)

Proximal gradient — Example

® Proximal gradient iterations for problem minimize 3(z — a)? + |z|
z

® f(z) = 3(z — a)? is smooth term and g(z) = |z| is nonsmooth

® lteration: xy11 = prox, (v, — YV f(2x))

® Note: convergence in finite number of iterations (not always)

7
Proximal gradient — Special cases Outline
® Proximal gradient method:
® solves minimize(f(z) + g(x))
® iteration: Ty = prox,mg(av;C — vV f(zk))
® Proximal gradient method with g = 0: e Introducing proximal gradient method and examples
¢ solves minimize(f(z)) « Solving composite problem — Fixed-points and convergence
® prox,, ,(2) = argmin, (0 + o lle —2l3) == e Application to primal and dual problems
® jteration: Ty = proxwg(z;C — vV f(zk)) =z — WV f(zk)
® reduces to gradient method
® Proximal gradient method with f = 0:
® solves minimize(g(z))
* Viz)=0
® iteration: Ty = prox.’,kg(mk —uVf(zr)) = prox,“g(mk)
® reduces to proximal point method (which is not very useful)
8 9
Proximal gradient method — Fixed-point set Proximal gradient — Optimality condition
® Proximal gradient step:
® Proximal gradient ste i
£ P v = prox,,(z — 7V f(z)) = al'ginln(y(?/) +a7ly = (@ =V F(@))13)
f —_—
Tpp1 = prox,, o (zx — 1V f(z1)) h(y)
® If 2441 = xy, they are in proximal gradient fixed-point set where v is unique due to strong convexity of h
* F ’s rule (si hol i = pr z— z)) iff:
(&2 = prox, ,(z — 7V f(2))} ermat’s rule (since CQ holds) gives v = prox, (z — YV f(z)) i
® Under some assumptions, algorithm will satisfy 2,1 — 2 — 0 0 € 9g(v) + Oh(v)
® this means that fixed-point equation will be satisfied in limit =3g(v) + 7 (v — (x — 7V f(2)))
® what does it mean for z to be a fixed-point? = dg(v) + Vf(z) + ,Y—l(,U —)
since h differentiable
10 11

30

Proximal gradient — Fixed-point characterization

For v > 0, we have that

(T =V (@)

T = prox if and only if 0 € dg(z) + Vf(z)

® Proof: the proximal step equivalence

o(F =V [(2))

evaluated at a fixed-point © = v = T reads
o(T =V (@)

® We call inclusion 0 € 9g(z) + V f(Z) fixed-point characterization

s 0€dgw)+ Vi) +y v —2)

U = Prox,,

& 0€0dg9(z)+ V()

T = prox,

Meaning of fixed-point characterization

) mean?

® What does fixed-point characterization 0 € 9g(z) + V f(z
{Vi(2)} and

® For convex differentiable f, subdifferential 9 f(x)

=(f+9)(@)

(subdifferential sum rule holds), i.e., fixed-points solve problem

0 € f(z) + dg(z)

® For nonconvex differentiable f, we might have df(z) =0

® Fixed-point are not in general global solutions
® Points Z that satisfy 0 € dg(Z) + V f(Z) are called critical points
® If g =0, the condition is Vf(z) = 0, i.e., a stationary point

® Quality of fixed-points differs between convex and nonconvex f

12 13
Conditions on -, for convergence Practical convergence — Example
® Logarithmic y axis of quantity that should go to 0 for convergence
® Linear z axis with iteration number
® We replace in proximal gradient method f(y) by
. v T (0 — Ly — e |12
flan) + V@) (y—zn) + o ly — zellz .
and minimize this plus g(y) over y to get the next iterate w02
® We know from [3-smoothness of f that for all x,y .
B 2
F) < @)+ V@) (y—2) + 5lly — 3
o If i € [e, %] with € > 0, an upper bound is minimized w0
® Can use 7, € [e.%f €] and show convergence of some quantity 108 e T
iteration k 10°
® Fast convergence to medium accuracy, slow from medium to high
® Many iterations may be required
14 15
Stopping conditions Outline
® For -smooth f: R™ — R, we can stop algorithm when
Fup = 57 @k — 2ep) + V(@) — V(1))
is small (notation and reason will be motivated in future lecture) . . .
. . . . e Introducing proximal gradient method and examples
® This is the plotted quantity on the previous slide Solvi) b Fixed-ooi J
® \We can use absolute or relative stopping conditions: ¢ oijg c.omp05|te .pro em — Fixed-points and convergence
® absolute stopping conditions with small e,ps > 0 « Application to primal and dual problems
%Huk\b < €abs or %Hukﬂz < €absV/1
® relative stopping condition with small €;e1, € > 0:
llup ll2
B Telar v e S G
® Problem considered solved to optimality if, say, %jux[2 <1076
® Often lower accuracy of 1073 or 1074 is enough
16 17
Applying proximal gradient to primal problems Applying proximal gradient to dual problem
Problem mmgmzef(x) +yg(): ® Let us apply the proximal gradient method to the dual problem
° i .
Assumptions: minimize f*(p) + g*(fLT,u)
® f smooth m
® g closed convex and prox friendly! A .
® Assumptions:
® Algorithm: zj41 = Tk — Yk
gorithm: T+1 proqug(Tk WV (@) ® f: closed convex and prox friendly
Problem minimize f(Lz) + g(x): ® g: o-strongly convex
’ ® Why these assumptions?
® Assumptions: ® f*: closed convex and prox friendly
® f smooth (implies f o L smooth) e g o—L": HLH%-smooth and convex
® g closed convex and prox friendly’ ” i
: T ® Algorithm:
® Gradient V(f o L)(z) = LTV f(Lx)
® Algorithm: zj41 = prox,, (=% — LTV f(Lay)) Me+1 = Prox,, r. (e — 1 V(g" 0 —L7) ()
! Prox friendly: proximal operator cheap to evaluate, e.g., g separable
18 19

31

Dual proximal gradient method — Explicit version 1

® We will make the dual proximal gradient method more explicit
p1 = Prox,, p- (ur — WV (g™ 0 L) (1x))
® Use V(g* o —LT)(1) = —LVg*(—LT) to get

T = Vg*(*LTuk,)
Pkt = prox, . (g + v Lay)

Dual proximal gradient method — Explicit version 2

® Restating the previous formulation

xp = Vg (=L)

Hi1 = prox, - (pk + e Lay)
® Use Moreau decomposition for prox:
prox. - (v) = v — *yproxv,,lf(ﬂ,"lv)
to get
oy = Vg (=L)
v = s + Yk Ly

Hes1 = vk = Weprox, 1 (7 k)

20 21
Dual proximal gradient method — Explicit version 3 Dual proximal gradient method — Primal recovery
* Restating the previous formulation ® Can we recover a primal solution from dual prox grad method?
zp = Vg (=L i) ® Let us use explicit version 1
e = [e Ly
Vg = ke + YLk » o = Vg (—LT)
Hht1 = Uk — 7/’“p1’0x7[1f<7k k) Hi+1 = Prox, r« (g + v Lay)
® Use subdifferential formula, since ¢g* differentiable: and assume we have found fixed-point (Z, ji): for some 5 > 0,
Vg*(v) = argmax(v'x — g(x)) = argmin(g(z) — v7a
9" (v) = argmax(9(x)) = argmin(g(z)) %= Vg* (—LTh)
with v = —LT 11, to get fi = proxs s (i +7LT)
oy, = argmin(g(z) + (Mk)TLZ) ® Fermat's rule for proximal step
vk = i + e Ly 0€df*(m)+7 (- (B +7L7)) = 0f* () — LT
_ _ A~ 1
Hrt1 = Uk ’Ykprox"@lf< Tk k) is with & = Vg*(—L") a primal-dual optimality condition
® Can implement method without computing conjugate functions ® So 2y, will solve primal problem if algorithm converges
22 23
Problems that prox-grad cannot solve Problems that prox-grad cannot solve efficiently
® Problem minimize f(z) 4+ g(Lx)
x
® Assumptions:
® f smooth
® Problem miniTmiz(‘, f(x) + g(x) ® g nonsmooth convex
® Assumptions: f and g convex but nondifferentiable ° L arbltrary.structured. matrix
® No term differentiable, another method must be used: * Can apply proximal gradient method
® Subgradient method = i L Ly — (2 — .V 2
® Douglas-Rachford splitting Tt arg;nm(g()+ mplly = (@ =V F (20))ll2)
® Primal-dual methods
but proximal operator of go L
DrO%, o1, (2) = axgmin(g (L) + 2 o — =)
z
often not “prox friendly”, i.e., it is expensive to evaluate
24 25

32

Least Squares

Pontus Giselsson

Outline

e Supervised learning — Overview

e Least squares — Basics

® Nonlinear features

o Generalization, overfitting, and regularization
o Cross validation

® Feature selection

e Training problem properties

Machine learning

® Machine learning can very roughly be divided into:
® Supervised learning
® Unsupervised learning
® Semisupervised learning (between supervised and unsupervised)
® Reinforcement learning

® We will focus on supervised learning

Supervised learning

® Let (z,y) represent object and label pairs
® Object z € X CR"
® Label y € Y CR¥
® Available: Labeled training data (training set) {(v:,v:)}Y,
® Data z; € R", or examples (often n large)
® labels y; € R%, or response variables (often K = 1)
Objective: Find a model (function) m(z):

® that takes data (example, object) z as input
® and predicts corresponding label (response variable) y

How?:

® learn m from training data, but should generalize to all (z,y)

Relation to optimization

Training the “"machine” m consists in solving optimization problem

Regression vs Classification

There are two main types of supervised learning tasks:

® Regression:

® Predicts quantities

® Real-valued labels y € Y = R® (will mainly consider K = 1)
® Classification:

® Predicts class belonging
® Finite number of class labels, e.g., y € Y = {1,2,...,k}

Examples of data and label pairs

Data Label R/C
text in email spam? C
dna blood cell concentration R
dna cancer? C
image cat or dog C
advertisement display click? C
image of handwritten digit digit C
house address selling cost R
stock price R
sport analytics winner C
speech representation spoken word C

R/C is for regression or classification

In this course

Lectures will cover different supervised learning methods:

® Classical methods with convex training problems

® Least squares (this lecture)
® Logistic regression
® Support vector machines

® Deep learning methods with nonconvex training problem
Highlight difference:

® Deep learning (specific) nonlinear model instead of linear

33

Notation

® (Primal) Optimization variable notation:
® Optimization literature: x,y, z (as in first part of course)
® Statistics literature: 3
® Machine learning literature: 6,w,b

® Reason: data, labels in statistics and machine learning are z,y
® Will use machine learning notation in these lectures

® We collect training data in matrices (one example per row)

af y
X=|: y=1|:
Ty Y

® Columns X; of data matrix X = [X;,...,X,,] are called features

Outline

e Supervised learning — Overview

e Least squares — Basics

® Nonlinear features

o Generalization, overfitting, and regularization
o Cross validation

® Feature selection

e Training problem properties

9 10
Regression training problem Supervised learning — Least squares
® Objective: Find data model m such that for all (z,y):
m(z) —y =0
e Let model output u = m(x); Examples of data misfit losses ® Parameterize model m and set a linear (affine) structure
o) — L, 2
L(u,y) = 3(u—y) m(z;0) =wlz+b
L(uﬁy):‘u_y‘ i
L) where 0 = (w, b) are parameters (also called weights)
Hu—y)? if lu—v|<ec . . - .
L(u,y) = ® Training: find model parameters that minimize training cost
c(lu—y|l—c/2) else
N N
minimize Z L(m(zi;0),y:) = & Z(mei +b—y;)?
i=1 i=1
u—y Y U=y T u—y (note: optimization over model parameters 6)
Square L-norm Huber ® Once trained, predict response of new input = as § = w’z + b
® Training: find model m that minimizes sum of training set losses
N
mmg’nue; (m(x:),yi) u "
Example — Least squares Example — Least squares
® Find affine function parameters that fit data: ® Find affine function parameters that fit data:
L . .
*
|- * -
*
> *oxx >
@ * 7 2
c * c
% r * * - * 1 %
L e
L ¥ *]
*
L * % J
*
*
variable x variable x
o Data points (,y) marked with (%), LS model wz + b (—)
Example — Least squares Solving for constant term
® Find affine function parameters that fit data:
® Constant term b also called bias term or intercept
® What is optimal b?
N
S| T 2
> mu}l%uzeizw) zi+b—y;)
£ i=1
2
8 ® Optimality condition w.r.t. b (gradient w.r.t. b is 0):
N
0=Nb+ Z(U)T.T,' —y) e b=g-—w'z
i=1
varia‘ble - where T = % Zl]\; z; and §j = % Zf\;l y; are mean values
e Data points (z,y) marked with (%), LS model wz + b (—)
14

o Least squares finds affine function that minimizes squared distance 13

34

Equivalent problem

® Plugging in optimal b = § — w” T in least squares estimate gives
N

N r .

minimize 3 wlaz: +b—y)2 =1

w.b 2 Z(i Yi) 3

i=1 i

(W (x; = 2) = (i — 7))

-

1

® Let &; = z; — Z and §; = y; — ¥, then it is equivalent to solve

(w'&; — §:)* = 3|1 Xw - Y3

gE

minimize
w 2

Il
—

i
where X and Y now contain all Z; and g; respectively

® Obviously #; and §; have zero averages (by construction)
® Will often assume averages subtracted from data and responses

Least squares — Solution

® Training problem
minimize || Xw — Y3
w

® Strongly convex if X full column rank
® Features linearly independent and more examples than features
® Consequences: X7 X is invertible and solution exists and is unique

® Optimal w satisfies (set gradient to zero)
0=X"Xw-X"Y

if X full column rank, then unique solution w = (X7 X)"'XTY

15 16
Outline Nonaffine example
® What if data that cannot be well approximated by affine mapping?
e Supervised learning — Overview L o* 1
e Least squares — Basics
* Nonlinear features
o Generalization, overfitting, and regularization >0 . 1
Q
® Cross validation St . 1
aQ
o Feature selection 8 *
e Training problem properties * .
r . * 4
L * % 1
*
variable z
17
Nonaffine example Nonaffine example
® What if data that cannot be well approximated by affine mapping? ® What if data that cannot be well approximated by affine mapping?
*
= =
o o
2 2
o o
o o
¢ ¢
variable z variable z
18
Adding nonlinear features Least squares with nonlinear features
. ® (Can, of course, use other nonlinear feature maps ¢
® A linear model is not rich enough to model relationship . T s e !
T drati del ® Gives models m(z;0) = 0" ¢(x) with increased fitting capacity
L] A .
™Y, &g a quadratic mode ® Use least squares estimate with new model
i N
m(x;6) —b+2uza +ZZ%7117 unnmnzezz (m(z;0) — 2:%20 () —yi)?
i=1j=1 i=1 i=1
where z = (z1,...,,) and parameters 6 = (b, w, q) which is still convex rc,incelqb does not depend on 6! -
e For z € R2, the model is ® Build new data matrix (with one column per feature in ¢)
‘ Blar)”
m(x;0) = b+ w1 + woxs + qnmf + 122122 + Q22T/§ = GT@(JC) X = .
where z = (z,z2) and o(xn)T
0 = (b, w1, wa, q11, q12, ¢22) to arrive at least squares formulation
d(x) = (1,21, 22,7, 2122, 273) minimize 3| X6 — Y3
® Add nonlinear features ¢(z), but model still linear in parameter 0 ® The more features, the more parameters 0 to optimize (lifting)
19 20

35

Nonaffine example

® Fit polynomial of degree k to data using LS (.J is cost):

Nonaffine example

® Fit polynomial of degree k to data using LS (.J is cost):

k=1,J = 0.635, |62 = 0.60

|- * 4 |- 4
>) >
o * Q
H %
< | i =
] * 2
8 * ¢
L . i
*
L % i
*
L x * i
*
\ ,
variable x variable x
21
Nonaffine example Nonaffine example
® Fit polynomial of degree k to data using LS (.J is cost): ® Fit polynomial of degree k to data using LS (.J is cost):
‘ ‘ " k=2,0=0.113, 0]z = 0.94 ‘ ‘ " k=3,J=0.112,||0]2 = 0.96
EX EXS
8 2
c [<
o o
a a
8 8
variable variable =
21 21
Nonaffine example Nonaffine example
® Fit polynomial of degree k to data using LS (.J is cost): ® Fit polynomial of degree k to data using LS (.J is cost):
k=4,7 =0.108, [0]]2 = 0.83 k=57 =0.105, 0]z = 1.27
> ES
a a
c [<
o o
(=% [=N
8 ¢
variable = variable =
21 21
Nonaffine example Nonaffine example
® Fit polynomial of degree k to data using LS (.J is cost): ® Fit polynomial of degree k to data using LS (J is cost):
k=6, =0.075, [0]]2 = 5.4 k=7,J=0.028, 0|l = 22.5
>) >)
2]
2| i 2 i
o o
o (=X
8 ¢
, ,
variable = variable =
21 21

36

Nonaffine example

® Fit polynomial of degree k to data using LS (.J is cost):

k=8,J = 0.026,]|0]|2 = 26.6

response y

Nonaffine example

® Fit polynomial of degree k to data using LS (.J is cost):

k=9, =0.00L, 0]l = 147.5

response y

I
variable =

variable =
21 21
Nonaffine example Outline
® Fit polynomial of degree k to data using LS (.J is cost):
‘ ‘ "k =10,J = 0.000, [|0]]2 = 167.8) .)
| et | o Supervised learning — Overview
o Least squares — Basics
[] ® Nonlinear features
-F 1 « Generalization, overfitting, and regularization
& e Cross validation
gL J
7 e Feature selection
[] o Training problem properties
variable x
21 22
Generalization and overfitting Tikhonov Regularization
® Example indicates: Reducing ||6]|> seems to reduce overfitting
® Least squares with Tikhonov regularization:
. lization: H Il | perf L
Gener‘a /-zatlon ow we -does -m-ode perform on unseen data minimize %HXG B YH% n %H@H%
® Overfitting: Model explains training data, but not unseen data 6
® How to reduce overfitting/improve generalization? ® Regularization parameter A > 0 controls fit vs model expressivity
® Optimization problem called ridge regression in statistics
® (Could regularize with [|0]|2, but square easier to solve)
® (Don't regularize b — constant data offset gives different solution)
23 24
Ridge Regression — Solution Ridge Regression — Example
® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
®)\: regularization parameter, J LS cost, ||f]|2 norm of weights
® Recall ridge regression problem for given \: ‘ ‘ ‘ ‘ ‘ ‘ ‘
*
PRSI 2 AplI2 []
minimize sIX0 =Y+ 5105
® Objective A-strongly convex for all A > 0, hence unique solution i |
® Objective is differentiable, Fermat's rule: n: *
2
o *)
0=XT(X0-Y)+X0 (XTX + D)0 = XTYy g *
— 0=X"X+M)'XTY * N
r . * 4
L * * J
*
variable x
25

37

Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
®)\: regularization parameter, J LS cost, ||f]|2 norm of weights

A =1075,J = 0.017, |4||2 = 20.2

response y

Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
®)\: regularization parameter, J LS cost, ||f]|2 norm of weights

A=6.0-10"°,J = 0.023,[|0]|2 = 12.2

response y

I
variable =

variable =
26 26
Ridge Regression — Example Ridge Regression — Example
® Same problem data as before ® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization ® Fit 10-degree polynomial with Tikhonov regularization
®)\: regularization parameter, .J LS cost, ||f]|2 norm of weights ®)\: regularization parameter, J LS cost, ||f]|2 norm of weights
‘ A=36-10-4,J = 0.04, |6]|2 = 6.21 ‘ C A=22.1073,J = 0.064, |6]|2 = 2.43
> >
Q @
2 2l
o o
a a
8 ¢
variable x variable z
26 26
Ridge Regression — Example Ridge Regression — Example
® Same problem data as before ® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization ® Fit 10-degree polynomial with Tikhonov regularization
®)\: regularization parameter, .J LS cost, ||f]|2 norm of weights ®)\: regularization parameter, .J LS cost, ||f||2 norm of weights
A=1.3-10-2,.J = 0.086, 0]z = 1.10 A=7.7-10-2,. = 0.109, 0]z = 0.63
> 7 > 7
() * [*
2| i 2]
8_ * g_ *
8]
X*
* *
|- * — = * —
* *
r * x g F ¥ * R
* *
variable x variable x
26 26
Ridge Regression — Example Ridge Regression — Example
® Same problem data as before ® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization ® Fit 10-degree polynomial with Tikhonov regularization
®)\: regularization parameter, .J LS cost, ||f]|2 norm of weights ®)\: regularization parameter, J LS cost, ||f]|2 norm of weights
‘ ‘ " A =0.46,J = 0.15, [|6]|> = 0.43 ‘ ‘ © A=28,J=029,[|6]|2 = 0.26
> >
2]
2 g
o o
o o
8]
= * * Bl = * * Bl
* *
variable x variable x
26

26

Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
®)\: regularization parameter, J LS cost, ||f]|2 norm of weights

A =16.7,.J = 0.68, |6]|2 = 0.091

Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
®)\: regularization parameter, J LS cost, ||f]|2 norm of weights

A =100, J = 0.92, 6]z = 0.019

|- * 4 |- * 4
> >)
o Q *
2 g]
2 2 *
*
L * J
*
- * * - - * * -
* *
variable x variable x
26 26
Outline Selecting model hyperparameters
e Supervised learning — Overview
e Least squares — Basics
® Nonlinear features ® Parameters in machine learning models are called hyperparameters
e Generalization, overfitting, and regularization ® Ridge model has polynomial order and \ as hyperparameters
¢ Cross validation ® How to select hyperparameters?
® Feature selection
e Training problem properties
27 28
Holdout Holdout — Comments
® Randomize data and assign to train, validate, or test set
Train Validate | Test e Typical division between sets 50/25/25 (or 70/20,/10)
® Sometimes no test set (then no assessment of final model)
Training set: ® [f no test set, then validation set often called test set
® Solve training problems with different hyperparameters ® Can work well if lots of data, if less, use (k-fold) cross validation
Validation set:
® Estimate generalization performance of all trained models
® Use this to select model that seems to generalize best
Test set:
® Final assessment on how chosen model generalizes to unseen data
® Not for model selection, then final assessment too optimistic
29 30
k-fold cross validation 4-fold cross validation — Graphics
Train/Validate Test
® Similar to hold out — divide first into training/validate and test set
® Divide training/validate set into k data chunks))))
® Train k models with & — 1 chunks, use k:th chunk for validation Train | Train | Train \Validate ~ Test
® | oop
1. Set hyperparameters and train all k& models
2. Evaluate generalization score on its validation data Train | Train Validatel Train Test
3. Sum scores to get model performance
® Select final model hyperparameters based on best score
® Simpler model with slightly worse score may generalize better Train |Validatel Train | Train Test
® Estimate generalization performance via test set
\Validate Train | Train | Train Test
31 32

39

Evaluate generalization score/performance

® Ridge regression example generalization, validation data (¢)
® \: regularization parameter, J; train cost, .J, validation cost

Evaluate generalization score/performance

® Ridge regression example generalization, validation data (¢)
® \: regularization parameter, J; train cost, .J, validation cost

A =107 J; = 0.017, J, = 0.422

|- * 4 |- 4
<
L o A L J
<
EX) EXS)
3 *]
2 2
2l * | 2 |
4 * ¢
L o J L J
%
|- M <© * * - |- 4
*
F * x O 1 L J
*
variable = variable =
33
Evaluate generalization score/performance Evaluate generalization score/performance
® Ridge regression example generalization, validation data (<) ® Ridge regression example generalization, validation data (<)
®)\: regularization parameter, .J; train cost, .J, validation cost ®)\: regularization parameter, .J; train cost, .J, validation cost
. T . T . . T . : .
A=6.0-10"5,.J; = 0.023, J, = 0.358 A=3.6-10"%J, = 0.04, J, = 0.293
>) ESN
8 &
c | 4 c L
o o
o o
8 ¢
variable z
33 33
Evaluate generalization score/performance Evaluate generalization score/performance
® Ridge regression example generalization, validation data (<) ® Ridge regression example generalization, validation data (<)
®)\: regularization parameter, J; train cost, J, validation cost ®)\: regularization parameter, J; train cost, J, validation cost
. T . : . . T . T .
A =22-10"3,J; = 0.064, J, = 0.260 A=13-10"2,J; = 0.086, J, = 0.252
L L o -
<
> >)
3] *
2l 2L]
2 2 *
8]
L L o J
|- |- ° 4 * % -
*
L [* * i Bl
*
\ ,
variable = variable =
33 33
Evaluate generalization score/performance Evaluate generalization score/performance
® Ridge regression example generalization, validation data (<) ® Ridge regression example generalization, validation data (<)
® \: regularization parameter, J; train cost, .J, validation cost ® \: regularization parameter, J; train cost, .J, validation cost
‘ A :‘7,7. 10‘*2, Ji ; 0,1o§, Jy = b,zao ‘ ‘ ‘ A= b.46, Jt‘ = U.l:;, Jy = b.SOO
L o |- L
<
>) >
8 *]
c | i c
2 * 2
8 3
L o J L
L M <© * * | L
*
I * * < - = * * < -
* *
\ \
variable x variable x
33 33

Evaluate generalization score/performance

® Ridge regression example generalization, validation data (¢)
® \: regularization parameter, J; train cost, .J, validation cost

A= 28,J; = 0.29, J, = 0.429

response y

Evaluate generalization score/performance

® Ridge regression example generalization, validation data (¢)
® \: regularization parameter, J; train cost, .J, validation cost

A=16.7,J, = 0.68, J, = 0.716

response y

= * * < E * ¥ < B
* *
variable = variable =
33 33
Evaluate generalization score/performance Selecting model
® Ridge regression example generalization, validation data (©) ® Average training and test error vs model complexity
®)\: regularization parameter, .J; train cost, .J, validation cost ® Average training error sma_ller than average test error
® Large A (left) model not rich enough
X = 100, J; = 0.92, Jo = 0.887 ® Small A (right) model too rich (overfitting)
|- *O] T
—— Train error
[4 —— Test error
° J
-F
3 * 1
2
2 * 5
> . /// 4
F o % -
. J
- * * < 4
*
variable z Increasing model complexity, A \,
33 34
Outline Feature selection
o Supervised learning — Overview
o Least squares — Basics
® Nonlinear features ® Assume X € R™*" with m < n (fewer examples than features)
e Generalization, overfitting, and regularization ® Want to find a subset of features that explains data well
e Cross validation ® Example: Which genes in genome control eyecolor
* Feature selection
e Training problem properties
35 36
Lasso Example — Lasso
® Data X € R30%200 | 5550 solution for different A
0.25 T T T T T T T
® Feature selection by regularizing least squares with 1-norm: 0:2p g
111i11¥nize%HXw—YH§+/\HwH1 |
® Problem can be written as 5° 1
= ,
n 2 T; -
P 1 -5 1
minimize = i -
imize > wiX; Y|+ Aw| |
i=1 9
if w; = 0, then feature X; not important |
® The 1-norm promotes sparsity (many 0 variables) in solution 05 , , , , . . .
0 2 1 6 8 10 12 14
® It also reduces size (shrinks) w (like || - |3 regularization) A
® Problem is called the Lasso problem ® For large enough) solution w =0
® More nonzero elements in solution as A decreases
® For small A, 30 (nbr examples) nonzero w; (i.e., 170 w; = 0)
37 38

41

Lasso and correlated features

® Assume two equal features exist, e.g., X1 = X3, lasso problem is

n 2

(w1 + w2) X1 + Zwa‘,Xi -Y

i=3

minimize %

2
® Assume w* solves the problem and let A := w} + w3 > 0 (wlog)
® Then all wy € [0, A] with we = A — w; solves problem:

® quadratic cost unchanged since sum wy + ws still A

® the remainder of the regularization part reduces to

min A(jwy |+ |A —wy])
-

0 A

® For almost correlated features:
® often only wi or wa nonzero (the one with slightly better fit)
® however, features highly correlated, if X explains data so does X,

+ AMJw: | + [wa] + [[wsn 1)

Elastic net

® Add Tikhonov regularization to the Lasso
minimize 1{| Xw — Y2 + At flw|ly + 22 |w])3

® This problem is called elastic net in statistics

® Can perform better with correlated features

39 40
Elastic net and correlated features Group lasso
® Assume equal features X; = X and that w* solves the elastic net
P ank ¥ — gt = A . .
® Let A:=wi +wj >0 (wlog), then w} = wj = 3 ® Sometimes want groups of variables to be 0 or nonzero
® Data fit cost still unchanged for w2 = A — wy with w; € [0, 4] o Introduce blocks w = (w w,) where w; € R™
® Remaining (regularization) part is g Lroees v
. . ® The group Lasso problem is
min A (Jwi| + |A = wi]) + Ao (wi 4 (A —wi)?)
wy P
T 2
minimize 3| Xw — Y5 +)\Z lwi]|2
i=1
(note || - ||2-norm without square)
| | ® With all n; = 1, it reduces to the Lasso
0 A . .
® Promotes block sparsity, meaning full block w; € R™ would be 0
which is minimized in the middle at w; = w2 = %
® For highly correlated features, both (or none) probably selected
41 42
utline omposite optimization
Outl C t t t
® | east squares problems are convex problems of the form
o Supervised learning — Overview
o Least squares — Basics mlmgmlzef(XG) +9(0),
® Nonlinear features where
o Generalization, overfitting, and regularization o [= 1| V|3 is data misfit term
=1--Y|3
e Cross validation ® X is training data matrix (potentially extended with features)
o Feature selection ® g is regularization term (1-norm, squared 2-norm, group lasso)
« Training problem properties ® Function properties)
® fis 1-strongly convex and 1-smooth and f o X is || X||3-smooth
® ¢ is convex and possibly nondifferentiable
® Gradient V(f o X)(0) = XT(X0-Y)
43 44

42

Logistic Regression

Pontus Giselsson

Outline

¢ Classification

o Logistic regression

® Nonlinear features

o Overfitting and regularization
o Multiclass logistic regression
e Training problem properties

1 2
Classification Binary classification
® Let (z,y) represent object and label pairs
¢ Objectz € X CR" . ® Labels y =0 ory = 1 (alternatively y = —1 or y = 1)
® Label y € Y ={1,..., K} that corresponds to K different classes .
. . - N ® Training problem
® Available: Labeled training data (training set) {(z;, y;)} Y,
. N
Objective: Find parameterized model (function) m(x;6): minignizeZL(m(:v,;B)?yi)
® that takes data (example, object) z as input i=1
® and predicts corresponding label (class) y € {1,..., K} ® Design loss L to train model parameters 6 such that:
How?: ® m(z;;6) < 0 for pairs (i, y:) where y; =0
’ ® m(xi;0) > 0 for pairs (z;,y;) where y; = 1
® learn parameters § by solving training problem with training data ® Predict class belonging for new data points = with trained 6*:
N ® m(x;0") < 0 predict class y = 0
minimizcz L(m(zi;0),v:) . m(z,@)>0 pI:edICt c-Ias-s Y : L
0 P objective is that this prediction is accurate on unseen data
with some loss function L
3 4
Binary classification — Cost functions Binary classification — Cost functions
® Different cost functions L can be used: ® Different cost functions L can be used:
® y =0: Small cost for m(x;0) < 0 large for m(z;60) >0 ® y = 0: Small cost for m(z;6) < 0 large for m(z;6) > 0
® y = 1: Small cost for m(z;0) > 0 large for m(z;0) < 0 ® y = 1: Small cost for m(z;0) > 0 large for m(x;0) < 0
L(m(z;6),0) L(m(x;0),1) L(m(x;6),0) L(m(x;0),1)
————— m(z;0) ——— m(z;0) m(x;0) m(x; 0)
nonconvex (Neyman Pearson loss) L(u,y) = max(0,u) — yu
5 5
Binary classification — Cost functions Binary classification — Cost functions
® Different cost functions L can be used: ® Different cost functions L can be used:
® y = —1: Small cost for m(z;6) < 0 large for m(z;6) > 0 ® y = —1: Small cost for m(z;6) < 0 large for m(z;0) > 0
® y = 1: Small cost for m(x;8) > 0 large for m(z;6) < 0 ® y = 1: Small cost for m(x;0) > 0 large for m(x;0) < 0
L(m(x;0),—1) L(m(x:0),1) L(m(x;0),—1) L(m(x:0),1)
m(x;0) m(x;0) m(x;0) m(x;0)
L(u,y) = max(0,1 — yu) (hinge loss used in SVM) L(u,y) = max(0,1 — yu)? (squared hinge loss)
5 5

43

Binary classification — Cost functions

® Different cost functions L can be used:

® y =0: Small cost for m(x;6) < 0 large for m(z;6) > 0
® y =1: Small cost for m(xz;0) > 0 large for m(z;6) < 0

L(m(x;6),0) L(m(x;6),1)

m(z;0) m(z;0)

L(u,y) = log(1 + e*) — yu (logistic loss)

Outline

e Classification

o Logistic regression

® Nonlinear features

o Overfitting and regularization
o Multiclass logistic regression
e Training problem properties

Logistic regression

® Logistic regression uses:
® affine parameterized model m(z;0) = w”z + b (where 0 = (w, b))
® loss function L(u,y) = log(1 + ") — yu (if labels y =0, y = 1)
® Training problem, find model parameters by solving:

N

N
miniQmizeZ L(m(zi;0),y:) = Z (log(l + eleerb) —yi(zTw + b))
i=1 i=1

® Training problem convex in 8 = (w, b) since:
® model m(z;6) is affine in 6
® |oss function L(u,y) is convex in u

L(u,0)

L(u,1)

Prediction

® Use trained model m to predict label y for unseen data point =
® Since affine model m(z;0) = w”x + b, prediction for z becomes:
o If wx +b < 0, predict corresponding label y = 0
o If w'x 4+ b > 0, predict corresponding label y = 1
o If wlz +b=0, predict either y =0 or y = 1
® A hyperplane (decision boundary) separates class predictions:

H:={z:w'z+b=0}

7
Training problem interpretation Training problem interpretation
® Every parameter choice § = (w, b) gives hyperplane in data space: ® Every parameter choice § = (w, b) gives hyperplane in data space:
H:={z:w z+b=0}={z:m(x;0) =0} H:={z:w z+b=0}={z:m(x;0) =0}
® Training problem searches hyperplane to “best” separates classes ® Training problem searches hyperplane to “best” separates classes
® Example — models with different parameters 6: ® Example — models with different parameters 6:
* *
N . m(x;01) N . « m(x;01)
* s
* *
* *
L L
* * m(z;02)
* *
* *
* *
He Hx
9
Training problem interpretation Training problem interpretation
® Every parameter choice 6§ = (w,b) gives hyperplane in data space: ® Every parameter choice 6§ = (w,b) gives hyperplane in data space:
H:={z: 0w +b=0}={z:m(zx;0) =0} H:={z: w2z +b=0}={z:m(z;0) =0}
® Training problem searches hyperplane to “best” separates classes ® Training problem searches hyperplane to “best” separates classes
® Example — models with different parameters 0: ® Example — models with different parameters 6:
* *
N . « m(z;01) N L « m(x;01)
* *
* *
% . m(x; 64
m(z; 02) - m§1;923
% . T m(x:65) * * T m(x;0s)
T -
9

44

Training problem interpretation

® Every parameter choice 6§ = (w,b) gives hyperplane in data space:

H:={z:w"z+b=0}={z:m(zx;0) =0}

What is “best” separation?

® The "best” separation is the one that minimizes the loss function
® Hyperplane for model m(-; #) with parameter 6 = 6;:

*
- x m(z;01) =0
® Training problem searches hyperplane to “best” separates classes * &
® Example — models with different parameters 6: *)
> X 6
*
* * *
m(x;01) ! *
* m(z; 0%) *
® Training loss:
L(m(x;61),0) L(m(z;61),1)
m(x; 6.
mgr;Ggg
m(xz;03)
m(z;01) m(z;01)
4.287 + 0.20876
9 =4.49576 10
What is “best” separation? What is “best” separation?
® The "best” separation is the one that minimizes the loss function ® The "best” separation is the one that minimizes the loss function
® Hyperplane for model m(-;0) with parameter 6 = 0s: ® Hyperplane for model m(-;0) with parameter 6 = 0:
* *
* x * * x *
* *
* *
y m(z;02) =0 ***
* * * * Tom(z;603) =0
* *
* *
H H
® Training loss: ® Training loss:
L(m(; 02),0) L(m(x;02),1) L(m(;03),0) L(m(x;03),1)
m(z; 02) m(z;02) m(z; 03) m(z;03)
9.21489 + 1.27733 2.77849 + 3.80417
=10.49222 10 =6.58266 10
What is “best” separation? What is “best” separation?
® The "best” separation is the one that minimizes the loss function ® The "best” separation is the one that minimizes the loss function
® Hyperplane for model m(-;#) with parameter § = 6,: ® Hyperplane for model m(-;0) with parameter § = 6*:
* *
. M m(z;6%) =0
* " m(x;04) =0
¥
* e
*
*
H
® Training loss: ® Training loss:
L(m(x;04),0) L(m(x;04),1) L(m(z;0"),0) L(m(;07),1)
m(x;04) m(z;04) m(z;0%) m(z; 6%)
0.33203 + 4.09265 0.95554 + 0.99332
=4.42468 10 =1.94885 10
Fully separable data — Solution Fully separable data — Solution
® Let O = (w,b) give model that separates data: ® Also 20 = (2w, 2b) separates data:
- m(z;0) =0 ¥ m(x;20) =0
Yo,
e Let Hy := {x : m(x;0) = w"'z +b = 0} be hyperplane separates ® Hyperplane Hy; := {z : m(x;20) = 2(w"z+b) = 0} = Hy same
® Training loss: ® Training loss reduced since input m(xz;260) = 2m(x; 6) further out:
L(m(x;0),0) L(m(z30),1) L(m(x;20),0) L(m(x;20),1)
m(x;0) m(x;0) m(z;20) m(x;20)
2.5977 + 2.30927 1.30894 + 1.27458
=4.90697 =2.58353
11 11

45

Fully separable data — Solution

® And 30 = (3w, 3b) also separates data:
_ m(x;30) =0

® Hyperplane Hyj := {z : m(z;30) = 3(w"x 4+ b) = 0} = H; same
® Training loss further reduced since input m(x;30) = 3m(z;0):

L(m(x;36),0) L(m(x;30),1)

Fully separable data — Solution

® And 30 = (3w, 3b) also separates data:
m(x;30) =0

Noe
® Hyperplane Hy; := {z : m(z;30) = 3(wTx + b) = 0} = Hy same
® Training loss

L(m(x; 36),0) L(m(x;360),1)

m(x; 30) m(z; 30) m(x; 30) m(z; 30)
0.70746 + 0.78403 0.70746 + 0.78403
=1.49149 =1.49149
o Let @ = t0 and t — oo, then loss — 0 = no optimal point
11 11
The bias term Bias term gives shift invariance
® Assume all data points shifted zf := x; + ¢
® \We want same hyperplane to separate data, but shifted
® The model m(x;60) = w”z + b bias term is b
® Least squares: optimal b has simple formula
® No simple formula to remove bias term here!
® Assume 6 = (w,b) is optimal for {(x, ;) }¥;
® Then 0. = (w,b.) with b. = b — w”c optimal for {(z¢,y;)}¥,
® Why? Model outputs the same for all x;:
® m(x;;0) = wlz; +b
® m(zi;0.) = wTIf tbe=wla; +b+ u)T(c —c) = wlaz; +b
12 13

Another derivation of logistic loss

® Assume model is instead o(w?x +b), with o(u) = H%
® Binary cross entropy applied to model with sigmoid output:

—ylog(o(u)) — (1 —y)log(l - o(u))

1 1
= 7ylog(m) — (1 —y)log(1l - m)
et et
= *ylog(m) —(I-y) IOg(m)

= —y(u—log(l+e")) + (1 —y)log(l+e")
=log(1 + ") — yu (= logistic loss)

® Two equivalent formulations to arrive at same problem:
® Real-valued model m(z;) and logistic loss log(1 + e*) — yu
® (0, 1)-valued model o(m(z;0)) and binary cross entropy
® Prefer previous formulation
® casier to see how deviations penalized
® easier to conclude convexity of training problem

QOutline

e Classification

o Logistic regression

* Nonlinear features

o Overfitting and regularization
o Multiclass logistic regression
e Training problem properties

14 15
Logistic regression — Nonlinear example Logistic regression — Example
N . . .
® |ogistic regression tries to affinely separate data Seems Ilnlear n feature.2 a-nd quadratic in feature 1
. . . . ® Add a third feature which is feature 1 squared
® Can nonlinear boundary be approximated by logistic regression?
® Introduce features (perform lifting)
l
o
5
©
fid
16 17

46

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

<——Feature 3—~

17

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1

® Add a third feature which is feature 1 squared

<——Feature 3—~

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

<——Feature 3——~

17

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

<——Feature 3—

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

<——Feature 3—

17

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

<«——Feature 3—

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

<——Feature 3—

17

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

<——Feature 3—

47

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

Jv’
RREARTIN
Bl
e, arltydonlt
St A ety
A aht PR NS AT
%"&.‘ﬁ ;}, o “‘g";‘é.? Gerd
P E R0 SR ENPHANAINEE v
VKA, et
..fyg. 4y

&
XA
3
&
%
:
2
£

- ‘,{"

<——Feature 3—~

fgf

17

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

o

b,
A

Eanil
[PSR
XX FRRIN SN IO
B a0t ¢ AN R AT SR
KR ORI megar e Wl
SEE g i B e Sl
PRy X RN IR 5
LY. RTINS ST X 3
S SR R R R 2
W it faln 3 0 B 3
o i Mae B TR Sy T T i
¥ e, h‘i@&,:
i .
;]
S
v
- [-
€
g Featu’®

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

o Data linearly separable in lifted (feature) space

17

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

o Data linearly separable in lifted (feature) space

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

o Data linearly separable in lifted (feature) space

17

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
Add a third feature which is feature 1 squared

o Data linearly separable in lifted (feature) space

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

o Data linearly separable in lifted (feature) space

17

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

o Data linearly separable in lifted (feature) space

48

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

e Data linearly separable in lifted (feature) space

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

s

2

o Data linearly separable in lifted (feature) space

17 17
Logistic regression — Example Logistic regression — Example
® Seems linear in feature 2 and quadratic in feature 1 ® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared ® Add a third feature which is feature 1 squared
o Data linearly separable in lifted (feature) space o Data linearly separable in lifted (feature) space
17 17
Logistic regression — Example Nonlinear models — Features
® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared o
® (Create feature map ¢ : R™ — RP of training data
® Data points z; € R™ replaced by featured data points ¢(z;) € RP
® New model: m(xz;6) = wl¢(z) + b, still linear in parameters
® Feature can include original data «
® We can add feature 1 and remove bias term b
® Logistic regression training problem
N T
rﬂinigrﬂize Z (log(l + P @) Wby () Tw + b))
i=1
same as before, but with features as inputs
o Data linearly separable in lifted (feature) space
17 18
Graphical model representation Polynomial features
® A graphical view of model m(z;0) = w” ¢(z):
(i)
'S
— ® Polynomial feature map for R™ with n = 2 and degree d = 3
)
‘g P P
—
J m(wi; 0) .. .
8 ¢ (note that original data is also there)
® New model: m(xz;0) = w¢(z) + b, still linear in parameters
!
* Number of features p+ 1 = ("1%) = (zm)’ grows fast!
® Training problem has p + 1 instead of n + 1 decision variables
® The input x; is transformed by fixed nonlinear features ¢
® Feature-transformed input is multiplied by model parameters 6
® Model output is then fed into cost L(m(z;;6),y)
® Problem convex since L convex and model affine in 6
19 20

49

Example — Different polynomial model orders

o "Lifting” example with fewer samples and some mislabels
o Logistic regression (no regularization) polynomial features of degree:

* . .
* *
* *
%
* * *
* *
%
* *
* * A *
*
o * *
*
* * N
*
*
* %
*ox
*
* *

21

Example — Different polynomial model orders

o "Lifting” example with fewer samples and some mislabels

o Logistic regression (no regularization) polynomial features of degree: 2

*
*
*
*
* *
* *
%
*
-
* *
*
*
%
*
*
*
*

21

Example — Different polynomial model orders

o "Lifting” example with fewer samples and some mislabels
o Logistic regression (no regularization) polynomial features of degree: 3

21

Example — Different polynomial model orders

o "Lifting” example with fewer samples and some mislabels

o Logistic regression (no regularization) polynomial features of degree: 4

*
*
*
* %
* *
*
*
*
*5
*
*

*
*

*s

21

Example — Different polynomial model orders

o “Lifting" example with fewer samples and some mislabels

o Logistic regression (no regularization) polynomial features of degree: 5

Example — Different polynomial model orders

o “Lifting” example with fewer samples and some mislabels

o Logistic regression (no regularization) polynomial features of degree: 6

%
*
*
*
*
*
*
*
*

21 21
Outline Overfitting
e Models with higher order polynomials overfit
o Logistic regression (no regularization) polynomial features of degree 6
® Classification *
e Logistic regression . *
® Nonlinear features
¢ Overfitting and regularization *
o Multiclass logistic regression N
o Training problem properties ** A
«
*
” o Tikhonov regularization can reduce overfitting -

50

Tikhonov regularization

Regularized problem:

N
minimize Z (log(l + ety oy (2T h)) + w13

i=1
Regularization:
® Regularize only w and not the bias term b
® Why? Model looses shift invariance if also b regularized
Problem properties:

® Problem is strongly convex in w = optimal w exists and is unique

® Optimal b is bounded if examples from both classes exist

Example — Different regularization

o Regularized logistic regression and polynomial features of degree 6
o Regularization parameter), training cost J, # mislabels in training

A J # mislabels
0.00001 4.60 1
*
* * *
*

* % *

* *

*
RN

24 25
Example — Different regularization Example — Different regularization
o Regularized logistic regression and polynomial features of degree 6 o Regularized logistic regression and polynomial features of degree 6
o Regularization parameter), training cost J, # mislabels in training o Regularization parameter), training cost J, # mislabels in training
A J # mislabels A J # mislabels
0.00006 5 0.00036 9.94 5
* " & * *
¥ *
* *
« «
* * *
* ol
« . «
*
* ¥ * ¥
3 *
* * *
* *
« «
* * * * *y
«
*
¥ ¥
25 25
Example — Different regularization Example — Different regularization
o Regularized logistic regression and polynomial features of degree 6 o Regularized logistic regression and polynomial features of degree 6
o Regularization parameter A, training cost .J, # mislabels in training o Regularization parameter), training cost .J, # mislabels in training
mislabels # mislabels
6 7
* * * *
* *
* 8
« «
¥ ¥
* B
¥ ¥ ¥ *
3 *
« *
*f * * *
« «
** *
25 25
Example — Different regularization Example — Different regularization
o Regularized logistic regression and polynomial features of degree 6 o Regularized logistic regression and polynomial features of degree 6
o Regularization parameter A, training cost J, # mislabels in training e Regularization parameter A, training cost J, # mislabels in training
A J 7 mislabels A J 7+ mislabels
* * * *
* *
* 8
¥ ¥
* *
* *
* *
« *
* *
« «
* *
25 25

51

Example — Different regularization

o Regularized logistic regression and polynomial features of degree 6
o Regularization parameter), training cost J, # mislabels in training

7 mislabels

Generalization

® Interested in models that generalize well to unseen data

® Assess generalization using holdout or k-fold cross validation

25 26
Example — Validation data Example — Validation data
o Regularized logistic regression and polynomial features of degree 6 o Regularized logistic regression and polynomial features of degree 6
o J and # mislabels specify training/test values o J and # mislabels specify training/test values
A J # mislabels A J # mislabels
0.00001 4.60/38.5 1/7 0.00006 6.83/25.7 5/7
3 3
o o
3 3
o 3
<
o 0 N o 0 9
< <
27 27
Example — Validation data Example — Validation data
o Regularized logistic regression and polynomial features of degree 6 o Regularized logistic regression and polynomial features of degree 6
o J and # mislabels specify training/test values e J and # mislabels specify training/test values
A J # mislabels A J 7 mislabels
0.00036 9.94/13.4 5 0.0021 12.1/8.70 5
o <o
))
3 3
© ©
o 3
o 0 9 o o
< <
27 27
Example — Validation data Example — Validation data
o Regularized logistic regression and polynomial features of degree 6 o Regularized logistic regression and polynomial features of degree 6
o J and # mislabels specify training/test values e J and # mislabels specify training/test values
A J # mislabels A J # mislabels
0.013 13.6/8.12 7/2 0.077 15.4/10.2 8,
@ ¢ o @ o
° $ o 3
3 o
o o o
N ¢ o N o
< 14 ©
008 N o 008 o
<><> Y Oo Y
©
o
o of I o o of o
¢ < ¢ <
.
27 27

52

Example — Validation data

o Regularized logistic regression and polynomial features of degree 6
o J and # mislabels specify training/test values

A\ J # mislabels
0.46 19.2/15.2 7/4

Example — Validation data

o Regularized logistic regression and polynomial features of degree 6
e J and # mislabels specify training/test values

A J # mislabels
2.78 25.2/23.2 8/4

27 27
Test vs training error — Cost Test vs training error — Classification accuracy
® Decreasing A gives higher complexity model ® Decreasing A gives higher complexity model
® Overfitting to the right, underfitting to the left ® Qverfitting to the right, underfitting to the left
® Select lowest complexity model that gives good generalization ® Cost often better measure of over/underfitting
Training vs test cost Number of misclassifications
\
— train — train
— test — test
Increasing model complexity, A N\, Increasing model complexity, A N\,
28 29
Outline What is multiclass classification?
. P .
C|a§5'flcat'°n . ® We have previously seen binary classification
* Logistic regression ® Two classes (cats and dogs)
® Nonlinear features ® Each sample belongs to one class (has one label)
o Overfitting and regularization ® Multiclass classification
o Multiclass logistic regression ® K classes with K > 3 (cats, dogs, rabbits, horses)
o Training problem properties ® Each sample belongs to one class (has one label)
&P prop ® (Not to confuse with multilabel classification with > 2 labels)
30 31
Muilticlass classification from binary classification Multiclass logistic regression
® 1-vs-1: Train binary classifiers between all classes
® Example: . .
o catusdog, ® K classes in {1,..., K} and data/labels (z,y) € X x Y
® cat-vs-rabbit ® Labels: y € Y = {ey,...,ex} where {¢;} coordinate basis
® cat-vs-horse o o — e — T
o dogverabbit ® Example, K =5 class 2: y = ez =[0,1,0,0,0]
® dog-vs-horse ® Use one model per class mj;(;0;) for j € {1,..., K}
¢ rabbit-vs-horse ® Objective: Find 6 = (61, ...,0k) such that for all models j:
® Prediction: Pick, e.g., the one that wins the most classifications . i .
1 o o mj(x;60;) > 0, if label y = e; and m;(z;0;) < 0if y # e;
® Number of classifiers: (=1 _ _J< 603 / g i (;0;) yFe
. . L] .
® 1-vs-all: Train each class against the rest Training problem loss function:
® Example K
® cat-vs-(dog,rabbit,horse) ’ _ w; T,
® dog-vs-(cat,rabbit,horse) L(“‘7 y) - IOg Ze T -uwy
® rabbit-vs-(cat,dog,horse) Jj=1
® horse-vs-(cat,dog,rabbit)
® Prediction: Pick, e.g., the one that wins with highest margin where label y is a “one-hot” basis vector, is convex in u
® Number of classifiers: K
® Always skewed number of samples in the two classes
32 33

53

Muilticlass logistic loss function — Example
® Multiclass logistic loss for K =3, uy =1, y = e;
L((1,u2,u3),1) = log(e! + "2 4 ") — 1
® Model outputs ug < 0, ug < 0 give smaller cost for label y = e;

Multiclass logistic loss function — Example
® Multiclass logistic loss for K =3, us = —1, y = €3
L((u1, —1,u3),1) = log(e™ + e 4 %) —uy
® Model outputs u; > 0 and us < 0 give smaller cost for y = e

35
Multiclass logistic regression — Training problem Multiclass logistic regression — Prediction
® Affine data model m(x;0) = w”z + b with
w=[wy,...,wg] ERHF b=1by,... bg]" €RF
® One data model per class
my (x;61) wlz + by ® Assume model is trained and want to predict label for new data z
m(z: 0) = : _ : ® Predict class with parameter 6 for « according to:
. iy
mg(x;0k) Wi + by argmax m;(x;6)
. je{l,...K
® Training problem: it }
N P i.e., class with largest model value (since trained to achieve this)
.. . T
mlmemlzez log Z e @it |y T (T 4 b)
i=1 J=1
where y; is “one-hot” encoding of label
® Problem is convex since affine model is used
® (Alt.: model o(w”z + b) with o softmax and cross entropy loss)
36 37
Special case — Binary logistic regression Example — Linearly separable data
. . ® Problem with 7 classes
® Consider two-class version and let
® Au=u; —uz, Aw = wy — wz, and Ab=0b; — by
® Au = mpin(x;0) = ma(z;61) — ma(z;62) = Aw 'z + Ab M T * LR
® yoin = Lif y = (1,0) and ypin = 0 if y = (0,1) R T P
® loss L is equivalent to binary, but with different variables: e R * L
T
L(u,y) = log(e"* +€"2) — y1ur — yauz P S A L
=log <1+e""“2) + log(e¥2) — yruy — yous N B e B
= log (1 +eA“> —y1u1 — (y2 — us A
:’ P + e
:10g<1+eA“>7yb;nAu . L - R s
38 39
Example — Linearly separable data Example — Quadratically separable data
® Problem with 7 classes and affine multiclass model e Same data, new labels in 6 classes
Lot ot
Lk S T w
N PO BN * .
o, et ox w ¥ ‘N.‘. N
e" . :0 . * . *
L ’ .
39 40

54

Example — Quadratically separable data

e Same data, new labels in 6 classes, affine model

Example — Quadratically separable data

e Same data, new labels in 6 classes, quadratic model

40 40
Features Outline
® Used quadratic features in last example
® Same procedure as before:
® replace data vector x; with feature vector ¢(x;)
® run classification method with feature vectors as inputs o Classification
o Logistic regression
s ® Nonlinear features
% o Overfitting and regularization
5 o Multiclass logistic regression
\‘ p—> = o Training problem properties
§ X — i
s C g
41 42
Composite optimization — Binary logistic regression Gradient and function properties
Regularized (with g) logistic regression training problem (no features) ® Gradient of f;(u;) = log(1 + e"*) — y;u; is:
e 1
N - Vhi(ui) = ——— —yi= 17— —vi = o) —y;
minimizez (l()g (1 +ev w‘+b> —yi(wTz; + b)) +9(9) 1+ew L+emw
0 i=1 where o(u;) = (14 e~ %)~! is called a sigmoid function
can be written on the form ® Gradient of (f o L)(0) satisfies:
nliniemize f(LO) +g(0), V(fo -V Z hi(L;0) Z LTVhi(L:0)
i=1
where N n
= ZN: (log(1 + €") — y;u;) is data misfit term = [f] (o(zfw+b) —y;)
. L = [X 1] where training data matrix X and 1 satisfy ’7:1T
X
o : [IT} (o(Xw+b1) - ¥)
X = . 1= N N
i where last o : RY — RY applies ; ,,‘L to all [Xw + b1];
TN 1 ® Function and sigmoid properties:
e s resularization term ® sigmoid o is 0.25-Lipschitz continuous:
g € - ® fis convex and 0.25-smooth and f o L is 0.25||L||3-smooth w“

95

56

Support Vector Machines

Pontus Giselsson

Outline

¢ Classification

e Support vector machines

® Nonlinear features

o Overfitting and regularization
o Dual problem

¢ Kernel SVM

e Training problem properties

2
Binary classification Binary classification — Cost functions
) ® Different cost functions L can be used:
® Labels y = 0 or y = 1 (alternatively y = —1 or y = 1) ® y = 0: Small cost for m(z;6) < 0 large for m(z;0) > 0
® Training problem ® y = 1: Small cost for m(x;0) > 0 large for m(x;0) < 0
N
minimize L(m(x;0),y;
0 ; (m(@:36), i) L(m(x36),0) L(m(z30),1)
® Design loss L to train model parameters 6 such that:
® m(xi;0) < 0 for pairs (z,y:) where y; =0
® m(xz;;0) > 0 for pairs (zi,y;) where y; =1
® Predict class belonging for new data points 2 with trained 6: m(;) (3 0)
* m(z; 9:) < 0 predict class y = 0
® m(x;0) > 0 predict class y = 1 L(u,y) = log(1 + e") — yu (logistic loss)
4
Binary classification — Cost functions Binary classification — Cost functions
® Different cost functions L can be used: ® Different cost functions L can be used:
® y = 0: Small cost for m(z;6) < 0 large for m(z;6) > 0 ® y = 0: Small cost for m(z;6) < 0 large for m(z;6) > 0
® y = 1: Small cost for m(z;0) > 0 large for m(z;0) < 0 ® y = 1: Small cost for m(z;0) > 0 large for m(x;0) < 0
L(m(z;6),0) L(m(x;0),1) L(m(x;6),0) L(m(x;0),1)
— m(z;6) f—— m(z;6) m(x;0) m(x;0)
nonconvex (Neyman Pearson loss) L(u,y) = max(0,u) — yu
4
Binary classification — Cost functions Binary classification — Cost functions
® Different cost functions L can be used: ® Different cost functions L can be used:
® y = —1: Small cost for m(z;6) < 0 large for m(z;6) > 0 ® y = —1: Small cost for m(z;6) < 0 large for m(z;0) > 0
® y = 1: Small cost for m(x;8) > 0 large for m(z;6) < 0 ® y = 1: Small cost for m(x;0) > 0 large for m(x;0) < 0
L(m(z;0),-1) L(m(x:0),1) L(m(z;0),-1) L(m(=;0),1)
m(x;0) m(x;0) m(x;0) m(x;0)
L(u,y) = max(0,1 — yu) (hinge loss used in SVM) L(u,y) = max(0,1 — yu)? (squared hinge loss)
4

57

Outline

e Classification

o Support vector machines

® Nonlinear features

o Overfitting and regularization
o Dual problem

e Kernel SVM

e Training problem properties

Support vector machine

® SVM uses:
® affine parameterized model m(z;0) = w”x + b (where § = (w, b))
® loss function L(u,y) = max(0,1 — yu) (if labels y = —1, y = 1)
® Training problem, find model parameters by solving:
N N
minigmizcz] L(m(zi;0),y:) = Z] max(0, 1 — y;(wz; + b))
1= 1=
® Training problem convex in § = (w,b) since:
® model m(x;0) is affine in 0
® |oss function L(u,y) is convex in u

L(u,fl) L(u,l)

u u

Prediction

® Use trained model m to predict label y for unseen data point =
® Since affine model m(x;60) = w”x + b, prediction for z becomes:
o If w"z +b <0, predict corresponding label y = —1
o If wTz +b> 0, predict corresponding label y = 1
o If wlz +b=0, predict either y = —1 ory = 1
® A hyperplane (decision boundary) separates class predictions:

H:={z:w s +b=0}

Training problem interpretation

® Every parameter choice 6 = (w,b) gives hyperplane in data space:
H:={z:w 2 +b=0}={z:m(x;0) = 0}

® Training problem searches hyperplane to “best” separates classes
® Example — models with different parameters 0:

e m(z;01)
m(x; 0%)

What is “best” separation?

® The "best” separation is the one that minimizes the loss function
® Hyperplane for model m(-;#) with parameter § = 6;:

*
« % m(z;01) =0
K
*
o
B ¢
*
* *
*
*
H
® Training loss:
L(m(z;61), —1) L(m(z;01),1)
m(z;01) t (3 01)
5.69992 + 0.0
=5.69992

What is “best” separation?

® The "best” separation is the one that minimizes the loss function
® Hyperplane for model m(-;0) with parameter 6 = 6s:

*
* x *
*
*
* 0
N) * m(z;02) =0
*
*
*
® Training loss:
L(m(x;02),—1) L(m(x;02),1)
m(z;02) m(x;62)
12.31264 + 0.52513

=12.83777

What is “best” separation?

® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(-;#) with parameter § = 6s:

*
* * *
*
*
X
£ mes) =0
*
*
*
® Training loss:
L(m(z;03),—1) L(m(z;03),1)
m(z;03) m(z;03)
3.66974 + 5.13803
=8.80777

What is “best” separation?

® The "best” separation is the one that minimizes the loss function
® Hyperplane for model m(-;#) with parameter 6 = 6,:

*
* « F
*
*
* o m(w;04) =0
*
* *
*
*
*
® Training loss:
L(m(z;04),—1) L(m(z;04),1)
m(z;04) m(z;04)
0.0 + 5.90926
=5.90926

o8

What is “best” separation?

® The "best” separation is the one that minimizes the loss function
® Hyperplane for model m(-;#) with parameter 6 = 6*:

® Training loss:

L(m(z;6%),-1) L(m(z;60*),1)

Fully separable data — Solution

® Let § = (w,b) give model that separates data:
_ m(x;0) =0

o let Hy:= {z:m(x;0) = w 'z +b =0} be hyperplane separates
® Training loss:

L(m(x;0),—1) L(m(x;0),1)

m(z; 0) m(z; 0)
1.54938 + 1.78937
=3.33875
m(z;0%) m(xz;0*)
0.0 + 0.0
=0.0 9 10
Fully separable data — Solution Fully separable data — Solution
o Also 20 = (2w, 2b) separates data: ® And 30 = (3w, 3b) also separates data:
- m(x;20) =0 _ m(x;30) =0
:;’EJ*
® Hyperplane Hy; := {z : m(x;20) = 2(w "z +b) = 0} = Hy same ® Hyperplane Hj := {z : m(z;30) = 3(w"x + b) = 0} = Hy same
® Training loss reduced since input m(z; 20) = 2m(z;6) further out: ® Training loss further reduced since input m(x;30) = 3m(x;0):
L(m(x;26),-1) L(m(x;26),1) L(m(x;30), ~1) L(m(x;36),1)
m(x; 20) m(z;20) m(x; 30) m(z; 30)
0.20813 + 0.30518 0.0 + 0.0
=0.5133 =0.0
10 10
Fully separable data — Solution Margin classification and support vectors
® And 30 = (312),35) also separates data: ® Support vector machine classifiers for separable data
- m(x;30) =0 ® (Classes separated with margin, o marks support vectors
~
A
l v
3w™*
® Hyperplane Hy; := {x : m(xz;30) = 3(w"2 +b) = 0} = Hj same
® Training loss
L(m(x;30),—1) L(m(x;30),1)
m(z; 30) m(z; 30)
0.0 + 0.0
=0.0
o As soon as [m(z;;0)| > 1 (with correct sign) for all z;, cost is 0
10 11
Outline Nonlinear example
® (Can classify nonlinearly separable data using lifting
¢ Classification * . * " *
o Support vector machines) A
® Nonlinear features j * *
o Overfitting and regularization * . L*
e Dual problem =L, :
e Kernel SVM . . by . *
g
e Training problem properties * . * *
* * A .
*
«
12 13

59

Adding features

® Create feature map ¢ : R” — RP of training data
® Data points z; € R” replaced by featured data points ¢(z;) € RP

® Example: Polynomial feature map with n = 2 and degree d = 3

B(x) = (21, 22,23, 2122, 23, 23, 2320, 2173, 3)

* Number of features p + 1 = ("1%) = (7;;‘1!)! grows fast!
® SVM training problem
N
mini’}nize ; max(0, 1 — y; (w? ¢(z;) + b))

still convex since features fixed

Nonlinear example — Polynomial features

e SVM and polynomial features of degree 2

14 15
Nonlinear example — Polynomial features Nonlinear example — Polynomial features
e SVM and polynomial features of degree 3 e SVM and polynomial features of degree 4
* * *
* * *
.
**
¥ ¥
15 15
Nonlinear example — Polynomial features Nonlinear example — Polynomial features
o SVM and polynomial features of degree 5 e SVM and polynomial features of degree 6
.
¥ ¥
15 15
Nonlinear example — Polynomial features Nonlinear example — Polynomial features
e SVM and polynomial features of degree 7 e SVM and polynomial features of degree 8
15 15

60

Nonlinear example — Polynomial features

e SVM and polynomial features of degree 9

Nonlinear example — Polynomial features

e SVM and polynomial features of degree 10

15 15
Outline Overfitting and regularization
e Classification * SVM is-pro-ne to -overfitting if model-too expres:ive
L] . = 1|7
« Support vector machines R(lagulanzatlon us.lng‘|| Hl.(for spzrsny) <‘)r I Hz
L] .
« Nonlinear features T|khonc.>v regulaljlzanon with || - [|3 es.peually important for SVM
« Overfitting and regularization ® Regularize only linear terms w, not bias b
® Training problem with Tikhonov regularization of w
e Dual problem
® Kernel SVM N " \ ,
o Training problem properties mlmgmlzoZma.x(O, L—yi(w” é(wi) +) + gllwll
i=1
(note that features are used ¢(x;))
16 17
Nonlinear example revisited Nonlinear example revisited
o Regularized SVM and polynomial features of degree 6 o Regularized SVM and polynomial features of degree 6
o Regularization parameter: A = 0.00001 o Regularization parameter: A = 0.00006
18 18
Nonlinear example revisited Nonlinear example revisited
e Regularized SVM and polynomial features of degree 6 o Regularized SVM and polynomial features of degree 6
o Regularization parameter: A = 0.00036 e Regularization parameter: A = 0.0021
18 18

61

Nonlinear example revisited Nonlinear example revisited
o Regularized SVM and polynomial features of degree 6 o Regularized SVM and polynomial features of degree 6
e Regularization parameter: A\ = 0.013 o Regularization parameter: A\ = 0.077
«
* * *
¥
¥ ¥
¥ *
Nt
18 18
Nonlinear example revisited Nonlinear example revisited
o Regularized SVM and polynomial features of degree 6 o Regularized SVM and polynomial features of degree 6
o Regularization parameter: A\ = 0.46 o Regularization parameter: \ =2.78
* *
¥ ¥
* * 4y * w4y
* * * *
¥ ¥
18 18
Nonlinear example revisited Outline
o Regularized SVM and polynomial features of degree 6
o Regularization parameter: A = 16.7
’ A o Classification
N * o Support vector machines
) ® Nonlinear features
* o Overfitting and regularization
1 e Dual problem
* ® Kernel SVM
. e Training problem properties
* * . .
) «
e)\ and polynomial degree chosen using cross validation/holdout "
SVM problem reformulation Dual problem
® Consider Tikhonov regularized SVM:
N ® Let L =[Xy,y,Y] and write problem as
inimi — ui(wT d(z: AMawll? .
THIITIZe Z max(0, 1 - yi(w” ¢(x:) + b)) + g [[wllz minimize 17 max(0,1 — (Xyyw + Yb)) + 3 |Jwl||3
) i=1 w,b N _
)) F(L(w,b)) g(w,b)
® Derive dual from reformulation of SVM:
- T N 5 where
minimize 17 max(0, 1 = (Xo.yw+¥b)) + 3 |lwlly o) = XN, £i(6) and £(4) = max(0, 1 - 1) (hinge loss)
® g(w,b) = 3|lwlj3, i.e., does not depend on b
where max is vector valued and e Dual problem
(o \T]
y1(1) b minimize f*(v) + g*(~L v)
Xoy = : , Y=: v
ynd(an)” YN
20 21

62

Conjugate of g

e Conjugate of g(w,b) = 3|lw||3 =: g1(w) + g2(b) is
G (s 1) = 7 (11w) + 93 (116) = 55 1o |13 + t40y (126)
® Evaluated at —L7v = —[Xy v, Y] v:
T X7y 1 T 2 T
o0 =g (=[] v) = 1= Xyl + v (YT

= %VTX@,YX;{)/V + L(()}(YTV)

Conjugate of f

® Conjugate of f;(¢;) =

" v; if—lgl/igo
fl(lh):{

max (0,1 —1);) (hinge-loss):

oo else

® Conjugate of f() = Z;L fi(1;) is sum of individual conjugates:

N

fv)= Z frw)=1"v + t-1,0/(¥)

i=1

22 23
SVM dual Primal solution recover
y
® Meaningless to solve dual if we cannot recover primal
® The SVM dual is - . N "
® Necessary and sufficient primal-dual optimality conditions
minimize f*(v) + ¢*(~LTv
piae @) g (=L) o [07°0) = Lwb
® Inserting the above computed conjugates gives dual problem 99" (=LTv) — (w,b)
minimize Zl‘il vi + i”TXqﬁ ngy’/ ® From dual solution v, find (w,b) that satisfies both of the above
subjgct to —-1<v<0 ® For SVM, second condition is
YTv =0 1 T
Ag*(~L"v) = {Bﬂ_ng;’Ty)] B [7“:]
® Since Y € RY, YTv = 0 is a hyperplane constraint Loy (=Y ")
® |f no bias term b; dual same but without hyperplane constraint which gives optimal w = *%Xg,yl’ (since unique)
® Cannot recover b from this condition
24 25
Primal solution recovery — Bias term Outline
® Necessary and sufficient primal-dual optimality conditions
of(v) — L(w,b)
0e A
Ag*(=LTv) — (w,b) ¢ Classification
o Support vector machines
® For SVM, row ¢ of first condition is 0 € 9f;(v;) — L;(w, b) where e Nonlinear features
[~00,1] ifr;=—1 o Overfitting and regularization
N {1} if—1<vy;<0 ‘ r e Dual problem
Ofiwi) = [1,00] ifv;=0 - Li=wilgl@) 1] ¢ Kernel SVM
0 else e Training problem properties
® Pick ¢ with v; € (—1,0), then unique subgradient df;(v;) is 1 and
0=1—yi(w” oa:) + 1)
and optimal b must satisfy b = y; — w? ¢(x;) for such i
26 27
SVM dual - A reformulation SVM dual — Kernel formulation
® Dual problem
minimize 2,111 Vi + %VTXLM/X‘EYV
" ,
j —-1<rv<
subject to Y}"u_—y()_ 0 ® Dual problem with Kernel matrix
R N . .
o Let x;; == ¢(z;)T¢(x;) and rewrite quadratic term: nunimize Yty vi+ gxv! diag(V)K diag(Y)y
, T subjectto —-1<v<0
d(z1) YTy =0
v X4y X} yv = vdiag(Y) : [6(x1) d(an)] diag(Y)v .)
dlan)T ® Solved without evaluating features, only scalar products:
K11 K1N kij = o) T ()
=vdiag(Y) | : o | diag(Y)v
KN1 ' KNN
———— —
K
where K is called Kernel matrix
28 29

63

Kernel methods Kernel operators
® Define:
® Kernel operator £(z,y) : R" x R® = R
® Kernel shortcut kij = k(i x;)
® A Kernel matrix
K11 R1N
® We explicitly defined features and created Kernel matrix K=1: :
® We can instead create Kernel that implicitly defines features RN FNN
® A Kernel operator x: R" x R" — R is:
® symmetric if k(z,y) = k(y,)
® positive semidefinite (PSD) if symmetric and
Za,ia,jn(xi,mj) >0
i
forall m €N, a;,; €R, and z;,z; € R"
o All Kernel matrices PSD if Kernel operator PSD
30 31
Mercer’s theorem Kernel SVM dual and corresponding primal
® Assume k is a positive semidefinite Kernel operator
o Mercer's theorem: ® SVM dual from Kernel k£ with Kernel matrix K;; = x(z;, ;)
There exists continuous functions {e;}°2, and nonnegative R N . .
{132, such th]atJ71 minimize Yis1 Vi + syv diag(Y)K diag(Y)v
subjectto —1<v <0
oo YTv=0
Ko y) =Y Ajej(@)e;(y)
=1 ® Due to Mercer's theorem, this is dual to primal problem
o Let ¢(z) = (VAier(x), VAzea(x), ...) be a feature map, then N
R , A 2
L ‘ mlmgmlchmax(O, 1= yi({w, ¢(z)) + b)) + 5w
r(x,y) = (8(x), o)) i1
where scalar product in 5 (space of square summable sequences) with potentially an infinite number of features ¢ and variables w
® A PSD kernel operator implicitly defines features
32 33
Primal recovery and class prediction Valid kernels
® Assume we know Kernel operator, dual solution, but not features
® Can recover: Label prediction and primal solution b
® Cannot recover: Primal solution w (might be infinite dimensional)
® Primal solution b = y; — w? ¢(z;):
® Polynomial kernel of degree d: x(z,y) = (1 4+ 2Ty)?
T 1 ¢ . . .
(a1 Yk ® Radial basis function kernels:
r 1. T . 1T . 1. T |2
w zi) = —5v X yo(zi) = —5v : Ti) = —+v llz—yll3
9(@) B oy #(@:) B oo 9(:) A : ® Gaussian kernel: k(z,y) = e~ 202
yné(zN) YNKN:) le=yll2
® Laplacian kernel: k(z,y) =€~ o
® Label prediction for new data « (sign of w”¢(x) + b): ® Bias term b often not needed with Kernel methods
y16(x1)Tp(x) yik(z1, @)
wT@($)+b:7%VT +b:7§VT : +b
yvo(an)To() ynk(N,)
® We are really interested in label prediction, not primal solution
34 35
Example — Laplacian Kernel Example — Laplacian Kernel
o Regularized SVM with Laplacian Kernel with 0 =1 o Regularized SVM with Laplacian Kernel with 0 =1
e Regularization parameter: A\ = 0.01 o Regularization parameter: A\ = 0.035938
¥ *
i *
¥ ¥
* . * .
¥ ¥
36 36

64

Example — Laplacian Kernel

o Regularized SVM with Laplacian Kernel with o = 1
o Regularization parameter: A\ = 0.12915

Example — Laplacian Kernel

o Regularized SVM with Laplacian Kernel with o = 1
o Regularization parameter: A\ = 0.46416

36 36
Example — Laplacian Kernel Example — Laplacian Kernel
o Regularized SVM with Laplacian Kernel with o =1 o Regularized SVM with Laplacian Kernel with o =1
o Regularization parameter: A = 1.6681 o Regularization parameter: A = 5.9948
« «
* * * *
e M 4
** N * ' **
* * * *
* . * % . *
36 36
Example — Laplacian Kernel Example — Laplacian Kernel
o Regularized SVM with Laplacian Kernel with o = 1 e What if there is no structure in data? (Labels are randomly set)
o Regularization parameter: A = 21.5443
* » -
* " * *
* * * *
N ¥ ¥
* . * . K
% * * * * * * *
* ¥ *
* . .
* * e * *
* * . . N
* . * **
* * . * *
K . ' *
. *
R «
36 37
Example — Laplacian Kernel Outline
o What if there is no structure in data? (Labels are randomly set)
e Regularized SVM Laplacian Kernel, regularization parameter: A = 0.01
e Classification
o Support vector machines
® Nonlinear features
o Overfitting and regularization
e Dual problem
® Kernel SVM
e Training problem properties
o Linearly separable in high dimensional feature space
o Can be prone to overfitting = Regularize and use cross validation
38

37

65

Composite optimization — Dual SVM
Dual SVM problems

rniniyrnize Zfil v + i"TX@YXg,yV
subjectto —-1<v<0
YTy =0

can be written on the form
minimize hy (v) + hz(*X;{.yV),
v
where

* hi(v) =1"v + 1 1,0(¥) + 1oy (YTV)

® First part 170 + t[-1,0](¥) is conjugate of sum of hinge losses
® Second part z,w}(YTu) comes from that bias b not regularized

® ha(p) = 55|13 is conjugate to Tikhonov regularization % ||w||3

39

Gradient and function properties

e Gradient of (hg o 7XI’Y) satisfies:

V(hyo =X y)w) =V (50" Xoy X yv) = + Xg v X] yv
= 1 diag(Y)K diag(Y)v
where K is Kernel matrix
® Function properties
2
® hy is convex and A™'-smooth, ha 0 — Xy is Msmooth
® hy is convex and nondifferentiable, use prox in algorithms

40

66

Deep Learning

Pontus Giselsson

Outline

o Deep learning

o Learning features

e Model properties and activation functions
e Loss landscape

® Residual networks

o Overparameterized networks

o Generalization and regularization

o Generalization — Norm of weights

® Generalization — Flatness of minima
o Backpropagation

o Vanishing and exploding gradients

2
Deep learning Deep learning — Model
® Nonlinear model of the following form is often used:

P . m(x;0) == Wypon_1(Wn_10n—2(--- (Waor(Wiz +b1) +b2) -+) + bp_1) + by
® Can be used both for classification and regression (:6) i 10n=2(: - (Weor (W b)))
® Deep learning training problem is of the form where § contains all W; and b;

® Each activation o; constitutes a hidden layer in the model network
N ® We have no final layer activation (is instead part of loss)
miniemichL(m(m,-; 0),v:) ® Graphical representation with three hidden layers
i=1 a2(°)
h tvpicall Ul(') . ”3(')
where typically — N
® L(u,y) = 3llu— y||3 is used for regression AX’%@E\\’!{{.‘\
¥ < | 1
® L(u,y) = log (Zle cuj) —y"u is used for K-class classification w :’&y‘éﬁm’i&‘»‘ 1
‘ ; RS IS 7Y
® Difference to previous convex methods: Nonlinear model m(z;6) .?“‘%.?,“i{{.',
® Deep learning regression generalizes least squares ‘\\V//'.
® DL classification generalizes multiclass logistic regression
® Nonlinear model makes training problem nonconvex ® Some reasons for using this structure:
® (Assumed) universal function approximators
® Efficient gradient computation using backpropagation
4
No final layer activation in classification Activation functions
® In classification, it is common to use ® Activation function o; takes as input the output of W;(-) + b;
® Softmax final layer activation ® Often a function 7; : R — R is applied to each element
® Cross entropy loss function 55 (ur)
. agjlur
* Equivalent to ® Example: o : R®* = R® is 0;(u) = |5, (u2)
® no (identity) final layer activation 5j(u3)
¢ multiclass logistic loss ® We will use notation over-loading and call both functions o;
which is what we use
6
Examples of activation functions Examples of affine transformations
Name o(u) Graph
Sigmoid H% L
S
Tanh J— ® Dense (fully connected): Dense W
an E o
e~ te ® Sparse: Sparse W
® Convolutional layer (convolution with small pictures)
Rel ® Fixed (random) sparsity pattern
elU max(u, 0) ® Subsampling: reduce size, WW; fat (smaller output than input)
® average pooling
LeakyReLU max(u, cu)
u ifu>0
ELU -
ale" —1) else
8

67

Prediction

Prediction as in least squares and multiclass logistic regression

® Assume model m(z;) trained and “optimal” 6* found

Regression:
® Predict response for new data x using § = m(z;0")

Classification (with no final layer activation):
® We have one model m;(z; ") output for each class
® Predict class belonging for new data z according to

argmax m;(x;0")
GE{L K}

i.e., class with largest model value (since loss designed this way)

Outline

o Deep learning

o Learning features

e Model properties and activation functions
e Loss landscape

® Residual networks

o Overparameterized networks

o Generalization and regularization

o Generalization — Norm of weights

® Generalization — Flatness of minima
o Backpropagation

o Vanishing and exploding gradients

9 10
Learning features Learning features — Graphical representation
® Fixed features gives convex training problems
® Convex methods use prespecified feature maps (or kernels)
® Deep learning instead learns feature map during training _
5=
® Define parameter dependent feature vector: g
3(@30) = 01 (Wa10na(- - (Waor (Wiz+by)+b2) -) +bu—1) s
® Model becomes m(z;0) = Wyo(z;0) + by
® |nserted into training problem:
minimize Z L(Wyo(xi;0) + bn,yi)
= s
same as before, but with learned (parameter-dependent) features i
® |earning features at training makes training nonconvex h
1 ® Output of last activation function is feature vector 12
Optimizing only final layer Optimizing only final layer
® Assume: ® Assume:
® that parameters 0 in the layers in the square are fixed ® that parameters 0; in the layers in the square are fixed
® that we optimize only the final layer parameters ® that we optimize only the final layer parameters
® that the loss is a (binary) logistic loss . ® that the loss is a (binary) logistic loss s
> B(xi; 0) pe
8 8
3 N 3
N o S <
XX =
1 g %3) £
S g
® What can you say about the training problem? ® \What can you say about the training problem?
® |t reduces to logistic regression with fixed features ¢(xz;;0¢)
N -
LIRS 2 TR0 00) o B
® The training problem is convex
13 13
Design choices Outline
o Deep learning
e Learning features
Many design choices in building model to create good features * Model properties and activation functions
e Loss landscape
® Number of layers .
i ® Residual networks
® Width of layers .
e Overparameterized networks
® Types of layers - N
T) o Generalization and regularization
® Types of activation functions . .
’) o Generalization — Norm of weights
® Different model structures (e.g., residual network) - .
® Generalization — Flatness of minima
e Backpropagation
e Vanishing and exploding gradients
14 15

68

Model properties — ReLU networks

® Recall model

Model properties — ReLU networks

® Recall model

m(x;0) = Wyon 1(Wn-10n—2(--- (Waor(Wiz 4+ b1) +b2) -+) + bn_1) + bn m(x;0) ;= Wyon1(Wn10n—2(--- (Waor(Wiz 4+ b1) +b2) -+) + bn_1) + bn
where 6 contains all W; and b; where 6 contains all W; and b;
® Assume that all activation functions are (Leaky)RelLU ® Assume that all activation functions are (Leaky)ReLU
® What can you say about the properties of m(-;) for fixed 7 ® What can you say about the properties of m(-;8) for fixed 67
® |t is continuous piece-wise affine
16 16
1D Regression — Model properties 1D Regression — Model properties
® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyReLU ® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyReLU
— m(z;0%) — m(x; 0%)
> =
o P
2 2
o o
o o
$ g
* *
* *
* * *
* *
variable x variable x
® Vertical lines show kinks
17 17
1D Regression — Model properties Identity activation
® Fully connected, layers widths: 5,5,5,1,1 (78 params), Tanh e Do we need nonlinear activation functions?
m(z; 0%) ® What can you say about model if all 0; =Id in
m(z;0) := Wpon—1(Wn-10n—2(--- (Waor(Wiz + b1) + b2) -+) + bn—1) + bn
where 6 contains all W; and b;
q:
s
o
4
variable x
® No kinks for Tanh
17 18
Identity activation Network with identity activations — Example
® Do we need nonlinear activation functions? ® Fully connected, layers widths: 5,5,5,1,1 (78 params), ldentity
® What can you say about model if all o; =Id in
— m(z;0%)
m(x;0) := Wyon1(Wn-10n-2(- - (Waor(Wiz + b1) +b2)--+) +bp-1) + bn .
where 6 contains all W; and b;
® We then get >
@
4
m(z;0) ;= Wy (Whn_1(--- (Wa(Wiz +b1) +b2) -+) + bp-1) + bn §_
?
n—1 Q
=WaWpno1- - WoWiz + b, + Z W Wibi—y
- -
w =2
b
=Wz +b
which is linear in 2 (but training problem nonconvex) variable &
19

18

69

Outline

o Deep learning

o Learning features

e Model properties and activation functions
o Loss landscape

® Residual networks

o Overparameterized networks

o Generalization and regularization

o Generalization — Norm of weights

® Generalization — Flatness of minima
o Backpropagation

¢ Vanishing and exploding gradients

Training problem properties

® Recall model
m(z;0) := Wnon—1(Wn—10n—2(--- (Waor (Wi +b1) + b2) -+) + bn—1) + bn
where 6 includes all W; and b; and training problem

N

inimi L(m(z;0),y;
mlnlemlze; (m(T“)yz)

® Ifall o; LeakyReLU and L(u,y) = §|lu — y||3, then for fixed z,y
® m(x;-) is continuous piece-wise polynomial (cpp) of degree n in 6
® L(m(z;0),y) is cpp of degree 2n in 0

where both model output and loss can grow fast
® If 0; is instead Tanh

® model no longer piece-wise polynomial (but “more” nonlinear)
® model output grows slower since o; : R — (—1,1)

20 21
Loss landscape — Leaky RelLU Loss landscape — Leaky RelLU
® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu ® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
® Regression problem, least squares loss ® Regression problem, least squares loss
® Plot: Zz]\; L(m(x;; 0% + 1101 + t202), y;) vs scalars ty, ta, where ® Plot: Zf\;] L(m(x;; 0% + 101 + t202), y;) vs scalars ty, ta, where
® 0* is numerically found solution to training problem ® 9* is numerically found solution to training problem
® ¢y and 0> are random directions in parameter space ® ¢; and 65 are random directions in parameter space
® First choice of A1 and 05: ® Second choice of §; and 6-:
(T
il I ‘ \ i
1 h | | il
i ¥ | i
i i
A i I
L b
it ““ Hi‘l A
. (R .
22
Loss landscape — Leaky RelLU Loss landscape — Tanh
® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu ® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
® Regression problem, least squares loss ® Regression problem, least squares loss
® Plot: Ef\il L(m(z; 0% 4+ t161 +t202),y;) vs scalars ty, ta, where ® Plot: Zf\il L(m(z; 0% 4+ t161 +t202), y;) vs scalars tq, ta, where
® 9* is numerically found solution to training problem ® §* is numerically found solution to training problem
® ¢y and 0> are random directions in parameter space ® 0, and 6 are random directions in parameter space
® Third choice of 67 and 05: ® First choice of 61 and 05:
i
22 23
Loss landscape — Tanh Loss landscape — Tanh
® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu ® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
® Regression problem, least squares loss ® Regression problem, least squares loss
® Plot: Zfil L(m(x;; 0* +t161 +t202), y;) vs scalars ty, t2, where ® Plot: Zfil L(m(xi; 0 + 101 + t202),y;) vs scalars t1, t2, where
® (* is numerically found solution to training problem ® §* is numerically found solution to training problem
® ¢, and 0> are random directions in parameter space ® (1 and 6 are random directions in parameter space
® Second choice of #; and 05: ® Third choice of #; and 05:
'IIIIIIIIIIIIIIIIIIIIIIII
I
g g
‘!"I%WW”"'MIIZ%%%J ﬁ%{éﬁ%’ﬂ/’”ﬁﬂﬂﬂgmﬁw
I Art
23 23

70

ReLU vs Tanh

Previous figures suggest:

® RelLU: more regular and similar loss landscape?
® Tanh: less steep (on macro scale)?

® Tanh: Minima extend over larger regions?

Outline

o Deep learning

o Learning features

e Model properties and activation functions
e Loss landscape

* Residual networks

o Overparameterized networks

o Generalization and regularization

o Generalization — Norm of weights

® Generalization — Flatness of minima
o Backpropagation

o Vanishing and exploding gradients

24 25
Performance with increasing depth Residual networks
® Add skip connections between layers
® Instead of network architecture with z; = x; (see figure):
zjg1 = 0;(Wjzj +b;) for j € {1,...,n—1}
use residual architecture
® |ncreasing depth can deteriorate performance zjp1 = zj +0j(Wjz; + bj) for j € {1,...,n—1}
® Deep networks may even have worse training errors than shallow
[_)_) Y) .g.)) ® Assume 0(0) =0, W; =0,b; =0forj=1,...,m (m<n-—1)
® [ntuition: deeper layers bad at approximating identity mapping = deeper part of network is identity mapping and does no harm
® Learns variation from identity mapping (residual)
21 o1() 22 o2() 2 o3() 24 o4()
‘vl talts %ls ¢
R SO ST S
26 27

Graphical representation

For graphical representation, first collapse nodes into single node

z1 o1(- z2 oo 23 o3(-

Ty =21
NJ
X
'

>
=
=N
)
i
&
>
S
-
-
N
'
>
&

I
'
=>

S
=N
<

21

x; =

Graphical representation

® Collapsed network representation

hi(+) e ha(+) o hs(+) P hy(+)

® Residual network
s) e) T |)
21 22 23 24

® If some h; = 0 gives same performance as shallower network

28 29
Residual network — Example Residual network — Example
® Fully connected — no residual layers, LeakyReLU activation ® Fully connected — no residual layers, LeakyReLU activation
® Layers widths: 3x5,1,1 (depth: 5, 78 params) ® Layers widths: 5x5,1,1 (depth: 7, 138 params)
® Trained for 5000 epochs ® Trained for 5000 epochs
m(x; 6*)
= =
2 b
s s
& &
variable z variable z
30 30

71

Residual network — Example

® Fully connected — no residual layers, LeakyReLU activation
® Layers widths: 10x5,1,1 (depth: 12, 288 params)
® Trained for 5000 epochs

Residual network — Example

® Fully connected — no residual layers, LeakyReLU activation
® Layers widths: 15x5,1,1 (depth: 17, 438 params)
® Trained for 5000 epochs

— m(z;6%) m(x; 0*)
* *
= =
b} b
& * s *
o a
8 * g *
= * = *
* *
* *
* *
* *
* * * *
* *
variable z variable =
30 30
Residual network — Example Residual network — Example
® Fully connected — no residual layers, LeakyReLU activation ® Fully connected — residual layers, LeakyReLU activation
® Layers widths: 45x5,1,1 (depth: 47, 1,338 params) ® Layers widths: 3x5,1,1 (depth: 5, 78 params)
® Trained for 5000 epochs ® Trained for 5000 epochs
m(z;0*) m(z; 0*)
*
= =
8 &
I * 5
o o
8 * ¢
*
*
*
* *
*
* * *
* *
variable = variable x
30 30
Residual network — Example Residual network — Example
® Fully connected — residual layers, LeakyRelLU activation ® Fully connected — residual layers, LeakyRelLU activation
® Layers widths: 5x5,1,1 (depth: 7, 138 params) ® Layers widths: 10x5,1,1 (depth: 12, 288 params)
® Trained for 5000 epochs ® Trained for 5000 epochs
— m(z; 0*)
= =
o (=%
8]
*,
variable z variable z
30 30

Residual network — Example

® Fully connected — residual layers, LeakyReLU activation
® Layers widths: 15x5,1,1 (depth: 17, 438 params)
® Trained for 5000 epochs

response y

variable x

30

Residual network — Example

® Fully connected — residual layers, LeakyReLU activation
® Layers widths: 45x5,1,1 (depth: 47, 1,338 params)
® Trained for 5000 epochs

m(x; 6*)

response y

variable x

30

72

Outline

o Deep learning

o Learning features

e Model properties and activation functions
e Loss landscape

® Residual networks

o Overparameterized networks

o Generalization and regularization

o Generalization — Norm of weights

® Generalization — Flatness of minima
o Backpropagation

¢ Vanishing and exploding gradients

Why overparameterization?

® Neural networks are often overparameterized in practice

® Why? They often perform better than underparameterized

31 32
What is overparameterization? Overparameterization — An example
® \We mean that many solutions exist that can:
® fit all data points (0 training loss) in regression ® Assume fully connected network with
® correctly classify all training examples in classification * input data z; € R”
® This requires (many) more parameters than training examples ® 1 layers and N ~ p? samples
® Need wide and deep enough networks ® same width throughout (except last layer, which can be neglected)
® Can result in overfittin . . .
S & ® What is the relation between number of weights and samples?
® Questions:
® Which of all solutions give best generalization? a1(-) o2(") o3(")
® (How) can network design affect generalization?
o2(") s
a1(-) . a3(-) 8
O/
SOZANYZ: O NG
ST ORKEL SIS, {
s BRSO SERESERER, <
SRR K
PSIOZXRG 2230 ;
NN A
.\\\.//".
33 34
Overparameterization — An example Outline
® Assume fully connected network with o Deep learning
e P
input data z; € R 2 e Learning features
® n layers and N = p” samples . o .
® same width throughout (except last layer, which can be neglected) o Model properties and activation functions
® What is the relation between number of weights and samples? e Loss landscape
o1() a2() o3(+) ® Residual networks
o Overparameterized networks
o Generalization and regularization
g o Generalization — Norm of weights
® Generalization — Flatness of minima
o Backpropagation
* We have: e Vanishing and exploding gradients
® Number of parameters approximately: (W;)u.: p°n and (b;);: pn
® Then iﬁfﬂiﬁl S ”;—2” = n more weights than samples
34 35
Generalization Regularization
® Most important for model to generalize well to unseen data
® General approach in training
¢ Train a model that is too expressive for the underlying data What regularization techniques in DL are you familiar with?
® Overparameterization in deep learning
® Use regularization to
® find model of appropriate (lower) complexity
® favor models with desired properties
36 37

73

Regularization techniques

® Reduce number of parameters

® Sparse weight tensors (e.g., convolutional layers)
® Subsampling (gives fewer parameters deeper in network)

® Explicit regularization term in cost function, e.g., Tikhonov
® Data augmentation — more samples, artificial often OK
® Early stopping — stop algorithm before convergence

® Dropouts

Implicit vs explicit regularization

® Regularization can be explicit or implicit
® Explicit — Introduce something with intent to regularize:
® Add cost function to favor desirable properties
® Design (adapt) network to have regularizing properties
® Implicit — Use something with regularization as byproduct:

® Use algorithm that finds favorable solution among many
® Will look at implicit regularization via SGD

38 39
Generalization — Our focus Outline
o Deep learning
o Learning features
o Model properties and activation functions
Will here discuss generalization via: ¢ Loss landscape
® Residual networks
® Norm of parameters — leads to implicit regularization via SGD « Overparameterized networks
® Flatness of minima — leads to implicit regularization via SGD « Generalization and regularization
e Generalization — Norm of weights
e Generalization — Flatness of minima
o Backpropagation
o Vanishing and exploding gradients
40 41
Lipschitz continuity of ReLU networks Desired Lipschitz constant
® Assume that all activation functions 1-Lipschitz continuous
® The neural network model m(-;0) is Lipschitz continuous in z,
[m(x1;0) — m(x2; 0)|l2 < Lz — 222
for fixed 0, e.g., the 6 obtained after training ® QOverparameterization gives many solutions that perfectly fit data
o . . 5
® This means output differerences are bounded by input differences * Would you favor one with high or low Lipschitz constant L?
® A Lipschitz constant L is given by
L=[Whllz- [Wan-ill2--- W]
since activation functions are 1-Lipschitz continuous
® For residual layers each ||W;||2 replaced by (1 + ||[W;]|2)
42 43
Small norm likely to generalize better Generalization — Norm of weights
® Fully connected — residual layers, LeakyRelLU
® Layers widths: 30x5,1,1 (888 params)
® Norm of weights (with perfect fit): 72
® Smaller Lipschitz constant probably generalizes better if perfect fit
® “Similar inputs give similar outputs”, recall
[[m(a1;0) — m(z2;0)2 < i1 — 22|z
=Y
with a Lipschitz constant is given by 9
2
o
a
L= |Wala- Wa-ill2--- [Will2 8
or with [|[W; ||z replaced by (1 + ||W;||2) for residual layers
® Smaller weight norms give better generalization if perfect fit
variable =
44 45

74

Generalization — Norm of weights

® Fully connected — residual layers, LeakyRelLU
® Layers widths: 30x5,1,1 (888 params)
® Norm of weights (with perfect fit): 540

Generalization — Norm of weights

® Fully connected — residual layers, LeakyReLU
® Layers widths: 30x5,1,1 (888 params)
® Norm of weights (with perfect fit): 540

m(xz;0*)
= =
3 %
g g
| /\/\/ @
variable z variable =
® Same as previous, new scaling
45 45
Generalization — Norm of weights Generalization — Norm of weights
® Fully connected — residual layers, LeakyReLU ® Fully connected — residual layers, LeakyReLU
® Layers widths: 30x5,1,1 (888 params) ® Layers widths: 30x5,1,1 (888 params)
® Norm of weights (with perfect fit): 595 ® Norm of weights (with perfect fit): 595
— m(z;6%) z;6%)
= =
Q @
2 2
o o
a a
8 g
variable z variable =
® |arge norm, but seemingly fair generalization ® Same as previous, new scaling
45 45
Generalization — Norm of weights Outline
® Fully connected — residual layers, LeakyRelLU
® Layers widths: 30x5,1,1 (888 params) Deen learni
® Norm of weights (with perfect fit): 72 e Deep learning
e Learning features
— m(x;0%) . R .
e Model properties and activation functions
o Loss landscape
® Residual networks
> o Overparameterized networks
§_ o Generalization and regularization
£ o Generalization — Norm of weights
* Generalization — Flatness of minima
o Backpropagation
e Vanishing and exploding gradients
variable z
® Same as first, new scaling — overfits less than large norm solutions
45 46
Flatness of minima Flatness of minima
® Consider the following illustration of average loss: ® Consider the following illustration of average loss:
Training loss / Test loss Training loss / Test loss
0 0
® Depicts test loss as shifted training loss ® Depicts test loss as shifted training loss
® Motivation to that flat minima generalize better than sharp ® Motivation to that flat minima generalize better than sharp
® |s there a limitation in considering the average loss only?
47 47

75

Generalization from loss landscape

e Training set {(z;,:)}}Y; and training problem:

N

inimize L(m(x;0),y;
mlHIQIIllZC; (m(zi;0),y:)

® Test set {(&,9:)}Y ;. 0 generalizes well if test loss small

N

> L(m(#:56), %)

i=1
® By overparameterization, we can for each (Z;, ;) find é, so that
L(m(#5:0), i) = L(m(;;;0 + 0:), y5,)

for all 6 given a (similar) (z;,,y;,) pair in training set
® Evaluate test loss by training loss at shifted points 6 + 6,V
® Test loss small if original individual loss small at all 6 + éi
® Previous figure used same él =0 for all i

1) Don't compute in practice, just thought experiment to connect generalization to training loss

Example

® Can flat (local) minima be different?
® Does one of the following minima generalize better?

Average training loss

48 49
Example Example
® Can flat (local) minima be different? ® Can flat (local) minima be different?
® Does one of the following minima generalize better? ® Does one of the following minima generalize better?
Training loss 1 Training loss 2
o It depends on individual losses o It depends on individual losses
49 49
Example Example
® Can flat (local) minima be different? ® Can flat (local) minima be different?
® Does one of the following minima generalize better? ® Does one of the following minima generalize better?
Training loss 3 Training loss 4
e It depends on individual losses e It depends on individual losses
49 49
Example Example
® Can flat (local) minima be different? ® Can flat (local) minima be different?
® Does one of the following minima generalize better? ® Does one of the following minima generalize better?
Average training loss Test losses (= Shifted training losses)
e It depends on individual losses e It depends on individual losses
e Let us evaluate test loss by shifting individual training losses
49 49

76

Example

® Can flat (local) minima be different?
® Does one of the following minima generalize better?

Average test loss

e It depends on individual losses
e Let us evaluate test loss by shifting individual training losses
e Do not only want flat minima, want individual losses flat at minima

Individually flat minima

® Both flat minima have Vf(#) = 0, but

® One minima has large individual gradients ||V f;(6)]|

® Other minima has small individual gradients ||V f;(0)||

® The latter (individually flat minima) seems to generalize better
® Want individually flat minima (with small ||V f;(0)]])

® This implies average flat minima

® The reverse implication may not hold

® Overparameterized networks:

® The reverse implication may often hold at global minima
® Why? f(0) =0 and Vf(0) =0 implies f;(6) =0 and Vf;(0) =0

49 50
Outline Training algorithm
o Deep learning
o Learning features
o Model properties and activation functions
* Loss landscape ® Neural networks often trained using stochastic gradient descent
* Residual netwo'rks ® DNN weights are updated via gradients in training
* Overparlamétenzed networks) ® Gradient of cost is sum of gradients of summands (samples)
* Generalization and regularization ® Gradient of each summand computed using backpropagation
o Generalization — Norm of weights
® Generalization — Flatness of minima
* Backpropagation
¢ Vanishing and exploding gradients
51 52
Backpropagation Jacobians
® The Jacobian of a function f : R™ — R™ is given by
'2’4 g’fl
oz D
o |7 T e
oz o o
® Backpropagation is reverse mode automatic differentiation ‘;f"’ Zf"’
L5z, T
® Based on chain-rule in differentiation e The Jacobian of a function f : RP*™ — R is given by
® Backpropagation must be performed per sample rof af
® Our derivation assumes: of dent oo1n oxn
® Fully connected layers (W full, if not, set elements in W to 0) or = K : E S
® Activation functions o;(v) = (0;(v1),...,0;(vp)) element-wise 0‘;/ Bif
(overloading of o; notation) e o
® Weights WW; are matrices, samples z; and responses y; are vectors ® The Jacobian of a function f : RP*™ — R™ is at layer j given by
® No residual connections ofr ... Ofh
Oz 1 Oz jn
[al] — _J . _J e Rmxn
Olic | ofw .. Oim
D51 Djn
the full Jacobian is a 3D tensor in R™*P*"
53 54
Jacobian vs gradient Jacobian vs gradient — Example
® The Jacobian of a function f : R™ — R is given by
of of of ® Consider differentiable f : R™ — R and M € R™*"
dr [’7“"’1 [’m'z] e Compute Jacobian of g = (f o M) using chain rule:
e Th dient of a function f : R" — R is gi b ® Rewrite as g(z) = f(z) where z = Mz
€ gradient of a function J : s given by ® Compute Jacobian by partial Jacobians % and g{
of
V= o % = %% = %%ﬁ =Vf()"M =Vf(Mz)" M eR*"
% ® Know gradient of (f o M)(x) satisfies
i.e., transpose of Jacobian for f : R" — R V(foM)(x)= MTVf(MI) eR"
® Chain rule holds for Jacobians: which is transpose of Jacobian
af of oz
dr 9z 0z
55 56

7

Backpropagation — Introduce states Graphical representation
® Compute gradient/Jacobian of ® Per sample loss function
L(m(zi;0),y:) L(zn+1,9i)
where zjy1 = 0;(Wjz; +b;) for j € {1,...,n}
w.rt. 0 = {(W;,b;)}7_;, where and 2=
m(zi;0) = Woon—1(Wn-10n—2(- -+ (Wao1(Wiz; + b1) + b2)) + bp—1) + bn where Un(u) =y
® Rewrite as function with states z; ® Graphical representation
L(zn+1:9:) 2 o) 2 o) B os() A
where zj41 = 0;(W;z; +b;) for j € {1,...,n} @, .W. .W. Q
s RO IR
where 0, (u) = u D O—CF—O—0O
57 58
Backpropagation — Chain rule Backpropagation — Forward and backward pass
® Jacobian of L(zp41,¥i) W.r.t. z,41 (transpose of gradient)
e Jacobian of L w.r.t. W; and b; can be computed as * Computing Jacobian of L (21, 4:) FEqUIres Zn+1
= forward pass: z1 = ;, zj41 = 0;(Wjz; + b;)
oL 0L Oznn 0zj42 0zj11 ® Backward pass, store d;:
OW; Ozpqr Oz 0zj11 OW; oL OL Ozpi1 0zj42
87L — L 9zpia 92j+2 02j41 0zj11 B Ozny1 Ozn 0241
ab]’ BZW,+1 Oz, 8z_7+1 3b7 7’_/
n+1
where we mean derivative w.r.t. first argument in L pe
® Backpropagation evaluates partial Jacobians as follows o
i+1
oL ((OL 02,1+1> o 0zj42\ 0241 e Compute
ow,; Ozpy1 Ozn O0ziy1) OW;
oL oL o JSRIP OL _ 0L %1 gr D%t
ab; <<d 6n+l> o /“) é‘)]bJrl OW; 0zj1 OW; oW,
' Znt1 O2Zn Zi+1 J OL _ 0L 9zj41 _ 7 0zj41
9 Dz O T oY
59 60
Dimensions Partial Jacobian %
J
® | ” R | B RM+1X7n, N R™i+1
" ez € RY, consequently W € R, by € R o Recall relation 2,1 = 0;(W;z; +b;) and let v; = W;z; + b;
® Chain rule gives
oL = OL Ozni1 \ . Ozjs2 9241 0zj41 0zj41 Ov; . , 0v;
aW; zpi1 O2n Dzj11 ow; 5 = oo ., — dias(0j(v;) 5=
N Y—— —— —— J J J J
1X N1 M1 XNn Njt2 XNjt1 M1 XNjp1 XN — diag((r}(I/ijj +bj))W,-
Ixnn where, with abuse of notation (notation overloading)
1x
Mj+1 O';- (Ul)
aL aL o A oj(u) = :
oL _ 1) Oz Oz o (un,.,)
ab]' 8z"+1 (92" BZ]'+1 Bbj AN
— ® Reason: o;(u) = [oj(u1),..., 7 (Un,.)T with
1xn 3 J+1 i J A s g\Mn
X141 i1 XN o R+ — R7+1, gives
Ixnjq1 ,
) - . oj(u1)
® \ector matrix multiplies except for in last step do; . ,
* Multiplication with tensor % can be simplified du = diag(;(u))
J !
® Backpropagation variables §; € R" are vectors (not matrices) 5 (tn;p)
61 62
. . L .
Partial Jacobian 07 = 371 Information needed to compute 2=
]
njr1 X1 .
¢ Forany vector d;;1 € R™*17, we have ® To compute first Jacobian (‘,)ZL , we need z, = forward pass
6Z‘+1 . ° i !
0 L = o7, diag(0} (W2 + b;))W; Computing
]
oL 0zj41
= (W (6T, diag(a(Wjz; + b)) T)T 5 = O = Wi (G © 0j(Wiz; +b;))" = 0f
7 7
= (W] (841 © o§(W;z; + ;)"
(J (0541 J< 7%+ 55))) is done using a backward pass
where © is element-wise (Hadamard) product .
® We have defined 61, = [)ETL“ then 6 = Wi (65410 0 (Wjz; +bj))
oL Oz, ® All z; (or v; = Wjz; + b;) need to be stored for backward pass
o7 = DL 1 T (W80 © 0l (W +)T o (o = Wz) P
' Ozp ' 0z ! y
Sn 21 o1(-) z2 o2() 23 o3(:) 2
® Consequently, using induction: ~ :\\\v'l,/: 4(_)
& B S S
57 = 9L 7 DI (W50 004 (Wies + b)) I B B P
5=y sy (W 05 s) = S
! ! 5 FO—F—0—C—0—0
63 64

78

. oL . .
Partial Jacobian ;- Partial Jacobian 2% cont’d
J

Computed by
(9L _ 3[/ 32j+1 T aZj+1
OW; — 0zj11 OW,; AR oW ® Stack Jacobians w.r.t. rows to get full Jacobian:

where zj11 = 0;(v;) and v; = Wjz; +b;

® Recall a;{;t[l is 3D tensor, compute Jacobian w.r.t. row [(W;), o . 6]‘11% (0j+1 @ 0§ (Wjzj + b;))lij
0 W/j:ﬁlaég: . 8 P T
: 5J+IW (0j+1© (rj(ﬂ/'jz‘7 +b;))nj 2
L % =6l 8;];;1 S(E)M?]/i)l = 6711 diag(0(vy)) | 2] = (641 © 0§ (Wjzj + b;))2T
5 forall je{1,....,n—1}
0 ® Dimension of result is nj41 X nj, which matches W;

: ® This is used to update W; weights in algorithm
= (E+1 © i (Wizg +0)" |2 | = (G501 © G (Wiz + b5z

Partial Jacobian % Backpropagation summarized
J

1. Forward pass: Compute and store z; (or v; = W;z; + b;):
zjy1 = 0;(Wjzj + b))
where z; = x; and 0,, = Id

® Recall zj41 = 0;(v;) where v; = Wjz; + b;

e Computed by 2. Backward pass:

8; = W] (841 @ 0j(W;z; + b))

OL _ 0L 0Oy _ iy Oz
b, dzjy1 Ov; 9b; T vy Ob;
= (57+1 (O] U}(VVJ'% + bj))T

= 5jTH diag(d}(v))) .
with 6,41 = 52—
3. Weight update Jacobians (used in SGD)

oL .
W = (841 © o} (Wyzj + bj))z]
J
oL T
B = (0511 © o} (Wjz; + b))’
J
67 68
Backpropagation — Residual networks Outline
1. Forward pass: Compute and store z; (or v; = W;z; + b;): .
’ e Deep learning
zjp1 = 0;(Wjzj +bj) + 2 o Learning features

e Model properties and activation functions
where z; = z; and 0, = 1Id

o Loss landscape
2. Backward pass: .
® Residual networks

6 = W] (841 © 0}(W;z; +bj)) + 641 e Overparameterized networks

o Generalization and regularization
with 8,41 = 525 L)
9Znt1 o Generalization — Norm of weights

3. Weight update Jacobians (used in SGD) ® Generalization — Flatness of minima

oL . o Backpropagation
= (0j41 @ G (W;zj + bj))z}
oW, (G40 ©0;(Wjz; +b;))z; « Vanishing and exploding gradients
oL .
e (6501 @ 0§ (Wias +b;))"
J
69 70
Vanishing and exploding gradient problem Vanishing gradient example: Sigmoid
® Assume ||[W;|| <1 for all j and [|d,41]] < C
® Maximal derivative of sigmoid (o) is 0.25
® Then
A . . . oL R T
® For some activation functions, gradients can vanish Hg” _ ”()JH _ |I/VJ1 (5j+l o) (7;(W]zj + b]))H < 0425“5;+1 H
® For other activation functions, gradients can explode J

<0.25" 75,44 < 0.25" O

® Hence, as n grows, gradients can become very small for small 4
® In general, vanishing gradient if o’ < 1 everywhere
® Similar reasoning: exploding gradient if o’ > 1 everywhere

® Hence, need ¢/ = 1 in important regions

71 72

79

Vanishing gradients — Residual networks

® Residual networks with forward pass
zjy1 = 0;(Wjzj +bj) + 25
and backward pass
6 = W] (841 © 0G(W;z; +b)) + 641

® Gradients do not vanish in passes despite small o gain

73

Examples of activation functions

Activation functions that (partly) avoid vanishing gradients

Name o(u) Graph
Tanh ii:ﬂiz %
ReLU max(u,0)
LeakyReLU max(u, qu)
P
if >
ELU u ifu>0
ale" —1) else
e —

74

Exploding gradient — Example

® Assume L-Lipschitz activation (ReLU, Tanh etc have L = 1)
® Forward pass estimation:

llzjallz = o (Wiz; + bj)ll2 < LIW;z; + billa < L([Wjzjll2 + l1b;l2)
< LIW;lzllzill2 + Llibsl2

® Backward pass estimation:

165112 = W, (8501 @ 0(Wiz; + b))l
< HWY]THQH‘SJH © 5(Wjzj +bj)l2
< LIWill2lld5+1])2
® If L <1, ||[Wj|l2 <1 and ||bj]|2 small, gradients do not explode
® RelU “average” L = 0.5 reduces “average estimate”
® Tanh reduces “average estimates” more since
® gj-outputs are constrained to (—1,1)

® “average Lipschitz constant” is smaller

75

Exploding gradient — Residual network

® Assume L-Lipschitz activation (ReLU, Tanh have L = 1)
® Forward pass estimation:

llzj+1ll2 = o (Wjz; + bj)ll2 + [1z5ll2 < (L + LIWjll2)llz;l2 + LI[bs 2

® Backward pass estimation:

185112 = W (8541 © 05 (W25 + b)) 2 + 8541
< (L4 LIW;)l 054112

® Larger estimates than for non-residual networks
® Activations with L < 1 to avoid exploding and vanishing
gradients:
® axRelLU with « € (0,1)
® axTanh with a € (0,1)

76

80

Algorithms and Convergence

Pontus Giselsson

Outline

o Algorithm overview
o Convergence and convergence rates

e Proving convergence rates

What is an algorithm?

® \We are interested in algorithms that solve composite problems
minimize f(z) + g(x)
z

® An algorithm:

® generates a sequence (z)ken that hopefully converges to solution
® often creates next point in sequence according to

Tr1 = Axr

where
® A is a mapping that gives the next point from the current

* Ap = proxwk‘q(l — v,V f) for proximal gradient method

Deterministic and stochastic algorithms

We have deterministic algorithms
Trr1 = ApTk

that given initial zo will give the same sequence (z)ken

We will also see stochastic algorithms that iterate

w1 = Ap(&r)or

where . is a random variable that also decides the mapping
® (xk)ken is a stochastic process, i.e., collection of random variables
® when running the algorithm, we evaluate £ and get a realization
¢ different realization (y)ren every time even if started at same o

Stochastic algorithms useful although problem is deterministic

Optimization algorithm overview

® Algorithms can roughly be divided into the following classes:
® Second-order methods
® Quasi second-order methods
® First-order methods
® Stochastic and coordinate-wise first-order methods
® The first three are typically deterministic and the last stochastic

® Cost of computing one iteration decreases down the list

Second-order methods

Solves problems using second-order (Hessian) information

Requires smooth (twice continuously differentiable) functions

Example: Newton's method to minimize smooth function f:

Tpar = ok — (V2 f(ar) TV f (1)

Constraints can be incorporated via barrier functions:
® Use sequence of smooth constraint barrier functions
® Make barriers increasingly well approximate constraint set
® For each barrier, solve smooth problem using Newton's method
® Resulting scheme called interior point method
® (Can be applied to directly solve primal-dual optimality condition)

Computational backbone: solving linear systems O(n?)

Often restricted to small to medium scale problems

We will cover Newton's method

Quasi second-order methods

® Estimates second-order information from first-order

Solves problems using estimated second-order information

Requires smooth (twice continuously differentiable) functions

® Quasi-Newton method for smooth f
Thy1 = Tk — BV f (1)

where By is:

® estimate of Hessian inverse (not Hessian to avoid inverse)
® cheaply computed from gradient information

® Computational backbone: forming By, and matrix multiplication
® Limited memory versions exist with cheaper iterations

® Can solve large-scale smooth problems

Will briefly look into most common method (BFGS)

First-order methods

Solves problems using first-order (sub-gradient) information

Computational primitives: (sub)gradients and proximal operators

Use gradient if function differentiable, prox if nondifferentiable

Examples for solving miniTmizc f(x)+g(x)
® Proximal gradient method (requires smooth f since gradient used)
@1 = prox, , (z — 1V f(z4))
® Douglas-Rachford splitting (no smoothness requirement)
Zktl = ézk + %(2proxw —I)(2prox,; — I)zk
and =, = proxwf(zk) converges to solution
® [teration often cheaper than second-order if function split wisely

® Can solve large-scale problems

® Will look at proximal gradient method and accelerated version

81

Stochastic and coordinate-wise first-order methods Outline

Sometimes first-order methods computationally too expensive

Stochastic gradient methods:
® Use stochastic approximation of gradient
® For finite sum problems, cheaply computed approximation exists o Algorithm overview
Coordinate-wise updates:
® Update only one (or block of) coordinates in every iteration:

® via direct minimization
® via proximal gradient step

o Convergence and convergence rates

e Proving convergence rates

® Can update coordinates in cyclic fashion
® Stronger convergence results if random selection of block
® Efficient if cost of updating one coordinate is 1/n of full update

Can solve huge scale problems

Will cover randomized coordinate and stochastic methods

9
Types of convergence Convergence for stochastic algorithms
® Stochastic algorithms described by stochastic process (zj)ken
® Let z* be solution to composite problem and p* = f(z*) + g(z*) ® When algorithm is run, we get realization of stochastic process
® We will see convergence of different quantities in different settings ® We analyze stochastic process and will see summability, e.g., of:
® For deterministic algorithms that generate (zy)ken, we will see ® Expected distance to solution: >72° | E[||lzx — z*[|2] < oo
® Sequence convergence: x — =* ¢ Expected function Val'—‘?: >t Elf (z) + glax) — P*Z] < oo
® Function value convergence: f(zy) + g(xk) — p* ® If g =0, expected gradient norm: Y27 E[[|V f(x)[3] < oo
¢ If g =0, gradient norm convergence: ||V f(zx)|l2 — 0 ® Sometimes arrive at weaker conclusion, when g = 0, that, e.g.,:
® Convergence is stronger as we go up the list ® Expected smallest function value:]E[le{rglin 0 flz) —p]—0
® First two common in convex setting, last in nonconvex ® Expected smallest gradient norm: E[z {min” IV f(z)]]2] — 0
€{0,....k
® Says what happens with expected value of different quantities
11
Algorithm realizations — Summable case Algorithm realizations — Convergent case
® Will conclude that sequence of expected values containing, e.g.,: ® Will conclude that sequence of expected values containing, e.g..:
. . . »
Elllox —2*l2] o E[f(zk) +g(zx) —p*] or E[|Vf(xx)ll2] E[min f(z) =p7] or E[_min [Vf(z)]]
is summable, where all quantities are nonnegative converges to 0, where all quantities are nonnegative
® What happens with the actual algorithm realizations? ® What happens with the actual algorithm realizations?
® We can make conclusions by the following result: If ® We can make conclusions by the following result: If
® (Zi)ren is a stochastic process with Zj, 22 ® (Zi)ken is a stochastic process with Z; > 0
® the sequence {E[Z;]}ren is summable: Y7° (E[Z;] < co ® the expected value E[Z] — 0 as k — oo
then almost sure convergence to 0: then convergence to 0 in probability; for all € > 0
P(lim Zy =0) =1 , B
(kgralo r=0) klgrolO P(Z,>¢)=0
i.e., convergence to 0 with probability 1 which is weaker than almost sure convergence to 0
13
Convergence rates Linear rates

A Q-linear rate with factor p € [0,1) can be:

f@p1) + g(zrs1) — p* < p(f (k) + glar) — p*)

® We have only talked about convergence, not convergence rate N .
Bllzksr — 27l2] < pE[l|lzk — 2¥]l2]

Rates indicate how fast (in iterations) algorithm reaches solution
Typically divided into:
® Sublinear rates .
® Linear rates (also called geometric rates) lzg — z*||]2 < p°C
® Quadratic rates (or more generally superlinear rates)

An R-linear rate with factor p € [0,1) and some C' > 0 can be:

this is implied by Q-linear rate and has exponential decrease

Sublinear rates slowest, quadratic rates fastest

Linear rate is superlinear if p = pi, and pr, — 0 as k — oo
Examples:
® (Accelerated) proximal gradient with strongly convex cost
® Randomized coordinate descent with strongly convex cost
® BFGS has local superlinear with strongly convex cost
® but SGD with strongly convex cost gives sublinear rate

Linear rates further divided into Q-linear and R-linear

® Quadratic rates further divided into Q-quadratic and R-quadratic

15

82

Linear rates — Comparison

® Different rates in log-lin plot

10 — =099
10 — p=0.96
p=0.93
107
— p=0.90
10°
104
10%
10®
0 200 400 600 800 1000

® Called linear rate since linear in log-lin plot

17

Quadratic rates

® Q-quadratic rate with factor p € [0,1) can be:
farn) + g(zia) = p* < p(f(ar) + g(ar) — p*)?
#3410 = 2|2 < pllz — 2*[13
® R-quadratic rate with factor p € [0,1) and some C' > 0 can be:
ok —a*ll> < 07 C

* Quadratic (p2*) vs linear (p*) rate with factor p = 0.9:

g
EE
{{
00

® Example: Locally for Newton's method with strongly convex cost

uadratic

SOSTRTN—D
jSisENGiaioy =]
OO ODD
SOSOREDD
SO KEDD
SIS
SOROSEDD
SONISD
et

CooOoooO—
IR UTIO-I0000D

%
%

o
S0
X0

Quadratic rates — Comparison

® Different rates in log-lin scale

100 — p=0.99
— p=0.96

=093
— p=0.90

® Quadratic convergence is superlinear

19

Sublinear rates

® A rate is sublinear if it is slower than linear
® A sublinear rate can, for instance, be of the form

IN
o

fxn) + g(wx) —p*

s — a3

Yk
c

IN

<

)

G
C
%

¥(

=
=.
=}
End
=
=
—
=
5
~
£
IN

where C' > 0 and 1) decides how fast it decreases, e.g.,
® (k) = log k: Stochastic gradient descent vy = ¢/k
® (k) = Vk: Stochastic gradient descent: optimal 7
® (k) = k: Proximal gradient, coordinate proximal gradient
® (k) = k?: Accelerated proximal gradient method
with improved rate further down the list

* We say that the rate is O(y;;) for the different v

® To be sublinear 1 has slower than exponential growth

20

Sublinear rates — Comparison

® Different rates on log-lin scale

10° 1

3]
]
|

s

i

10°®
0 2000 4000 6000 8000 10000

® Many iterations may be needed for high accuracy

21

Rate vs iteration cost

® Consider these classes of algorithms

® Second-order methods

® Quasi second-order methods

® First-order methods

® Stochastic and coordinate-wise first-order methods

® Rate deteriorates and iterations increase as we go down the list |
® [teration cost increases as we go up the list f}

® Performance is roughly (# iterations)x (iteration cost)

® This gives a tradeoff when selecting algorithm

® Rough advise for problem size: small () medium (1)) large ({})

22

Outline

o Algorithm overview
» Convergence and convergence rates
* Proving convergence rates

23

Proving convergence rates

® To prove a convergence rate typically requires

® Using inequalities that describe problem class
® Using algorithm definition equalities (or inclusions)
® Combine these to a form so that convergence can be concluded

® Linear and quadratic rates proofs conceptually straightforward
® Sublinear rates implicit via a Lyapunov inequality

24

83

Proving linear or quadratic rates

® |f we suspect linear or quadratic convergence for Vi, > 0:
Vieyr < oV
where p € [0,1) and p=1or p=2and V; can, e.g., be

Vip =l — a2 or Vi = f(xx) + glax) —p* or
® Can prove by starting with Vj41 (or szﬂ) and continue using
® function class inequalities
® algorithm equalities
® propeties of norms
L]

Vi = IV f(@i)2

Sublinear convergence — Lyapunov inequality

® Assume we want to show sublinear convergence of some Ry > 0
® This typically requires finding a Lyapunov inequality:

Vig1 S Vi + Wi — Ry

where
® (Vi)ken, (Wi)ren, and (Ri)ren are nonnegative real numbers
® (Whk)ken is summable, i.e., W := Y27 (W < o0
® Such a Lyapunov inequality can be found by using
® function class inequalities
® algorithm equalities
® propeties of norms
L]

25 26
Lyapunov inequality consequences Concluding sublinear convergence
® From the Lyapunov inequality:
Vigr < Vie + Wi — Ry, ® Lyapunov inequality consequence restated
we can conclude that Kk k
® V} is nonincreasing if all Wy, =0 SR<Vo+ > Wi<Vo+W
® V. converges as k — oo (will not prove) =0 =0
® Recursively applying the inequality for [€ {k,...,0} gives . .
. . . ® We can derive sublinear convergence for
. = ® Best Ri: (k+1) mingego,... k) R < Ek, Ry
Vir1 <V W, — R <Vo+W-— R ’ =0y
1 S Vot ZZ(; t ; 1= Vot ; ! ® Last Ry (if Ry decreasing): (k+ 1)Ri < Z?:o Ry
o N N N ® Average Ri: Ry = ﬁ“ Z;C:o R,
where W is infinite sum of W}, this implies N .
. . . ® et Ry be any of these quantities, and we have
DRSO Vit Y W< Vot Y Wi <Vo+ W s SR Vot W
=0 =0 =0 Ry < ﬁ < ﬁ
from which we can
® conclude that Ry — 0 as k — oo since R > 0 which shows a O(1/k) sublinear convergence
® derive sublinear rates of convergence for R; towards 0
27 28
Deriving other than O(1/k) convergence (1/3) Deriving other than O(1/k) convergence (2/3)
. k& _
® Other rates can be derived from a modified Lyapunov inequality: ® Restating the consequence: > ,_ N Ry < Vo + W
® We can derive sublinear convergence for
Virr < Vie + Wi — ARy, ® Best Ry: minge(o,... .k} Ri Z[’LD A < ZLO MRy
. . . ® Last Ry (if Ry decreasing): Ry zf oA < MR
with A\x > 0 when we are interested in convergence of Ry, then ® \Weighted average Ry: Ry = Zk Zf o MR
zk:/\lRl <Vo+ zk: W, < Vot W o Let Ry, be any of these quantities, and we have
=0 1=0 5 Zz , Rl Vo N W
k<
® We have R, — 0 as k — o0 if, e.g., Yo A = 00 Z, oA Z, oA
29 30
Deriving other than O(1/k) convergence (3/3) Estimating ¢ via integrals
® Assume that A\, = ¢(k), then (k) < ZLO o(l) and
® How to get a rate out of: Z, Py Vo +W
KGN
. Vo+W Zz 0 0(0)
Ry < ® To estimate 1), we use the integral inequalities
Zl 0 ® for decreasing nonnegative ¢:
® Assume (k) < Zz o At, then ¢ (k) decides rate: k -
o(t)dt + p(k (t)dt + 6(0)
. t=0 ; t=0
Z’ =0 Rl V0‘+ W ® for increasing nonnegative ¢:
S Thon T o k
B(t)dt + (0 / t)dt + ¢(k)
which gives a O(w(k)> rate / ; =0
® If A = cis constant: (k) = c(k + 1) and we have O(1/k) rate ® Remove ¢(k), (0) > 0 from the lower bounds and use estimate:
® If A is decreasing: slower rate than O(1/k)
® If Ay is increasing: faster rate than O(1/k i
k g (1/k) ’L)(k):/ dt<Z(f)
t=0
31 32

84

Sublinear rate examples

® For Lyapunov inequality Vi1 < Vi + Wy, — ARy, we get:
s Vot W r
R <
¥(k)
® et us quantify the rate ¢ in a few examples:
® Two examples that are slower than O(1/k):
® A = ¢(k) =c/(k+ 1) gives slow O(@) rate:

where Ax = 6(k) and (k) = / B(t)dt

t=0

k
W) = [t = clog(t + 1)}y = clog(k + 1)
=0 t+1

® N\, =o(k) =c/(k+1)™ for a € (0,1), gives faster O(kll,(,) rate:

k . 1—a
o) = [et = A = ())

® An example that is faster than O(1/k)
® M\ = d(k) = c(k+1) gives O() rate:

ok
W) = /tzoc(t 1)t = e[A (12T = E((k+1)2 — 1)

33

Stochastic setting and law of total expectation

In the stochastic setting, we analyze the stochastic process
Tpp1 = Ar(€r)zy
We will look for inequalities of the form
E[Vis1lzk] < E[Vi|zk] + E[Wk|zk] — MeE[Rg |2k
to see what happens in one step given xj, (but not given &)
We use law of total expectation E[E[X|Y]] = E[X] to get
E[Vis1] < E[Vi] + E[Wi] — ME[Ry]
which is a Lyapunov inequality
We can draw rate conclusions, as we did before, now for E[Ry]

For realizations we can say:

® If E[Ry] is summable, then Ry — 0 almost surely
® If E[Rx] — 0, then R — 0 in probability

34

Rates in stochastic setting

® Lyapunov inequality E[Vi41] < E[Vi] + E[Wy] — \iE[R}] implies:

3 oo
STAMER] < Vo+ D> EW] < Vo+ W
1=0 1=0
® Same procedure as before gives sublinear rates for
® Best E[Ry]: minje(o,... 1y E[Ri] Ef:(, A < Z::n NE[R)]
e Last E[Ry] (if E[Rx] decreasing): E[Ri] 5o M < F) ME[R)]
® Weighted average: E[R;] = Zykjo by Z,k’zo MNE[R]

® Jensen's inequality for concave min; in best residual reads

in R]< min E[R]
1€{0,...,k} 1e{0,....k}

® |et Rk be any of the above quantities, and we have

Vo-‘rW

E[Ry] < —
ZLO Al

35

85

86

Proximal Gradient Method

Pontus Giselsson

Outline

¢ A fundamental inequality
o Nonconvex setting

o Convex setting

e Strongly convex setting

e Backtracking

o Stopping conditions

o Accelerated gradient method

e Scaling

Proximal gradient method

® We consider composite optimization problems of the form
Ininilmize flx) +g(x)
® The proximal gradient method is
Tp1 = ‘drg';llin (f(-Tk) + V(@) (y - an) + 5 lly — @l + g(y))
= argmin (g(0) + 2 I — (2 = WV S @)I3)

= prox,, ,(zx — %V f(zr))

Proximal gradient — Optimality condition

® Proximal gradient iteration is:
Tt = prox,, o (zr — %V f(2k))
= argmin(g(y) + g1y — (s — V.S (@))|3)
Yy

h(y)

where x4 is unique due to strong convexity of h
® Fermat's rule gives, since g convex, optimality condition:
0e ag(x;c+1) + ah($k+1>
=0g(rs1) + i (@rer — (@6 — WV f(21)))

since h differentiable

® A consequence is that dg(xj+1) is nonempty

3
Proximal gradient method — Convergence rates Assumptions for fundamental inequality
(i) f:R™ — Ris continuously differentiable (not necessarily convex)
(ii) For every xy and 21, there exists By € [n,n7], n € (0,1]:
® We will analyze proximal gradient method in different settings: T X
o Nonconvex Far) < Flan) + V@) @ — ze) + Zllon — 23
* O(1/k fi d residual . . .
. C (1/k) convergence for squared residua where [3) is a sort of local Lipschitz constant
onvex
® O(1/k) convergence for function values (7’”> g:R" = RU {O()} is closed convex
® Strongly convex (iv) A minimizer z* exists and p* = f(z*) + g(2*) is optimal value
® Linear convergence in distance to solution (’U) Proximal gradient method parameters >0
® First two rates based on a fundamental inequality for the method
® Assumption (ii) satisfied with 8, > 8 if f is S-smooth
® Assumptions will be strengthened later
5

A fundamental inequality

For all z € R™, the proximal gradient method satisfies

Flaren) + g(an) < Flan) + V@) (2 — on) — 252 apsr — a3

+9(2) + gy (o = 2113 = llzasr — 23)

where xj11 = prox., g(wk -V f(zk))

A fundamental inequality — Proof (1/2)

Using

(a) Upper bound assumption on f, i.e., Assumption (i)
(b) Prox optimality condition: There exists sx+1 € 9g(T)+1)

0= sk+1 + % (@re1 — (2 — WV f(2x)))

(c) Subgradient definition: Vz,g(z) > g(zx41) + st (2 — Tp41)
F@rs1) + 9(xps1)

(a) . ;

< flan) + V) (@re — 2x) + 2L oee — zell3 + 9(zas1)

(c) .

< flaw) + VIR (@ner — 2n) + Zllawer — ail3 + g(2)
= siq1(z = Trp1)

© fan) + V@) (@ren — ai) + e — ol + 9(2)
7 (@1 — (@x — eV (2r) (2 — 2p1a)

= J(ar) + VI (@) (z = o) + L llans — 23 + 9(2)

+ % @k = 20)T (2 — 2g)

87

A fundamental inequality — Proof (2/2)

® The proof continues by using the equality
(i1 — 20) (2 — Tp1)
= 30z — 213 = lzers = 203 = llzner — zell3)
® Applying to previous inequality gives
f@re1) + 9(@p41)
< flaw) + V)T (2 — o) + %Hmkﬂ —]2+ g(2)
+ 95 H(@rrr — a) T (2 — 2pg)
= [(@r) + V(@) (z = ax) + Bllwera — 24l + 9(2)
+ o (lek = 2113 = llwkss — 203 = llze — zerall3)

which after rearrangement gives the fundamental inequality

Outline

o A fundamental inequality

¢ Nonconvex setting

o Convex setting

e Strongly convex setting

e Backtracking

o Stopping conditions

o Accelerated gradient method

e Scaling

9 10
Nonconvex setting Nonconvex setting — Assumptions
(¢) f:R™ — Ris continuously differentiable (not necessarily convex)
(i1) For every oy and xy 1 there exists By € [n,n7], n € (0,1]:
® \We will analyze the proximal gradient method
Flaern) < Flae) + V@) @ — ze) + Zllon — 2o 3
Tpr1 = Prox., o (v — 1V f (k)
) ok i where 3}, is a sort of local Lipschitz constant
tt .
in a nonconvex setting for solving (iii) g : R™ — R U {oo} is closed convex
minimize f(z) + g(x) (iv) A minimizer z* exists and p* = f(z*) + g(z*) is optimal value
i . v) Algorithm parameters v, € [¢, 2 — €|, where € > 0
® Will show sublinear O(1/k) convergence (v) Alg W€ lep —d
® Analysis based on A fundamental inequality
® Differs from assumptions for fundamental inequality only in (v)
® Assumption (ii) satisfied with 8, > 8 if f is S-smooth
11 12
Nonconvex setting — Analysis Step-size requirements
® Step-sizes 7, should be restricted for inequality to be useful:
— Bk
F@ran) + gl@rer) < flaw) +glen) = (" = B)lzwsr — a3
® Requirements S € [n,n7!] and i, € [e, ﬂ% — €
® Use fundamental inequality ® upper bound ; < % — € can be written as
T Vi =B 2 < 2 5 Bre > Bie S n2e
f@rg1) + 9(wrgr) < flap) + V(zr) (2 = 2) = 25— |lzpr1 — 23 V< grgas, Where k= 7«2(175) 224 >0
1 2 2 B
+9(2) + 3 (ke — 2[5 = lzria — 213) _ I
since upper bound 3; < 1~ gives G € >2np—e>0ande>0
— . . . n2e
® Set z =z to get ® Inverting upper step-size bound and letting § := L= <
) B 8. b —1 S Br+28; ~ Bk ATl B
F@ern) + 9@rpn) < Flan) +9(@e) — (' = 2)wrsr — zell3 LR s B ne T3 20>0
® This implies, by subtracting p* from both sides to have Vj, > 0,
S@rn) + 9(@in) = p° < flan) + glan) = p* = llaers — a3
Vit Vi Ry
where bounds on ~; imply that all Ry are nonnegative
13 14
Lyapunov inequality consequences Lyapunov inequality consequences — g =0
® For g =0, then @441 = 2 — 7V f(xx) and
® Restating Lyapunov inequality o)
lekis =zl = Wl VF(@e)llz - and Re = 69V (i)ll3
f@i1) + g(@ia) =" < flax) + g(ar) —p* = Sllanrs — =3 : . I)
® Lyapunov inequality consequences in this setting:
Viet1 Vie B ® Gradient converges to 0 (since v, > €): ||V f(zk)[]2 = 0
e Consequences: ® Smallest gradient norm square converges as:
® Function value is decreasing sequence (may not converge to p*) . . 2 _ f(zo) —p*
X . . min ||V f(z:)]s < ==
® Fixed-point residual converges to 0 as k — oo: i€{0,....k} IV f(z:)ll2 521{;0 42
lzhs1 — @ill2 = [[prox,, (zx — vV f(zr)) — zll2 = 0 ® |f, in addition, f is 8-smooth and v = %
L]) - 1 1 . *
Best fixed-point residual norm square converges as O(1/k): min (Vi@ < 28(f(z0) — p*)
. s flaw) + glao) = p* €0k} kel
efpin g v —aille < =GRy
since then Bk:Bandmjlf‘%’“:§:5>0
® So, will approach local maximum, minimum, or saddle-point
15 16

88

Fixed-point residual convergence — Implication

What does [|prox., ,(zx — 7%V f(2k)) — zx[l2 = 0 imply?
® By prox-grad optimality condition and ||zg+1 — @k||2 — 0:
8g(ws1) + V(ar) 2 g (an —wpp) = 0
as k — oo (since 71, > €, i.e, 0 <yt < e ') or equivalently

09(rs1) + VI (@re1) 3 v (@ — Breg1) + Vi (@rp1) — V() = 0

w

where uj, — 0 is concluded by continuity of V f
® Critical point definition for nonconvex f satisfied in the limit

Outline

o A fundamental inequality

o Nonconvex setting

o Convex setting

e Strongly convex setting

e Backtracking

o Stopping conditions

o Accelerated gradient method
e Scaling

17 18
Convex setting Convex setting — Assumptions
(i) f:R™ — R is continuously differentiable and convex
(#1) For every @y and xj1 there exists By € [n,n7], n € (0,1]:
L] 1 1 i B
We will analyze the proximal gradient method Flani) < flag) + Vf(-l’k-)T(ﬂka)+ %k”“ _ T/kHHS
Ty = prox,, o (wx — 1V f (k) where $3; is a sort of local Lipschitz constant
in the convex setting for solving (iii) g : R™ — RU{oo} is closed convex
(iv) A minimizer z* exists and p* = f(2*) + g(2*) is optimal value
minimize f(2) + g(z) (v) Algorithm parameters ~y;, € [e, % — €], where e > 0
® Will show sublinear O(1/k) convergence for function values
® Analysis based on A fundamental inequality
® Assumptions as for fundamental inequality plus
® convexity of f
® restricted step-size parameters ; (as in nonconvex setting)
® Assumption (ii) satisfied with 8 > 8 if f is S-smooth
19 20
Convex setting — Analysis Lyapunov inequality — Convex setting
® Use fundamental inequality with z = 2*, where z* is solution
F@i1) + g(zran) < flaw) + V()T (@ —)
=B 2 ® The last inequality on previous slide is Lyapunov inequalit
- L B} x Hl’k+1 - ‘Lleé +g(z‘*) q 4 P yap 4 Y
2 2 ; . ;
+ o (lex = 2[5 = llzper — 2*[13) o1 — a3 < law — 2|3 + (Beye — Dllees — 23
) ————— ——
® and convexity of f Viet1 Vie Wi
@) = fla) + VI @)@ =) = e (fonn) F 9(@rn) ~27)
® This gives R
—1_ b ® Will divide analysis two cases: Short and long step-sizes
. . < f(g*) — Br |, . 2 *
f(@rg1) + g(@pgr) < f(xl) I — H2xk+1 o |3 +92(£L) o Step-sizes i, € [c, i]: gives Bxve < 1 and Wi <0
* * F
+ sz(”Tk =23 = Tk — 2¥[|3) ® Step-sizes i € [%,% —€]: gives Bryr > 1 and Wi >0
which, by multiplying by 2v;, and using p* = f(x*) + g(z*), gives since W, contribute differently
lerrs =13 < llaw — 215 + Beve = Dlleers — zll3
= 2%(f (@p41) + 9(@r41) — P7)
21 22
Short step-sizes Long step-sizes
X . L ® For step-sizes 7y € [, 2 — ¢, the Lyapunov inequality is:
® For step-sizes v, € [e, ﬁ] the Lyapunov inequality implies: P K [ﬁ’c " B] yap q Y
o o N leki1 — 215 < o — 2115 + (Beoe — Dllwsr — 23
— — — — ﬁ/_/
ks — @113 < lek — 2113 ~2v (Flai) + 9wass) — p°) - — ~
—_— k41 k 3
Vi Vi Tk = 2% (f(@h41) + 9(@ps1) — P7)
where we have used W, = 0 (which is OK since W, < 0) Ri
® Nonconvex analysis says function value decreases in every iteration ® From nonconvex analysis can conclude that Wy, is summable
® Consequences: ® We showed for v € e, %k — €, (|lzrs1 — zx||3)ken is summable
® Distance to solution ||z — z*||2 converges as k — 0o ® Since iy bounded, also (Wi)ken is summable
® Function value decreases to optimal function value as: ® Let us define W =372 (Wi
o e Consequences:
Fxre) + glars) —p* < llzo — 2"l ® Distance to solution ||z — x*||2 converges as k — oo
T2 Ef:n Vi ® Function value decreases to optimal function value as:
if fis B-smooth and ~x = 1, then converges as O(1/k): PP —
B (1/k) v o — 2t 3+ W
3l |12 f(@e41) + g9(zesr) —p" < BED
. To— —oYi
J(@rs+1) + g(@rtr) —p* < W =0
for B-smooth f with v, = % denominator replaced by 2(#:1)
23 24

89

Outline

o A fundamental inequality

o Nonconvex setting

o Convex setting

o Strongly convex setting

e Backtracking

e Stopping conditions

o Accelerated gradient method
e Scaling

Strongly convex setting

® We will analyze the proximal gradient method
Trp1 = prox., o (zx — vV f(2r))
in a strongly convex setting for solving
minimize f(x) + g(x)

® Will show linear convergence for distance to solution ||z — z*||2
® Two ways to show linear convergence, we can:

(i) Base analysis on A fundamental inequality
(i) Start by ||xx+1 — *||3 and expand (which is what we will do)

25 26
Strongly convex setting — Assumptions Strongly convex setting — Analysis
Use that
(a) a* = prox, (z* =V f(z*)) for all vy > 0
(7) f:R™ — R is continuously differentiable and o-strongly convex (b) the proximal operator is nonexpansive
(ii) f is B-smooth (c) gradients of S-smooth o-strongly convex functions f satisfy
(i4i) g : R™ — R U {oo} is closed convex (Vi@) = Vi) (= —-y) > ﬁ“vf(av) -Vl + %HT —li3
(7v) A minimizer z* exists and p* = f(z*) + g(z*) is optimal value to get
(v) Algorithm parameters 7 € [¢, 2 — €], where ¢ > 0 lzkrr — z*|I3
(@) *
= |lprox, o (@ = 1V f(xr)) = prox, ,(a* =V f(@")|3
® Assumptions as for fundamental inequality plus (2 (@r — 7V f(zx)) — (" — m-,Vf(l’*))H%
® o-strong convexity of f 12 T .
® [-smoothness of f instead of upper bound for xy4+1 and = [|og — 2|3 = 29 (V () = V(@) (2 — 27)
® restricted step-size parameters 7 (as in (non)convex setting) + 92|V f(xk) — V()3
® But will not use fundamental inequality in analysis (e) s o) ,
< ok — 2%z = 7325 UV (@r) = VI @)z + oBllae — 2713)
. + RNV f @) = V)3 s
2vp08 : . . ;
= (1= 5P lar — 2”113 — wm(gdz — WV F(2) = Vf(@)I3
Lyapunov inequality — Strongly convex setting Short step-sizes
® Lyapunov inequality
s =213 < (1= 220) oy, — 2*|3
2 ! 2
® |yapunov inequality from previous slide is — (g = WV () = V()2
" Wi
e — a3 < (1~ 250 [y — 2|3 o e 2ol e = 0
a2 _ o2 or vy, € [€, 575| implies Wy, >
Wgs — wIVF) = VIEDl: ® Strong monotonicity with modulus o of V f implies
W,
' IVf(@r) = V)2 > oller — ¥l
® Will divide analysis into two cases: Short and long step-sizes .5 . .
.) - o we have linear convergence since
® Step-sizes i € [e, 575 gives Wi > 0) s)
® Step-sizes i € 555, 2 — ¢t gives Wi <0 lerss — 253 < (1 - ngﬁ, - Uz’Yk(giﬁ = 7e)) ek — 273
= (1= 250 4 6292l — 273
= (1 —om)?lan — a3
where (1 — o7;)2 € [0, 1) for full range of
29 30
Long step-sizes Unified rate
® Lyapunov inequality
k1 = 2*[3 < (1 = 2322 |y, — 2*|3
_ W’k(ﬁrﬁ — WV F(ar) — vf(T*>||§ ® By removing .the square an2d checking sign, we have
® for step-sizes v € [¢, 575
Wy,
—z"l2 < (1 = oyi)||zk — 2
for v € [ﬁ7 % — €] implies Wy, <0 lzes1 = 27ll2 < (1 = om)llze = 27ll2
® That f is S-smooth implies V f is 3-Lipschitz continuous: ® for step-sizes 7 € [ﬂ%, 2 —¢:
IVF(e) = VI@)lz < Blew — 272 w1 — 2" fl2 < (Bye = Dllor — @ [l2
® So we have linear convergence since ® The linear convergence result can be summarized as
*)12 2v,08 2 2 *)12
T — 203 < (1= 22 = B =)z — 2|
e I < (f*;(5 (252” 4) 2 lzrs1 — 2*||l2 < max(1 — oy, Bk — 1)||zx — 2*]|2
e o 2 2
= (1 - 2257 + B2 low — 2*[I3
= (1= Bm)llor — 23
where (1 — ;)2 € [0,1) for full range of 7
31 32

90

Optimal step-size

® For fixed-step-sizes 75 = 7, the rate result is
k1 = 2*[l2 < max(1l — oy, By — 1) [lax — 27|12
— —o
P

® Optimal v that gives smallest contraction is v = ﬁ

® (1 — o7) decreasing in vy, optimal at upper bound v = ﬁ
® (By —1) increasing in ~y, optimal at lower bound v = ﬁ
® Bounds coincide at y = ﬁ to give rate factor p = ’2;:

Outline

o A fundamental inequality

o Nonconvex setting

o Convex setting

e Strongly convex setting

« Backtracking

o Stopping conditions

o Accelerated gradient method
e Scaling

33 34
Choose j;, and ~; Choose f; and 7, — Backtracking
. ® Backtracking: choose x > 1, By € [n,77], let I, = 0, and loop
® |n nonconvex and convex analysis, we assume () known such that 1. choose 7 € e, 72— —
. ¢ By,
. . : 2. compute Tit1 = prox., (zx — vV f(ak))
Flarsn) < Flaw) + Ve (@ — 2x) + Zlloe — a3 PULE Tie+1 = IOy [Tk ~ Tk
(@r+1) (@) (@6)” (@)+ +llz 3. if descent condition (DC) satisfied
for consecutive iterates zj, and g1 set k< k+1 // increment algorithm counter
L i K set I «+ li // store final backtrack counter
® This is an assumption on the function f set Br — B, // store final f variable
® We call it descent condition (DC) break backtrack loop
® |f fis B-smooth, then S = 3 is valid choice since else .
! set Bk, +1 < KBk, // increase backtrack parameter
. R AT . B, 2 set I+l +1 // increment backtrack counter
F) < F(@) + V) —) + Sl — ol g
for all z,, then we can select v, € [57% —¢ ® Larger (i, gives smaller upper bound for step-size ;.
® Forwardtracking on (3, , backtracking for v, upper bound
35 36
When to use backtracking Outline
. A fundamental inequalit;
® fis f-smooth but constant § unknown: ¢ . q Y
® initialize Bk,0 = Bj_1,7,_, to previously used value * Nonconvex setting
® then (Bk)ken nondecreasing o Convex setting
¢ finally B > B (if needed), then e Strongly convex setting
® step-size bound ;. € [¢, 5 2_ _ ¢] makes (DC) hold directly i
. Prosliy L o Backtracking
® so will have constant (3, after finite number of algoritm iterations . .
® Vf locally Lipschitz and sequence bounded (as in convex case): o Stopping conditions
® initialize Bx,0 = 3, for some pre-chosen B>0 o Accelerated gradient method
® reset to same value (3 in every algorithm iteration e Scaling
® will find a local Lipschitz constant
37 38

When to stop algorithm?

® Consider minimize f(z) 4+ g(z)
x
® Apply proximal gradient method w311 = prox,, ,(zx — vV f(2r))

® Algorithm sequence satisfies

09(wps1) + V(@rt1) v (@ — Tpg1) + VI (@he1) — Vf(zr) = 0

w

is ||ug||2 small a good measure of being close to fixed-point?

39

When to stop algorithm — Scaled problem

Let a > 0 and solve equivalent problem minimize af(z) + ag(z):
z

® Denote algorithm parameter 7, = 2=
® Algorithm satisfies:
Tk+1 = PTOX%,,&,W(% — Yok Vaf(zy)) = pl'OXn,,cy(Ik, -V f(xk))
i.e., the same algorithm as before
® However, u, k in this setting satisfies
Uak = Yo i (@K — Tt1) + Vaf(zri1) — Vaf(ay)

a(v, M@k — zreg1) + Vi (@ri1) — V(@)
= au

i.e., same algorithm but different optimality measure

® Optimality measure should be scaling invariant

40

91

Scaling invariant stopping condition

® For $-smooth f, use scaled condition %uk

puk = 500 (@ = wra1) + VI (@) = V(@)

that we have seen before
® Let us scale problem by a to get minimize af(z) + ag(x), then
® smoothness constant 3, = af scaled by a = use v4,x = "T’C
® optimality measure ium = %auk = Luy remains the same
so it is scaling invariant
® Problem considered solved to optimality if, say, %|ux[2 < 1076

® Often lower accuracy 1073 to 10~ is enough

Example — SVM

® (lassification problem from SVM lecture, SVM with
® polynomial features of degree 2
® regularization parameter A = 0.00001

41 42
Example — Optimality measure Example — SVM higher degree polynomial
e Plots 8 |luglla = 87 v H @k — 2rr1) + Vi (@rr1) — Vi (@r)]|2 ¢ Classification problem from SVM lecture, SVM with
P v . . (] 1
® Shows 37 !||lug||2 up to 20'000 iterations polynomial features of degree 6
. i . ® regularization parameter A = 0.00001
® Quite many iterations needed to converge
o e e w o m
43 44
Example — Optimality measure QOutline
* Plots 57 urllz = A7 Iy 2k — 2iar) + Vi (2ne1) = V()2
® Shows 371 |luk||> up to 200000 iterations (10x more than before)
® Many iterations needed for high accuracy o A fundamental inequality
w0t o Nonconvex setting
o Convex setting
o Strongly convex setting
o o Backtracking
=02 o Stopping conditions
= . o Accelerated gradient method
" e Scaling
L
45 46
Accelerated proximal gradient method Accelerated proximal gradient method — Parameters
® Consider convex composite problem ® Accelerated proximal gradient method
minimize f(z)+g(x) U = @5 + O (@ — 1)
where Tht1 = proxw(yk =YV f(yr))
® f:R"™ — Ris B-smooth and convex . X 1
e §:R" - RU {oo} is closed and convex ® Step-sizes are restricted v € (0, 3]
® Proximal gradient descent ® The 0, parameters can be chosen either as
_ k-l
Tpq1 = prox, (zx — ¥V f(2k)) Ok = t52
achieves O(1/k) convergence rate in function value or 0, = #2171 where
Tr
® Accelerated proximal gradient method *
_ 1+, /1+487)
yr = o, + O (v — Tp—1) ty = ——5——
Tt = Prox, (yr — YV (yr)) these choices are very similar
(with specific 0),) achieves faster O(1/k?) convergence rate ® Algorithm behavior in nonconvex setting not well understood
47 48

92

Not a descent method

® Descent method means function value is decreasing every iteration
® We know that proximal gradient method is a descent method

® However, accelerated proximal gradient method is not

Accelerated gradient method — Example

® Accelerated vs nominal proximal gradient method
® Problem from SVM lecture, polynomial deg 6 and A = 0.0215

49 50
Accelerated gradient method — Example Outline
® Accelerated vs nominal proximal gradient method
® Problem from SVM lecture, polynomial deg 6 and A = 0.0215 o A fundamental inequality
" e Nonconvex setting
1
Accelerated o Convex setting
101 —_ i
Nominal o Strongly convex setting
o* o Backtracking
107 o Stopping conditions
10 e Accelerated gradient method
109 e Scaling
10
o 7EI 2000 4000 6000 8000 10000
50 51

Scaled proximal gradient method

® Proximal gradient method:

301 = argmin <f(wk> VST~ 2) + oy — il +g<y>)
Yy

Fer, ()

approximates function f(y) around z) by f,k(y)
® The better the approximation, the faster the convergence

® By scaling: we mean to use an approximation of the form
For) = () + V(@) (v — 2) + 2=y — 2l

where H € R"*" is a positive definite matrix and ||z||%, = 27 Hz

52

Gradient descent — Example

® Gradient descent on [3-smooth quadratic problem

minimize l 1 fTo1 —0a o1
z 2 |xo —-0.1 1 T

® Step-size y = % and norm || - ||2 in model

Gradient descent — Example

® Gradient descent on [3-smooth quadratic problem

o 1 [e] [0 —01] [m
e 5 e, [—01 1 | |ae

® Step-size y = % and norm || - ||2 in model

Gradient descent — Example

® Gradient descent on [3-smooth quadratic problem

o 1 fe] [0l —01] [a
e 5 e, (-0 1 | |ae

® Step-size y = % and norm || - ||2 in model

93

Gradient descent — Example

® Gradient descent on [3-smooth quadratic problem

o 1] o1 —01] [a
minimize 2 | o1 1 .

® Step-size vy = % and norm || - ||2 in model

Gradient descent — Example

® Gradient descent on [3-smooth quadratic problem

o 1 [e]T [0 —041] [
minimize 2 | o1 1 .

® Step-size 7 = % and norm || - ||2 in model

Gradient descent — Example

® Gradient descent on /-smooth quadratic problem
minimize l 1 flo1 —01 "
@ 2 |z —0.1 1 T2

® Step-size ¥ = § and norm || - || in model

53

Scaled gradient descent — Example

® Gradient descent on /3-smooth quadratic problem

o L] 01 —0a] [
minimiz 2 |0 o1 1 P

® Scaling H = diag(V?f), v is inverse smoothness w.r.t. | - ||z

Scaled gradient descent — Example

® Gradient descent on [3-smooth quadratic problem

minimize l 1 fTo1 —01 o1
27 9 |z (01 1| @

e Scaling H = diag(V?2f), v is inverse smoothness w.r.t. |- || g

Scaled gradient descent — Example

® Gradient descent on [3-smooth quadratic problem

minimize 1 1 fTo1 —0a o1
L 2 |xo —-0.1 1 T

e Scaling H = diag(V?2f), v is inverse smoothness w.r.t. | - ||g

Scaled gradient descent — Example

® Gradient descent on [3-smooth quadratic problem

minimiz l 1 ! 0.1 =0.1} 1z
29) |—01 1 |

e Scaling H = diag(V?2f), v is inverse smoothness w.r.t. | - ||g

Scaled gradient descent — Example

® Gradient descent on [3-smooth quadratic problem

winimige L [E1]T[01 —0] [
22 9 ey -0 1| |a

e Scaling H = diag(V?2f), v is inverse smoothness w.r.t. | ||z

94

Scaled gradient descent — Example

® Gradient descent on [3-smooth quadratic problem

o 1 [e]T [0 —04] [
T 5 e |—01 1 [

e Scaling H = diag(V?f), v is inverse smoothness w.r.t. || - ||

Smoothness w.r.t. || - ||z

What is || - || #?

® Requirement: H € R"*™ is symmetric positive definite (H > 0)
® The norm ||z||3 := 2T Hx, for H = I, we get ||z||? = ||=|)3

Smoothness
® Function f: R" — R is S-smooth if for all z,y € R™:
f) < f@) + V@) "y —a) + §llz - yl3
f) = f@) + V@) (y—a) = Sllz -yl
® We say f Bp-smoothness w.r.t. scaled norm || - || g if
FW) < f@) + V@) (v —2) + o -yl
fy) = f@) + V@) (y —2) = Bz —yll5
for all z,y € R™

® If fis smooth (w.r.t. |- ||2) it is also smooth w.r.t. || - | &
54 55
Example — A quadratic Scaled proximal gradient for quadratics
® Let f(z) = 22" Ha = §||z|} with H =0
® fis l-smooth w.r.t || - ||z (with equality):
Il €) ® Let f(z) = 327 Ha with H > 0, which is 1-smooth w.r.t. | - ||z
f@) + Vi) (y-x)+ %”1' -yl ® Approximation with scaled norm || - ||z and 7, = 1 satisfies Vay:
1,7 T 1 2
— LaTHa+ (Ho)"(y - o) + Sz — ol i . ,
Jor(y) = f(ar) + V(@e) (y — xn) + 5llae —ylly = f(y)
= 32" Ho + (He) (y — 2) + 3(|2l3 — 2(H2)"y + |lyllF)
= Lyl = fw) since f is 1-smooth w.r.t. || - ||z with equality
® An iteration then reduces to solving problem itself:
which holds also if adding linear term ¢”x to f N
® fis Amax(H)-smooth (w.r.t. || -|[|2), continue equality: Tht1 = arg;nin(ftk () +9(y) = arg;nin(f(y) +9(y))
; T 2
fy) = F@)+ V@) (y—)+ 5z —yl% ® Model very accurate, but very expensive iterations
Amax (H
< f@) + V(@) (y - 2) + 225z — g5
much more conservative estimate of function!
56 57
Scaled proximal gradient method reformulation Computational cost
P g p
® Proximal gradient method with scaled norm || - ||
. - L) ® Assume that H is dense or general sparse
Tr+1 = arg;nln (f(“Lk) + Vflzr) (y—2) + ﬁ”y —allg + 9(!/)) ® H~' dense: cubic complexity (vs maybe quadratic for gradient)
) ® H~! sparse: lower than cubic complexity
= argmin (g(y) + ﬁHy — (zp —yH? Vf(”)”ﬁ]) ® prox!! : difficult optimization problem
v " » ® Assume that H is diagonal
= prOX%g@?k —wH TV f () ® H~': invert diagonal elements — linear complexity
: . . prox;’fkg: often as cheap as nominal prox (e.g., for separable g)
where H = I gives nominal method ® this gikves individual step-sizes for each coordinate
* Computatlon_al dlfFerenlce per iteration: ® Assume that H is block-diagonal with small blocks
1. Need to invert H™" (or 5.°|Ve Hdy = .vf@”’)) ® H~': invert individual blocks — also cheap
2. Need to compute prox with new metric . proxig: often quite cheap (e.g., for block-separable g)
proxf;lkq(z) = arg’min(g(m) + ﬁHT —z|%) ® |f H = I, method is nominal method
that may be very costly
58 59
Convergence Example — Logistic regression
® |ogistic regression with 6 = (w, b):
® We get similar results as in the nominal H = I case N .
inimi i)+b P T (o P
® We assume By smoothness w.r.t. |- | g minimize) log(1 +¢" Pty — g (wT d(a;) + b) + 3[|w]3
® We can replace all || - ||z with || - ||z and Vf with H'V f: =t
® Nonconvex setting with v, = ﬁ on the following data set (from logistic regression lecture)
® Polynomial features of degree 6, Tikhonov regularization A = 0.01
min ||V f(z)]|%-1 < 2Bu(f(x0) + g(w0) —p") ® Number of decision variables: 28
1€{0,....k} k+1 .
® Convex setting with v, = i . *
. Brllro — 2|k .
) — il L S |F 2
fak) + glzr) —p" < STCE) .
® Strongly convex setting with f om-strongly convex w.r.t. || - ||a "
llzrt1 = 2"l < max(Bay — 1,1 = ony)|zr — 2™ ||
60 61

95

Algorithms

Compare the following algorithms, all with backtracking:

1. Gradient method
2. Gradient method with fixed diagonal scaling
3. Gradient method with fixed full scaling

Fixed scalings

® Logistic regression gradient and Hessian satisfy with L = [X, 1]
VFO) =L (o(LO) —Y) + A,0 V*f(0) = LT0'(LO)L + A,

where o is the (vector-version of) sigmoid, and I,,(w,b) = (w,0)
® The sigmoid function o is 0.25-Lipschitz continuous

® Gradient method with fixed full scaling (3.) uses
H =025L"L+),
® Gradient method with fixed diagonal scaling (2.) uses

H = diag(0.25L" L + \L,)

62 63
Example — Numerics Example — Numerics
e Logistic regression polynomial features of degree 6, A = 0.01 o Logistic regression polynomial features of degree 6, A = 0.01
o Standard gradient method with backtracking (GM) o Gradient method with diagonal scaling (GM DS)
o = &os
64 64
Example — Numerics Comments
o Logistic regression polynomial features of degree 6, A = 0.01
o Gradient method with full matrix scaling (GM FS) ® Smaller number of iterations with better scaling
® Performance is roughly (iteration cost)x (number of iterations)
® We have only compared number of iterations
N " ® |teration cost for (GM) and (GM DS) are the same
® lteration cost for (GM FS) higher
o o — gM DS ® Need to quantify iteration cost to assess which is best
® In general, can be difficult to find H that performs better
64 65

96

Stochastic Gradient Descent

Qualitative Convergence Behavior

Pontus Giselsson

Outline

e Stochastic gradient descent

o Convergence and distance to solution

o Convergence and solution norms

o Overparameterized vs underparameterized setting
o Escaping not individually flat minima

o SGD step-sizes

e SGD convergence

Notation

Optimization (decision) variable notation:
® Optimization literature: z,y, z
® Statistics literature: 3
® Machine learning literature: 6,w,b

Data and labels in statistics and machine learning are x,y

Training problems in supervised learning

N
- I - 0). v
HllnlelanC Z (m(zi;0),y:)

=1

optimizes over decision variable 0 for fixed data {(z;, v:)}Y,

Optimization problem in standard optimization notation
minimize f(x)
z

optimizes over decision variable x

Will use optimization notation when algorithms not applied in ML

Gradient method

Gradient method is applied problems of the form
Ininigniz€ f(z)
where f is differentiable and gradient method is
Tpp1 = ap — WV [(21)

where v, > 0 is a step-size
f not differentiable in DL with ReLU but still say gradient method

For large problems, gradient can be expensive to compute
= replace by unbiased stochastic approximation of gradient

Unbiased stochastic gradient approximation

Stochastic gradient estimator:
® notation: @f(z)
® outputs random vector in R" for each z € R"

Stochastic gradient realization:
® notation: Vf(z): R" — R"
® outputs, Vo € R, vector in R™ drawn from distribution of V f(z)

® An unbiased stochastic gradient estimator ﬁf satisfies Vo € R™:

EVf(z) = Vf(x)

If x is random vector in R™, unbiased estimator satisfies

E[Vf(z)|z] = Vf(z)

(both are random vectors in R"™)

Stochastic gradient descent (SGD)

The following iteration generates (zj)ken of random variables:
Tpr1 =z — 1V f (@)

since V f outputs random vectors in R"

Stochastic gradient descent finds a realization of this sequence:
Tpy1 = 2k — V[(1)

where (z1)en here is a realization with values in R™

Sloppy in notation for when xy, is random variable vs realization

Can be efficient if evaluating %f much cheaper than V f

Stochastic gradients — Finite sum problems

® Consider finite sum problems of the form

N
minilmize %j (Z f,(r))

i=1
f@)
where i\, is for convenience and gives average loss

® Training problems of this form, where sum over training data

® Stochastic gradient: select f; at random and take gradient step

Single function stochastic gradient

Let I be a {1,..., N}-valued random variable

Let, as before, ﬁf denote the stochastic gradient estimator

Realization: let i be drawn from probability distribution of I
Vf(z) = Vfi(2)

where we will use uniform probability distribution

Stochastic gradient is unbiased:

N N
E[Vf(@)] =Y pVfix) =%y Vi(z) = Vf(z)
i=1 i=1

97

Mini-batch stochastic gradient

® Let B be set of K-sample mini-batches to choose from:

® Example: 2-sample mini-batches and N = 4:
B= {{17 2}, {L 3}7 {174}~ {27 3}’ {2a 4}7 {374}}

® Number of mini batches (2) each item in (}_]) batches

® Let B be B-valued random variable

® Let, as before, V f denote stochastic gradient estimator

® Realization: let B be drawn from probability distribution of B

Vi) =%) Viilz)

i€B

N-1
K-1

where we will use uniform probability distribution
pp=p(B=B)= ﬁ
K

® Stochastic gradient is unbiased:

M=

EV0) = oy S04 L VA = 5 S Vae) = 4 3 VA = V@)

K

Stochastic gradient descent for finite sum problems

® The algorithm, choose 2y € R™ and iterate:

1. Sample a mini-batch By € B of K indices uniformly
2. Update

Thy1 = Tk — F Z Vfi(zx)
JEB
® Can have B = {{1},..., {N}} and sample only one function

® Gives realization of underlying stochastic process

BeB i€B i=1
9 10
Outline Qualitative convergence behavior
® Consider single-function batch setting
® Assume that the individual gradients satisf
e Stochastic gradient descent Y incividual gradien 1Sty
» Convergence and distance to solution (Vi) (V@) > p
o Convergence and solution norms o . - .
R R R for all i, j and for some 1 € R (i.e., can be positive or negative)
o Overparameterized vs underparameterized setting
o Escaping nc‘>t individually flat minima Vf'j(;)fz(x) V fa(x))
o SGD step-sizes Vii(z)
o SGD convergence
€ p=05 p=—077" V@)
Will larger or smaller p likely give better SGD convergence? Why?
11 12
Qualitative convergence behavior Minibatch setting
® Consider single-function batch setting
® Assume that the individual gradients satisfy
T .
(Vfu(@)) (Vf3(2)) = p ® Larger minibatch gives larger 1 and faster convergence
for all 4, j and for some 1 € R (i.e., can be positive or negative) ® Comes at the cost of higher per iteration count
® Limiting minibatch case is the gradient method
N o Vi(z) ® Tradeoff in how large minibatches to use to optimize convergence
/ ® Other reasons exist that favor small batches (later)
w=—077 "
Will larger or smaller likely give better SGD convergence? Why?
o Larger 1 gives more similar to full gradient and faster convergence
12 13

SGD - Example

eletci+eo+c3=0
« Solve minimize, (§(|lz — 1|3 + [l — call3 + llo — call3)) = 23 +
o How will trajectory look for SGD with v, = 1/37

Levelsets of summands Levelset of sum

14

SGD - Example

eletci+co+c3=0
« Solve minimize, (3 ([l — c1ll3 + & — 23 + [l = es]3)) = 3ll=l3 + ¢
o How will trajectory look for SGD with v, = 1/37

Levelsets of summands Levelset of sum

98

SGD - Example

eletci+co+ce3=0
« Solve minimize, (3 (2 — 1| + 1z — 2l + 1z — esll3)) = Llall3 + ¢
o How will trajectory look for SGD with ~, = 1/37

SGD - Example

eletci+co+ce3=0

e Solve minimize, (3 (

3l =1l + llz — call3 + [l — es3)) = $l3 + ¢
o How will trajectory look for SGD with v, = 1/37

Levelsets of summands Levelset of sum

o Fast convergence outside “triangle” where gradients similar, slow inside

o Constant step SGD converges to noise ball
14

Levelsets of summands Levelset of sum

o Constant step GD converges (in this case straight to) solution (right)

o Difference is noise in stochastic gradient that can be measured by p
14

SGD - Example zoomed out
e Same example but zoomed out
o Solve rﬂinirﬂizez(%(ﬂz —c1l3+llz —call3 + |z —csl|?) = %HIH% +c

o How will trajectory look with v = 1/3 from more global view?

SGD - Example zoomed out
e Same example but zoomed out
e Solve minimizem(%(nz —clli+]z — el + |z —c3)?) = %HzH% +c

o How will trajectory look with v = 1/3 from more global view?

Levelset of sum

Levelsets of summands

Levelsets of summands Levelset of sum

e Far form solution V f; more similar to V f, larger 1 = faster convergence

15 15
Qualitative convergence behavior Drawback of diminishing step-size
® Often fast convergence far from solution, slow close to solution ® Diminishing step-size typically gives slow convergence
® Fixed-step size converges to noise ball in general ® Often better convergence with constant step (if it works)
® Need diminishing step-size to converge to solution in general ® |s there a setting in which constant step-size works?
16 17
Outline Fixed step-size SGD does not converge to solution
® \We can at most hope for finding point Z such that
e Stochastic gradient descent Vi) =0
o Convergence and distance to solution
. ® Let 2, =, and assume V f;(x)) # 0, then
e Convergence and solution norms
o Overparameterized vs underparameterized setting Th1 = g — WV fi(zr) # xp
e Escaping not individually flat minima . N
. i.e., moves away from solution
o SGD step-sizes o . B . B
® Only hope with fixed step-size if all V f;(Z) = 0, since for 2, =
e SGD convergence
Tppr = Tk — WV filzr) = 2
independent on 7, and algorithm stays at solution
® How does norm of individual gradients affect local convergence?
18 19

99

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

Fa(a) () (h + f)(@)

¥ N
(—0.83, —1) (0.83, —1)

(0, =1)

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fi(z) (f1+ f2) (=)

NN

fl@wo) = f* =2.45

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fi(=z) (fr + f2)(@)

)4\/

flx1)—f*=0

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83

® SGD with v = 0.07 and cyclic update order:

fi(z) (f1+ f2)(x)

)L\/

flaz) — f* =1.82

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f3(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fi(z) (f1 + f2)(z)

SN

flas) — f* =011

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f3(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fi(@) (f1 + f2)(z)

NN

flaa) = f* =147

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f»(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fi(zx) (f1 4+ f2)(z)

SN

fes)— f* =018

Example — Large gradients at solution

® Individal gradients at solution 0: V f;(0) = 0.83, V f»(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fa(x) fi(z) (f1+ f2)(x)

XX
z6

fwe) — f* =131

100

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fi(@) (f1+ f2)(@)

SN

flw7) - f*=0.28

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fi(z) (f1+ f2) (=)

NN

flas) = f* =116

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

f2(z) Ji(=) (f1 + f2) (=)
flzg) — f**ogf’

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fi(z) (f1+ f2)(x)

)L\/

fz10) — f* =1.07

20

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f3(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fi(z) (f1 + f2)(z)

NN

o) — f* = 1.07

® Will not converge to solution with constant step-size

20

Example — Small gradients at solution

® Shift f; and fy; “outwards” to get new problem

® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(@) fi(x)

(f1+ f2) (@)

(0.02, -1) (-0.02, —1) (0, —1)

Example — Small gradients at solution

® Shift f; and fy “outwards” to get new problem

® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(z) fi(z)

(f1 + f2)(z)

NS

fxo) — f* =245

Example — Small gradients at solution

® Shift f; and fy “outwards” to get new problem

® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(x) fi(@)

(f1+ f2)(@)

NS

T

flz1) = f* =013

101

Example — Small gradients at solution

® Shift f; and fo “outwards” to get new problem
® Individal gradients at solution 0: V f1(0) = 0.02, V f5(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

Ja(x) Ji(z)

(fr + f2)(@)

NS

xr2
fxa) — f* =013

Example — Small gradients at solution

® Shift f1 and fy “outwards” to get new problem
® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

f2(=) fi(=@)

(f1+ f2) (@)

NS

x3
flas) — £+ =0.06

Example — Small gradients at solution

® Shift f; and fy “outwards” to get new problem

® Individal gradients at solution 0: V f1(0) = 0.02, V f3(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(z) fi(z)

(f1 + f2)(@)

NS

T4
Flxa) = f* =0.06

Example — Small gradients at solution

® Shift f; and fy “outwards” to get new problem

® Individal gradients at solution 0: V f1(0) = 0.02, V f3(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(z) Ji(z)

(f1 + f2)(@)

NS

s
flas) — f* =0.03

Example — Small gradients at solution

® Shift f; and fy “outwards” to get new problem

® Individal gradients at solution 0: V f;(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(x) fi(z)

(f1 + f2) (@)

NS

T6
f(we) — f* =0.03

Example — Small gradients at solution

® Shift f; and fy; “outwards” to get new problem

® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(@) fi(x)

(f1+ f2) (@)

NS

o
flwr) — f* = 0.02

Example — Small gradients at solution

® Shift f; and fy “outwards” to get new problem

® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(z) fi(z)

(f1 + f2)(z)

NS

g
flws) = f* =0.02

Example — Small gradients at solution

® Shift f; and fy “outwards” to get new problem
® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(=) fi(=@)

(f1 + f2) (@)

NS

T9

(o) — f* = 0.01

102

Example — Small gradients at solution Example — Small gradients at solution
® Shift f; and fo “outwards” to get new problem ® Shift f1 and fy “outwards” to get new problem
® Individal gradients at solution 0: V f1(0) = 0.02, V f5(0) = —0.02 ® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order: ® SGD with v = 0.07 and cyclic update order:
fa(x) Ji(z) Ja(z) Ji(@)
(f1+ f2) () (fr + f2) (@)
10 10
f(z10) — f*=0.01 f(z10) — f* =0.01
® Much faster to reach small loss
21 21
Convergence and individual gradient norm Outline
e Stochastic gradient descent
Local convergence of stochastic gradient descent is: * Convergence and distance to solution
D . . e Convergence and solution norms
® slow if individual functions do not agree on minima . 3 .
o . B . e Overparameterized vs underparameterized setting
® individual norms “large” at and around minima j o .
® faster if individual functions do agree on minima * Escaping nc‘)t individually flat minima
® individual norms “small” at and around minima * SGD step-sizes
o SGD convergence
22 23
Over- vs under-parameterized models Overparameterization — LS example
® Data A € RV*", b € RY, and 2 € R®
o Model overparameterized if: ® Consider least squares problem
® in regression, zero loss is possible N
® in classification, correct classification with margin possible minimize %HAx _ ng _ Z %((lz‘-”ﬁ _ bi>2
® |ogistic loss gives close to 0 loss T ot
® hinge loss gives 0 loss f(=) B Jilx)
® Model underparameterized if the above does not hold 1 R R
where a; € R*"™ are rows in A and problem is
® overparameterized if n > N (infinitely many 0-loss solutions)
® underparameterized if n < N (unique solution if A full rank)
24 25
Convergence — LS example Convergence — LS example
® Random problem data: A € R200%100 p ¢ R290 from Gaussian ® Random problem data: A € R200%100 p ¢ R290 from Gaussian
® Underparameterized setting and unique solution ® Underparameterized setting and unique solution
® |ocal convergence of SGD quite slow: ® Norms of V f;(z*) = %(aix* — b;) quite large:
104 20
18
10 " I
0} e A . . |
: |
= 02 oo |
/L E
i S |
=
10 6 ’
i
108
2
10710 0
200 400 600 800 1000 0 50 100 150 200
epoch k index i
26 26

103

Convergence — LS example

® Random problem data: A € R200%1000 '} ¢ R200 from Gaussian
® Overparameterized, many 0-loss solutions, larger problem
® Convergence of SGD much faster:

Convergence — LS example

® Random problem data: A € R200x1000 4 ¢ R200 from Gaussian
® Overparameterized, many 0-loss solutions, larger problem
® Individual norms V f;(2*) = (a;z* — b;) = 0:

Vfi(a*)

200 400 600 800 1000 o 50 100 150 200
epoch k index i
26 26
Convergence — DL example Convergence — DL example
® (lassification problem: logistic loss ® (lassification problem: logistic loss
® Network: Residual, ReLU, 3x5,2,1 widths (5 layers) ® Network: Residual, ReLU, 15x25,2,1 widths (17 layers)
® Underparameterized: ® QOverparameterized:
* * * *
* *
¥ *
3 o
: * ’ * *
N 4 N %
* *
27 27
Convergence — DL example Convergence — DL example
® (lassification problem: logistic loss ® (lassification problem: logistic loss
® Network: Residual, ReLU, 3x5,2,1 vs 15x25,2,1 ® Network: Residual, ReLU, 3x5,2,1 vs 15x25,2,1
® Convergence of “best gradient” (final loss: 0.17 vs 0.00018): ® Final norm of individual gradients (final loss: 0.17 vs 0.00018):
1070 16
14
o "
10° <
E 8 e
FEES S
g = .
&
1071 2 /‘
. AN A
0 200 400 600 800 1000 0 10 20 30 40 50
epoch k index i
27 27
Overparameterized networks and convergence Outline
o Stochastic gradient descent
o Convergence and distance to solution
. . o Convergence and solution norms
® Overparameterized models seems to give faster SGD convergence . . .
o) o Overparameterized vs underparameterized setting
® Reason: individual gradients agree better! . s .
o Escaping not individually flat minima
o SGD step-sizes
e SGD convergence
28 29

104

Step-length

® The step-length in constant step SGD is given by

llzke1 = zll2 = V[V fi(zp)l2

i.e., proportional to individual gradient norm

® The step-length in constant step GD is given by
k1 = @ellz = VIV S (@p)ll2

i.e., proportional to full (average) gradient norm

Flatness of minima

® Is SGD or GD more likely to escape the sharp minima?

Average training loss

30 31
Flatness of minima Example
® Flat (local) minima can be different
® |s SGD or GD more likely to escape right/left minima?
® |s SGD or GD more likely to escape the sharp minima?
Average training loss
[
e Impossible to say only from average training loss
31 32
Example Example
® Flat (local) minima can be different ® Flat (local) minima can be different
® |s SGD or GD more likely to escape right/left minima? ® |s SGD or GD more likely to escape right/left minima?
o GD will stay in both minima (Vf(zx) =0 = zp41 = o) o GD will stay in both minima (Vf(z)) =0 = zp41 = z)
o SGD will stay in right minima (V fi(zr) = 0 = zp41 = x1)
o SGD may escape left minima (||V fi(zr)|l2 # 0 = zp41 # x1)
32 32
Example Example
® Flat (local) minima can be different ® Flat (local) minima can be different
® Is SGD or GD more likely to escape right/left minima? ® Is SGD or GD more likely to escape right/left minima?
Ty Tk
o GD will stay in both minima (V f(zx) =0 = 2p41 = %) o GD will stay in both minima (Vf(zx) = 0= 241 = %)
o SGD will stay in right minima (V fi(zx) = 0 = z41 = x1) o SGD will stay in right minima (V fi(zx) =0 = x4 = @)
o SGD may escape left minima (||V f;(zx)||2 # 0 = zp41 # zk) o SGD may escape left minima (||V f;(zx)||2 # 0 = Tp41 # zk)
ez, =0.8and y=05 ez, =0.8andy=05,i=4and Vf(z) = —-2.77
32 32

105

Example

® Flat (local) minima can be different
® |s SGD or GD more likely to escape right/left minima?

Tk Tht1

o GD will stay in both minima (Vf(zx) =0 = 241 = %)

o SGD will stay in right minima (V fi(z;) = 0 = zp41 = @)

o SGD may escape left minima (||V fi(zx)||2 # 0 = k41 # o5)
ez, =0.8and y=0.5,i=4and Vfi(zy) = —2.77, 41 = 2.18

Mini-batch vs single-batch

® |s escape property effected by mini-batch size?
® How large mini-batch size is best for escaping?

32 33
Mini-batch setting Mini-batch setting
® Use mini-batches of size 2: ® Use mini-batches of size 2:
Functions in batch loss 1 Functions in batch loss 2
34 34
Mini-batch setting Connection to generalization
® Use mini-batches of size 2:
® Argued that individually flat minima generalize better, i.e.,
Batch losses
all [|[Vfi(z)]|2 small in region around minima
® SGD more likely to escape if individual gradients not small
® Smaller batch size increases chances of escaping “bad” minima
Have also argued for:
® Good convergence properties towards individually flat minima
In summary:
» . . ® Single-batch SGD well suited for overparameterized training
e Larger mini-batch = smaller gradients = worse at escaping
o Single-batch better at escaping
34 35
Outline Step-sizes
® Diminising step-sizes are needed for convergence in general
® Common static step-size rules
® redude step-size every K epochs:
o Stochastic gradient descent o o
o Convergence and distance to solution T T kK] I, /Tk/K]
o Convergence ar_ld solution norms _ _ where [k/K] increases by 1 every K epochs
o Overparameterized vs underparameterized setting ® Convergence analysis under smoothness or convexity requires
e Escaping not individually flat minima oo oo
2
» SGD step-sizes D m=co and D i <oo
k=0 k=0
e SGD convergence o o)
which is satisfied by first but not second above
® Refined analysis gives requirements
oo o
ch =00 and 72’;:0 7’; =00
=0 > ko Yk
which is satisfied by all the above
36 37

106

Large gradients

® Fixed step-size rules does not take gradient size into account
® Gradients can be very large:

i |||,.|‘3!.‘.‘.‘|MH

!!.

i

® Step-size rule
Y= "=
ol VF(zr)l2+1
with 79, a > 0 gives
® small steps if ||V f(zx)]|2 large
® approximately o steps if ||V f(zk)]|2 small

Combined step-size rule

® Combination the two previous rules

7o
(L +([k/KN) @]V f(x)l|2 + 1)

Ve =
where, e.g., ¥(z) = L or ¢(z) = % (as before)
® Properties
d H%f(m)Hz large: small step-sizes

® [V/f(zk)ll2 small: diminshing step-sizes according to %77y

38 39
Step-size rules and convergence Step-size rules and convergence
® Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers) ® Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)
® Step-size parameters: 1(z) = 0.5/z, K =50, a =, = 0.1 ® Step-size parameters: ¥ (z) = 0.5y/z, K =50, a =0, 79 = 0.1
® |teration data: ® |teration data:
epoch step-size batch norm full norm # epoch step-size batch norm full norm
0 4.8-1078% 2.1-107 6.8-10° 1 0.1 1.2-10° 6.8-10°
10 1.4-10~° 7.2-10* 1.4-10* 2 - NaN NaN
50 0.097 0.31 1.4 50 - NaN NaN
100 0.016 0.28 3.2 100 - NaN NaN
200 0.012 6.8-107° 0.72 200 - NaN NaN
300 0.01 0.33 11.8 300 - NaN NaN
500 0.008 0 0.529 500 - NaN NaN
700 0.007 1.2-1076 0.0008 700 - NaN NaN
1000 0.006 3.1-10°6 0.0003 1000 - NaN NaN
® Large initial gradients dampened ® No adaptation to large gradients — Gradient explodes
® Diminishing step-size gives local convergence ® Diminishing step-size does of course not help
40 40
Step-size rules and convergence Outline
o Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)
® Step-size parameters: ¢ =0, a = 79 = 0.1
® |teration data: . .
o Stochastic gradient descent
epoch step-size batch norm full norm . .
i o Convergence and distance to solution
0 1.4-1077 7.0- 106 4.7-10° C d soluti
10 0.004 257 304 e Convergence and solution norms
50 0.10 6.2.10-10 41 o Overparameterized vs underparameterized setting
100 0.087 1.5 1.3 e Escaping not individually flat minima
200 0.089 12 0.26 « SGD step-sizes
20.10-12
300 0.1 20- 107" 13 « SGD convergence
500 0.1 5.1-10~12 0.198
700 0.1 2.4-10713 0.16
1000 0.087 1.5 0.013
® Large initial gradients dampened
® Larger final full norm than first choice since not diminishing 7
40 41
Convergence analysis Error bound
® Need some inequality that function satisfies to analyze SGD
L ® |n absence of convexity, an error bound is useful in analysis:
® Convexity inequality not applicable in deep learning
® Smoothness inequality not applicable in deep learning in general S(f(z) — f(z*) <[V f(2)|3
® RelU networks are not differentiable and therefore not smooth))
® Tanh networks with smooth loss are cont. diff. = locally smooth that holds locally around solution z* with § > 0
® \We have seen that training problem is piece-wise polynomial if ® Gradient in error bound can be replaced by
® L2 loss and piece-wise linear activation functions ® sub-gradient for convex nondifferentiable f
® hinge loss and piece-wise linear activation functions ® limiting sub-gradient for nonconvex nondifferentiable f
but does not provide an inequality for proving convergence
42 43

107

Kurdyka-Lojasiewicz

® Error bound is instance of the Kurdyka-Lojasiewicz (KL) property
® KL property has exponent « € [0,1), a = % gives error bound
® Examples of KL functions:

® Continuous (on closed domain) semialgebraic functions are KL:

Az gala) < 0})

graph is union of intersection, where h;; and g;; polynomials
® Continuous piece-wise polynomials (some DL training problems)
® Strongly convex functions

graphf = Ui, (ﬁg:f{x shij(x) =0} Ni_

® Often difficult to decide KL-exponent
® Result: descent methods on KL functions converge

® sublinearly if a E (3,1)
® linearly if o € (0, 1] (the error bound regime)

Strongly convex functions satisfy error bound

® s+ ox € df(x) with s € dg(x) for convex g = f — 3| - |13
® Therefore

lls +owll3 = lIs||3 + 2057z + o213
2 |Isll3 + 2057 2" + 20(g(x) — g(a*)) + o |3
= |sll3 + 2072 + ol|2” |3 + 20(f () — f(z*))
= |ls + o™ (I3 + 20(f (x) — f(a*))
2 20(f(x) = f(="))
where we used

® subgradient definition g(z*) > g(z) +s” (z* —) in first inequality
® nonnegativity of norms in the second inequality

44 45
Implications of error bound Implications of error bound
® Restating error bound for differentiable case ® Restating error bound for differentiable case
N N 2
8(f(2) = f(@") < IVF()II3 6(f(x) = f(@) < IVF(@)I5
® Assume it holds for all = in some ball X around solution z* ® Assume it holds for all = in some ball X around solution z*
® What can you say about local minima and saddle-points in X7 ® What can you say about local minima and saddle-points in X7
® There are none! Proof by contradiction:
® Assume local minima or saddle-point Z
® Then Vf(Z) =0 = f(z) = f(z*) and Z is global minima
46 46
Convergence analysis — Smoothness and error bound Semi-smoothness
® Convergence analysis of gradient method
. ® Typical DL training problems are not smooth
® (3-smoothness and error bound assumptions (f* = f(z*)): P ep .)
® E.g.: overparameterized ReLU networks with smooth loss
f@ren) = 5 < flon) = £+ V) (e — o) + g”M — w413 ® But semi-smooth! in neighborhood around random initialization?:
* _ A SN2 g Bk
(@x) = F* = Wl VF@)l3 + SV ()13 F@) < F@) + VI (@ —y) +cllz — yllaV/Fly) + Sz — 2
n‘w
() = " = (1 =)V)3
B for some constants ¢ and 8
“m *
< —mwo(l-) f(yk) -1 ® Holds locally for large enough ¢, 3 if cont. piece-wise polynomial
® Constants and neighborhood quantified in [1]*
where)
L] =
® [3-smoothness of f is used in first inequality ¢ = 0 gives smoothness
® gradient update zx+1 = @i — YV f(xk) in first equality ® ¢ small gives close to smoothness but allows nondifferentiable
® error bound is used in the final inequality
® Linear convergence in function values if 7, € [e, F —€,e>0
1 Semismoothness definition not a standard semismoothness definition
2 [1] A Convergence Theory for Deep Learning via Over-Parameterization. Z. Allen-Zhu et al.
47 48
Convergence — Error bound and semi-smoothness Convergence in deep learning
® Convergence analysis of gradient descent method
® Assumptions: (c,3)-semi-smooth, d-error bound, f* =0 (w.l.o.g. .
P (\/ﬁ)wﬁ L ! (g) ® Setting: ReLU network, fully connected, smooth loss
. - < SE ,3) . .
Parameters ¢ < 5= and v € (0, 3) ® ¢ is small enough when model overparameterized enough [1]*
f(zk“) ® Linear convergence (with high prob.) for random initialization [1]
J@e) + V(@) @ — @) + cllors — 2|V (@) + 5 laee — 23 ® In practice:
. ’ . 1 .
aiz 2 ® S will be big — relies on small enough (< 5) constant step-size
) =L@ 5 + eIV ()l (@) + V£ (xe)ll2 ® need to find “correct” step-size by diminishing rule
flor) =YV F(Ik)“z 4 < HVf T H + 5” IV f(k Hz ® need to control steps to not depart from linear convergence region
® hopefully achieved by previous step-size rule
Fl@r) = IV f (@)l + BV f ()
< f(Ik) (1= BNV ()3
< (= ey(1 = B7))f(zx)
which shows linear convergence to 0 loss
® Need the nonsmooth part of upper bound ¢ to be small enough
¢ Can analyze SGD in similar manner 1 [1] A Convergence Theory for Deep Learning via Over-Parameterization. Z. Allen-Zhu et al
49 50

108

Stochastic Gradient Descent

Implicit Regularization

Pontus Giselsson

Outline

¢ Variable metric methods
o Convergence to projection point
o Convergence to sharp or flat minima

Gradient method interpretation

® Gradient method minimizes quadratic approximation of function

Tkl = argmin (f(xk) + Vi(e) (@ —ap) + ﬁ”z - ka%)
T

27k

=k — wVf(zK)
® Graphical illustration of one step

| f@r) + V@) (@ = 2x) + g le = w3
| f(z)

= arg;nin (Lz — (z% — %Vf(l’k))H%)

Gradient method interpretation
® Gradient method minimizes quadratic approximation of function
Tpi1 = argmin <f(£k) + Vi) (@ —ay) + ﬁ“l - Jka%)
T
= argmin (g lo — (o0 — V() 3)

=xp — WV f(zr)
® Graphical illustration of one step

| f@r) + V@) (@ = 2) + g lle = @3
[@)

Th+1

Scaled gradient method

® Quadratic approximation same in all directions due to || - ||3
Tpy1 = argmin (f(rk) + V()T (@ — 2x) + ﬁ”x - T;cHé)
-
® Scaled gradient method minimizes scaled quadratic approximation

Zpy1 = argmin (f(wk) + V() (@ —) + ﬁHaf - kafi)

= argmin (2}% llz = (zx — qf,chlvf(:vk))H%)

=@y = H 'V f(ar)
where H is a positive definite matrix and ||z||% = 27 Hz

® Nominal gradient method obtained by H = I

® Better quadratic approximation (good H) = faster convergence

Gradient descent — Example

® (Unscaled) Gradient descent on convex quadratic problem

—0.1 1

€2

X2

1 [ml]T[O.l —0.1} [xl}
minimize —

® Graphical illustration:

Gradient descent — Example

® (Unscaled) Gradient descent on convex quadratic problem

minimize 1 "ro1 -0 1
2 |@2) |01 1 | |a

® Graphical illustration:

Gradient descent — Example

® (Unscaled) Gradient descent on convex quadratic problem

minimize L "To1 -0 1
@ 2 |@2) |01 1 | |2

® Graphical illustration:

109

Gradient descent — Example

® (Unscaled) Gradient descent on convex quadratic problem

o 1 [e] [0 —01] [
minimize ol -0 1| |4

® Graphical illustration:

Gradient descent — Example

® (Unscaled) Gradient descent on convex quadratic problem

o 1 fe] [0l —01] [m
IZE 5l 101 1 | |

® Graphical illustration:

Gradient descent — Example

® (Unscaled) Gradient descent on convex quadratic problem

o 1] [0l 0] [m
TR 9 lae) |01 1] [ae

® Graphical illustration:

Scaled gradient descent — Example

® Scaled gradient descent on convex quadratic problem

minimize 1 1 ! 01 =0.1}
z 2 |2 —0.1 1 To

® Scaling H = diag(V?2f) := P:

Scaled gradient descent — Example

® Scaled gradient descent on convex quadratic problem

minimize l o1 flo1 —01 o1
WP 5 a0 1 | &

® Scaling H = diag(V?f) := P:

Scaled gradient descent — Example

® Scaled gradient descent on convex quadratic problem

minimize Lim fTor —0a 1
g 2 X2 —0.1 1 T2

® Scaling H = diag(V?2f) := P:

Scaled gradient descent — Example

® Scaled gradient descent on convex quadratic problem

minimize l 1 ! 0.1 =0.1}
z 2 @ —0.1 1 o

® Scaling H = diag(V?f) := P:

Scaled gradient descent — Example

® Scaled gradient descent on convex quadratic problem

minimize 1 "To1 -0 1
@ 2 |@2) |01 1 | |2

® Scaling H = diag(V?f) := P:

110

Scaled gradient descent — Example

® Scaled gradient descent on convex quadratic problem

o 1 [e] [0 —01] [
mmmize ool =01 1 | |as

e Scaling H = diag(V?f):

[
i

How to select metric H?

® A priori: Use a fixed H thoughout iterations
® can be difficult to find a good performing H
® does not adapt to local geometry

® Adaptively: Iteration-dependent Hj, that adapts to local geometry

6 7
Adaptive metric methods SGD variations with adaptive diagonal scaling
® Diagonal scaling gives one step-size (learning rate) per variable
® Algorithms with full Hy: ® SGD type methods with diagonal H), = diag(hi k, ..., hnk):
® (Regularized) Newton methods N
® Quasi-Newton methods Tyl = Tp — WA,HIZIVf(:Ek)
® Algorithms with diagonal Hj, (in stochastic setting): where
® Adagrad . . - .
o RMSProp . 111& inverse is H, ' = dlag(ﬁ, A ﬁ)
® Adam ® Vf(xk) is a stochastic gradient approximation
¢ Adamax/Adadelta ® Methods called variable metric methods since Hj, defines a metric
. cee
® Introduced to improve convergence compared to SGD
® Can have worse generalization properties?
8 9
Metrics — RMSprop and Adam Filtered stochastic gradients
® Adam also filters stochastic gradients for smoother updates
. . . . ® Let 7y =0 and b, € (0,1), and update
® Estimate coordinate-wise variance: 10 m € (0,) P ~
. . -) My = bye—1 + (1 = b))V f(21-1)
O = byOr—1 4+ (1 = b)) (Vf(21-1)))))
® Adam uses unbiased estimate: IT;;
where 99 = 0, b, € (0,1) ® Fixed step-size without filtered gradient
® Metric Hj, is chosen (approximately) as standard deviation:
® RMSprop: biased estimate H;, = diag(v/ox + €)
® Adam: unbiased estimate Hj, = diag(y/2% + ¢)
® |ntuition:
® Reduce step size for high variance coordinates |
® Increase step size for low variance coordinates
® Alternative intuition:
® Reduce step size for “steep” coordinate directions
® |ncrease step size for “flat” coordinate directions
Levelsets of summands
10 11
Filtered stochastic gradients Adam — Summary
® Adam also filters stochastic gradients for smoother updates
® Let o =0 and b, € (0,1), and update
N N = ® |[nitialize o = 99 = 0, by, b, € (0,1), and select v > 0
My = bpig_1 + (1 - bm)vf(fk—l) NO 0 m v (1_) 7
. 1. gr = Vf(xr-1) (stochastic gradient)
® Adam uses unbiased estimate: 17 2. 1 = bmtie—1 + (1 — b)) gk
® Fixed step-size with filtered gradient 3. b = byr—1 + (1 by)gi
B 4. my, =1k /(1 —b%)
5. vy = o /(1 — bE)
6. Tht1 = xk — ymi./(\/Uk + €1)
® Suggested choices: by, = 0.9, b, = 0.999, ¢ = 10~%, v = 0.001
® More succinctly
Tpp1 =z — vH;, g,
where metric Hy, = diag(\/Uk,1 + €, ...,/ Vk.n +€)
Levelsets of summands
11 12

111

Adam vs SGD

® Adam designed to converge faster than SGD by adaptive scaling
® Often observed to give worse generalization than SGD
® Two possible reasons for worse generalization:

® Convergence to larger norm solutions?
® Convergence to sharper minima?

Outline

® Variable metric methods
o Convergence to projection point
o Convergence to sharp or flat minima

13 14
Generalization in neural networks Explicit vs implicit regularization
® Tikhonov adds || - [|3 norm penalty for better generalization
® Recall: Lipschitz constant L of neural network N N
))) mmlﬂnnzezL(m(wz;Q)A,yi) + 51101l
L= Wallz - [Wa-ill2--- [W1]2 i=1
or with ||W;|2 replaced by (1 4 [|W;|2) for residual layers which gives a smaller 6 and is a form of explicit regularization
e Can use ||0]]> where § = {(W;,b;)}?_, as proxy ® Deep learning has no explicit regularization = training problem:
® QOverparameterized networks N
® Infinitely many solutions exist minimize Z L(m(.r,-; 6)7 y1)
® Want a solution with small ||@]|2 for good generalization 0)
with many 0-loss solutions in overparameterized setting
® Implicit regularization if algorithm finds small norm solution
15 16
(S)GD limit points Least squares
® Consider least squares problem of the form
minimize 1(| Az — b|[3
z
® Assume overparameterized convex least squares problem
mxn m 7 i
® Gradient descent converges to projection point of initial point where A € R b€ R™ m <n, and 37 such that A7 =b
o If SGD converges, it converges to same projection point ® Problem is overparameterized and has many solutions
® Since m < n, solution set is
X :={z: Az =b}
which is (at least) n — m-dimensional affine set
17 18
Gradient method convergence to projection point Characterizing projection point
® Will show that scaled gradient method
-1 (e N . . .
Tpr1 =z — YV fak) ® The unique projection point # = argmin(||z — zo||%) if and only if
z€X
converges to || - || z-norm projection onto solution set from zg r
® Means that scaled gradient method converges to solution of Hi — Huo € R(47) and Ar="b
. Ty T
minimize, |z — zo[% where R(A™) is the range space of A
subject to Az =1b ® The range space is R(AT) = {v € R" : v = AT) and A\ € R™}
where H decides metric in which to measure distance from x
® If g =0, we get minimum || - || g-norm solution in {z : Ax = b}
19 20

112

Convergence to projection point

The scaled gradient method can be written as
Hazjpy = Hay — AT (Azg - b),

if all v > € > 0 are small enough, it converges to a solution Z:

Graphical interpretation

® What happens with scaled gradient method?
® Solution set X extends infinitely

® sequence is perpendicular to X in scalar product (Hz) Ty
® algorithm converges to projection point argmin, ¢ y (||z — @o||x)

Ty — T and Az =10
® Letting A\, = — Z;C:r) ~(Az; — b) € R™ and unfolding iteration: (o Az=b) (o Az=b)
k
Hagyy — Hag ==Y mAT (Az — b) = AT\, € R(AT)
1=0 %
® In the limit z;, — 7, we get \ -
x X -
HZ — Hzy € R(AT) \ ~
which with Az = b gives optimality conditions for projection Gradient method A scaled gradien: method
® If 29 = 0, the algorithm converges to argmin(||z|)
reX
21 22
SGD - Convergence to projection point SGD vs Adam
® | east squares problem on finite sum form
m
s imige LI A 2_ 1 T, 2
minimize slAz —bl3 =5 Z(ai x —b;)
i=1
where A = [ay,...,am]|"
® Applying single-batch scaled SGD:
T4l = Tgp — "/kH’laik(agcmk —biy,) This analysis hints towards that SGD gives smaller norm solutions and
o The iteration can be unfolded as better generalization than variable metric Adam. Is this true?
=3 x (nafw — b))
k 1=0 4=t
Hzpsy — Hxo = 7Za”'\ﬂ(a£xl —biy) = AT
1=0 k
=3 x (nlemzi—bn))
iSm
where x (v) =vif iy = j, else 0, so Hrg1 — Hrzy € R(AT)
=
® Assume zj — T with AT = b = convergence to projection point 23 "
How about deep learning? How to select initial point?
® For standard networks:
® To avoid vanishing and exploding gradient, we want:
L{|Wjll2 = 1 and [1bjl2 small
where L is average activation Lipschitz constant (L = 0.5 for
® The analysis does not carry over to nonconvex DL settings RelLU)
Lo L . ® |nitialization for ReLU:
® However, often convergence to similar norm as initial point R . 2 . R
® (Wj)a ~N(0, ﬁ) gives average ||W;l|2 = 2
® (bj); small or 0
® For residual networks:
® To avoid vanishing and exploding gradient, we want
L(1+ [[Wjl2) =1 and [[b5|2 small
where L is average activation Lipschitz constant
® Use smaller initilization than for standard networks
25 26
Initialization in next example Convergence from different initial point
¢ Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
® L, is Lipschitz constant in x of final model m(x;6)
® |nitialization scaling o: 0.01 Algorithm: SGD
® Set scaling of weights by o l6olls = 8.57 I 84 10%
02 = o5 m = 8.4 -
® For the residual layers (all square layers) 10enallz = 9.9 10s5(Oend) = 0.051
® (W;)i; ~N(0,1), normalize W;, scale by o * .
® (b;)i ~N(0,1), normalize bj, scale by o *w
® For the non-residual layers (non-square layers) T
® (W;)i; ~N(0,1), normalize Wj, scale by max(1, o) .
® (b;); ~N(0,1), normalize bj, scale by max(1,0)
® use max(1, o) for gradient to not vanish in non-residual layers) " 3
*§
* N
27 28

113

Convergence from different initial point

® Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
® L, is Lipschitz constant in x of final model m(x;6)
® |nitialization scaling o: 0.1 Algorithm: SGD

Ly =2.0-10°
10ss(Oena) = 0.042

ll6oll2 = 3.8
[l6enall2 = 10.4

Convergence from different initial point

® Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
® L, is Lipschitz constant in x of final model m(x;6)
® |nitialization scaling o: 1 Algorithm: SGD

Lm =2.4-10°
1055(0end) = 0

ll6oll2 = 10.8
[0cnall2 = 14.4

28 28
Convergence from different initial point Convergence from different initial point
o Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers) o Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
® L, is Lipschitz constant in z of final model m(z;0) ® L,, is Lipschitz constant in z of final model m(z;0)
® |nitialization scaling o: 5 Algorithm: SGD ® |nitialization scaling o: 10 Algorithm: SGD
[16o]l2 = 54.2 Ly =1.9-10'2 1602 = 107.2 L = 1.6-10'%
[[Benall2 = 49.5 loss(ena) = 0.036 [[Benall2 = 96.2 10s8(Benda) = 0
* . *
* *
*
* * * *
* * £ 5 *
x 5 x
¥ *
* . . *
* I *
28 28
Convergence from different initial point Convergence from different initial point
o Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers) ® Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
® L, is Lipschitz constant in z of final model m(z;0) ® L., is Lipschitz constant in x of final model m(x;6)
® Initialization scaling o: 0.01 Algorithm: Adam ® |nitialization scaling o: 0.1 Algorithm: Adam
[16oll2 = 3.6 Lm =9.3-107 [16oll2 = 3.9 Ly =4.5-107
0enallz = 17.4 1088(fena) = 0.12 [Benallz = 16.2 loss(6ena) = 0
* * * *
* * * *
B
* *
* % s
* . . " * *
* *
* % * %
28 28
Convergence from different initial point Convergence from different initial point
¢ Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers) ¢ Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
® L, is Lipschitz constant in x of final model m(z;6) ® L, is Lipschitz constant in x of final model m(x;6)
® |nitialization scaling o: 1 Algorithm: Adam ® |[nitialization scaling o: 5 Algorithm: Adam
[6oll2 = 10.7 Ly = 4.3-107 6oll2 = 54.61 Ly =1.9-10'2
l0enallz = 18.7 loss(fena) = 0 10enall2 = 54.61 loss(fena) = 0
) *) *
* * * *
* *
*
% %
* *
. .
* * *
28 28

114

Convergence from different initial point

® Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
® L, is Lipschitz constant in x of final model m(x;6)
® |[nitialization scaling o: 10 Algorithm: Adam

l6oll2 = 109.278 Lm = 3.8-1016

[|0enall2 = 109.282 1oss(fena) = 0

Conclusions

® Choice of initial point is significant for generalization

® Here, Adam gives models with larger Lipschitz constant L,,

Adam SGD
scaling o ||0oll2 [|fenallz2 L, [16oll2 |0enallz2 Ly,
0.01 3.6 174 9.3-107 3.57 9.9 8.4-10*
0.1 3.9 16.2 4.5-107 3.8 10.4 2.0-10°
1 10.7 18.7 4.3-107 10.8 144 2.4-10°
5 54.61 54.61 1.9-102 54.2 49.5 1.9-10'2
10 109.278 109.282 3.8-10'¢ 107.2 96.2 1.6-10'%

28 29
Outline Convergence to sharp or flat minima
® Variable metric methods
o Convergence to projection point ® Have argued flat minima generalize well, sharp minima poorly
o Convergence to sharp or flat minima ® Is Adam or SGD most likely to converge to sharp minimum?
30 31
Variable metric methods — Interpretation Interpretation consequence
® Variable metric methods
Tpr1 =z — W H, 'V f (k) (1)
can be interpreted as taking pure (stochastic) gradient step on ¢ Variable metric methods choose H}; to make fy, well conditioned
e ® Consequences:
fu, = (f OH}; /)(2) ® Sharp minima in f become less sharp in fr,
® (Flat minima in f become less flat in fm,)
5 . .
* Why? Gradient method on [y, s ® Adam maybe more likely to converge to sharp minima than SGD
Vpa1 = Ok — VeV i, (0k) = v — %kalﬂf(H;l/ZUk) ® This can be a reason for worse generalization in Adam than SGD
which after
® multiplication with H~'/?
® and change of variables according to xx = H, 1/2vk
gives (1)
32 33
Adam vs SGD — Flat or sharp minima Adam vs SGD — Flat or sharp minima
® Data from previous classification example with o = 10 ® Data from previous classification example with o = 10
® | oss landscape around final point fenq for SGD and Adam ® | oss landscape around final point fenq for SGD and Adam
® SGD and Adam reach 0 loss but Adam minimum much sharper ® SGD and Adam reach 0 loss but Adam minimum much sharper
® Same 04,05 directions, same axes, zyax = 1000 ® Same 04,05 directions, same axes, zyax = 100000
SGD Adam SGD Adam
S “‘:‘”’h[‘ v
- N :
500 s N "W,‘W J i
a0))‘Ww il ‘
s s . s 2 s
: o ; HI\’ .
34 34

115

Adam vs SGD - Flat or sharp minima

® Data from previous classification example with o = 10

® | oss landscape around final point 6g,q for SGD and Adam
® SGD and Adam reach 0 loss but Adam minimum much sharper
® Same 0, 0, directions, same axes, zmax = 10°

10°
10

SGD

34

116

Recap

Pontus Giselsson

Outline

® Convex analysis
® Composite optimization and duality

® Solving composite optimization problems — Algorithms

Convex Analysis

Convex sets

® A set C is convex if for every z,y € C and 6 € [0, 1]:
bz +(1-0)yeC

® “Every line segment that connect any two points in C'is in C"

Nonconvex Convex
.
. .
. .
Nonconvex Nonconvex

® Will assume that all sets are nonempty and closed

Separating hyperplane theorem

® Suppose that R,S C R"™ are two non-intersecting convex sets
® Then there exists hyperplane with S and R in opposite halves

{z:sTa =71}

Counter-example

Example R nonconvex

® Mathematical formulation: There exists s # 0 and r such that
sTa<r forallz € R

sTa >r forallz € S

® The hyperplane {z : s”a = r} is called separating hyperplane

A strictly separating hyperplane theorem

® Suppose that R, S C R™ are non-intersecting closed and convex
sets and that one of them is compact (closed and bounded)

® Then there exists hyperplane with strict separation

{:sTe =7} R={(x,y):y>a"tz>0}

S ={(z,y) :y <0}

Counter example

Example
R, S not compact

® Mathematical formulation: There exists s # 0 and r such that

sTe<r forallz € R

sTe>r forallz e S

Consequence — S is intersection of halfspaces

‘a closed convex set S is the intersection of all halfspaces that contain it

proof:

® let H be the intersection of all halfspaces containing S

® =: obviouslyzx e S=xc H

® & assume x € S, since S closed and convex and x compact (a
point), there exists a strictly separating hyperplane, i.e., ¢ H:

Supporting hyperplanes

® Supporting hyperplanes touch set and have full set on one side:

® \We call the halfspace that contains the set supporting halfspace
® s is called normal vector to S at x

e Definition: Hyperplane {y : sy = r} supports S at 2 € bd S if

sfy<rforallyes and stx=r

117

Supporting hyperplane theorem

Let S be a nonempty convex set and let 2 € bd(S). Then there exists
a supporting hyperplane to S at x.

® Does not exist for all point on boundary for nonconvex sets
® Many supporting hyperplanes exist for points of nonsmoothness

Connection to duality and subgradients

Supporting hyperplanes are at the core of convex analysis:

® Subgradients define supporting hyperplanes to epif
® Conjugate functions define supporting hyperplanes to epif
® Duality is based on subgradients, hence supporting hyperplanes:
® Consider minimize, (f(x) + g(x)) and primal solution z*
® Dual problem minimize, (f*(u) 4+ g*(—u)) solution p* satisfies
e af(z")

i..e, dual problem finds subgradients at optimal point!

—p* € dg(z")

1 When solving ming (f (Lz) + g(x)) dual problem finds 1z such that LT i € 8(f o L)(x) and —LT p € 8g(x)
9 10
Convex functions Epigraphs and convexity
® Graph below line connecting any two pairs (z, f(z)) and (y, f(y))
| | ® Let f : R" - RU{x}
| |
. . ® Then f is convex if and only epif is a convex set in R” x R
| |
epif L epif 1
|
|
l
nonconvex function convex function
® Function f : R™ — R is convex if for all z,y € R™ and 0 € [0, 1]:
F0x+(1=0)y) <O0f(x) + (1 -0)f()
(in extended valued arithmetics) ® fis called closed (lower semi-continuous) if epif is closed set
® A function f is concave if —f is convex
11 12
First-order condition for convexity Subdifferentials and subgradients
e A differentiable function f : R™ — R is convex if and only if ® Subgradients s define affine minorizers to the/function that:
f@) = f@) + V@) (y —x)
for all z,y € R™
f(y)
@)+ V@)~ o) ® coincide with f at =
® define normal vector (s, —1) to epigraph of f
® can be one of many affin(iminorizers at nondifferentiable points =
‘(Vf(z),—l) ® Subdifferential of f: R™ — R at x is set of vectors s satisfying
T
® Function f has for all z € R" an affine minorizer that: fly) = f(z) + 5 (y —w) forallycR", ()]
® has slope s defined by V f ® Notation:
® coincides with function f at x ® subdifferential: df : R" — 2% (power-set notation 2%")
® is supporting hyperplane to epigraph of f ® subdifferential at z: 0f(z) = {s: (1) holds}
® defines normal (Vf(z),—1) to epigraph of f ® clements s € Of(z) are called subgradients of f at
13 14
Subgradient existence — Nonconvex example Existence for extended-valued convex functions
® Let f : R"™ - RU {00} be convex, then:
® Function can be differentiable at « but df(z) =0 1. Subgradients exist for all z in relative interior of dom f
2. Subgradients sometimes exist for on boundary of dom f
3. No subgradient exists for x outside domf
® Examples for second case, boundary points of domf:
® z1: Of(x1) {}V(Il)—()
® xo: Of(x2) =0, Vf(x2) =
. 0 0,V
x3: Of(x3) = flxs) = o VI=2% 41 q)(x) 22 + 1 3 9)(2)
® Gradient is a local concept, subdifferential is a global property
® No subgradient (affine minorizer) exists for left function at z =1
15 16

118

Fermat’'s rule

Let f: R™ — R U {oo}, then z minimizes f if and only if
0€df(x)

® Proof: x minimizes f if and only if
) = flx)+0"(y —)

which by definition of subdifferential is equivalent to 0 € df(z)
® Example: several subgradients at solution, including 0

for all y € R"

Fermat’s rule — Nonconvex example

® Fermat’s rule holds also for nonconvex functions

® Example:

Il
(0, -1)

® Jf(z1) =0 and Vf(z1) = 0 (global minimum)
® 9f(x2) =0 and V f(z2) = 0 (local minimum)

® For nonconvex f, we can typically only hope to find local minima
©,-1)
17 18
Subdifferential calculus rules Subdifferential of sum
If f1, fo closed convex and relint dom f; N relint dom fo # 0:
fi+fo)=0fi+0f2
® One direction always holds: if z € domdf; N domdfs:
. Subd!fFerent!aI of sum 0(,-f1-+ fQ-) - Ofy + f2)(&) 2 01 (2) + Do)
® Subdifferential of composition with matrix d(g o L)
Proof: let s; € dfi(x), add subdifferential definitions:
F@) + f2(y) 2 filw) + fal@) + (51 + 52)T (y —)
ie. s1+ 82 € 8(f1 + fQ)(CL‘)
® If f1 and f differentiable, we have (without convexity of f)
Vifi+)=Vfi+Vf
19 20
Subdifferential of composition A sufficient optimality condition
If f closed convex and relint dom(f o L) # 0 — — —
O(f o L)(z) = LT0f (Lx) Let f:R™ - R, ¢g:R" - R, and L € R then:
minimize f(Lz) + g(z) (1)
® One direction always holds: If Lz € domf, then
is solved by every € R" that satisfies
a(f o L)(x) 2 LT9f (La) .
0 ¢ LTof(Lx) + dg(x) (2)
Proof: let s € df(Lx), then by definition of subgradient of f:
. . ® Subdifferential calculus inclusions say:
(foD)(y) 2 (foL)(2) + T (Ly — La) = (f o L) () + (LT 8)T(y — @) Y
0€ LTof(Lx) + 0g(z) CO((fo L
e I7s € 0(f o L)(0) € LT0f(La) +dg(a) € O((f o L)(x) + (x)
® If f differentiable, we have chain rule (without convexity of f) which by Fermat'’s rule is equivalent to « solution to (1)
V(f o L)) = LTV f(Lz) ® Note: (1) can have solution but no x exists that satisfies (2)
21 22
A necessary and sufficient optimality condition Evaluating subgradients of convex functions
Let f:R™ = R, g: R* = R, L € R™*™ with f, g closed convex
and assume relint dom(f o L) Nrelint domg # () then:
® Obviously need to evaluate subdifferentials to solve
minimize f(Lz) + g(z) (1)
0€ LTaf(Lx) + dg(x)
is solved by « € R™ if and only if = satisfies
r ® Explicit evaluation:
0€ L7 0f(Lz) + 0g(x) (2) ® If function is differentiable: V f (unique)
® |f function is nondifferentiable: compute element in 9f
® Subdifferential calculus equality rules say: ® |mplicit evaluation:
. ® Proximal operator (specific element of subdifferential)
0€ L7 0f(Lx) + dg(x) = O((f o L)(z) + g(x))
which by Fermat'’s rule is equivalent to « solution to (1)
® Algorithms search for x that satisfy 0 € LT0f(Lz) + dg(z)
23 24

119

Proximal operator

® Proximal operator of (convex) g defined as:
prox,,(z) = argmin(g(x) + %H‘L — 2|
T

where v > 0 is a parameter
® Evaluating prox requires solving optimization problem

® Objective is strongly convex = solution exists and is unique

Prox evaluates the subdifferential

® Fermat's rule on prox definition: = = prox,,(2) if and only if

0€dg(x)+7 N z—2) < ~Hz—z)€dg(x)

Hence, 7~1(z —) is element in 9g(x)
® A subgradient in dg(z) where # = prox_ () is computed

® Often used in algorithms when g nonsmooth (no gradient exists)

25 26
Conjugate functions Conjugate interpretation
® Conjugate f*(s) defines affine minorizer to f with slope s:
f(x)
® The conjugate function of f : R™ — RU {oo} is defined as sTx — f*(s)
* %
£7(s) = sup (s7e — () \/\/
T
® |mplicit definition via optimization problem
where f*(s) decides the constant offset to have support at z*
® “Affine minorizor generator: Pick slope s, get offset for support”
® Why? Consider f*(s) = sup (ST{C — f(x)) with maximizer z*:
5(s) = sTa* — f(z*) < f*(s) > 8T — f(z) for all z
& f(z) > s — f*(s) for all
oS t at z* si) = T — %
. upport at z* since f(z*) = s’ a* — f*(s) 2
Fenchel Young’'s equality A subdifferential formula
® Going back to conjugate interpretation:
f(@)
Assume f closed convex, then df(z) = Argmax,(s7z — f*(s)) ‘
T f*(5) ® Since f** = f, we have f(x) = sup,(27s — f*(s)) and
\/ % 5 € Argmax(eTs — f*(s) > f(z) =aTs" — f(s)
\ El
(s,-1) = s ecif(x)
® Fenchel's inequality: f(z) > sTx — f*(s) for all z, s ® The last equivalence is Fenchel-Young
® Fenchel-Young's equality and equivalence:
f(z*) = sTx* — f*(s) holds if and only if s € df (z*)
29 30
Subdifferential of conjugate — Inversion formula Strong convexity
®letog>0
® A function f is o-strongly convex if f — |- ||3 is convex
® Alternative equivalent definition of o-strong convexity:
f(0x + (1= 0)y) <0f(2) + (1= 0)f(y) — 501 = 0)l|l= —y]*
‘Suppose f closed convex, then s € 0f (z) <= x € 9f*(s) ‘ holds for every =,y € R and 6 € [0, 1]
® Strongly convex functions are strictly convex and convex
® Consequence of Fenchel-Young ® Example: f 2-strongly convex since f — || - [|3 convex:
® Another way to write the result is that for closed convex f:
afr =Nt
(Definition of inverse of set-valued A: x € A™'u <= u € Ax)
f@) = |13
31 32

120

First-order condition for strong convexity

® Let f : R™ — R be differentiable
® fis o-strongly convex with o > 0 if and only if
F@) = f@)+ V@) (y—2) + §lle -yl
for all z,y € R™

)
) f@) + V(@) (y —2) + §llz — yl3

. 5@)
i), -1)

® Function f has for all x € R™ a quadratic minorizer that:
® has curvature defined by o
® coincides with function f at =
® defines normal (Vf(z),—1) to epigraph of f

Smoothness

® A function is called 3-smooth if its gradient is 8-Lipschitz:

V(@)= VIl < Blz -yl
for all z,y € R™ (it is not necessarily convex)
® Alternative equivalent definition of S-smoothness

10w+ (1= 0)y) = 05(z) + (1= 0) ()~ §001 =)l — y|*
100+ (1= 0)y) < 0f(@) + (1= 0)(4) + 3601)]}z — 9]

hold for every z,y € R™ and 6 € [0, 1]
® Smoothness does not imply convexity
® Example:

33 34
First-order condition for smoothness First-order condition for smooth convex
® fis -smooth with 8 > 0 if and only if ® fis f-smooth with 3 > 0 and convex if and only if
fy) < f@) + V@) @y —2) + 5llz — yl3 Fy) < f@) + V@) (y - 2) + 5l - yll3
1) > f@) + V@) (g —2) = §llz —yl3 1) = f(@) + V(@) (g~)
for all z,y € R™ for all z,y € R™
| F@) + V@) - 2) + 2l - vl3 @+ VI@T =)+ Flle i}
i f(y) /
/) f)
) F@) 4 V@) - 2)
(. 7))
Ry
1@+ T -) - £l vl DA
Vf(x) +) (y—z)—Sllz—y
2 2 ® Quadratic upper bound and affine lower bound
® Quadratic upper/lower bounds with curvatures defined by ® Bounds coincide with function f at
® Quadratic bounds coincide with function f at x ® Quadratic upper bound is called descent lemma
35 36
Duality correspondance
Let f:R™ — R U {oo}. Then the following are equivalent:
(i) f is closed and o-strongly convex
(ii) 9f is maximally monotone and o-strongly monotone
(iii) Vf* is g-cocoercive L , Composite Optimization
(iv) Vf* is maximally monotone and -Lipschitz continuous
(v) f* is closed convex and satisfies descent lemma (is 2-smooth)
where Vf*: R" — R™ and f*: R" - R
Comments:
® Relation (i) < (v) most important for us
® Since f = f** the result holds with f and f* interchanged
® Full proof available on course webpage
37 38
Composite optimization Optimality conditions and dual problem
® Assume f, g closed convex and that CQ holds
® Problem minimize,(f(Lxz) + g(z)) is solved by z iff
0e LT of(Lx) +dg(x)
N——
n
where dual variable . has been defined
We consider composite optimization problems of the form ® Primal dual necessary and sufficient optimality conditions:
Of (L Lx e of*
minimize f(Lx) + g(z) a ET f(Lz) xf 1w
= —L"u € dg(x) —L*p € dg(x)
j e 0f(La) La € 0f*(n)
z € dg*(—L"p) x € dg*(—L"p)
® Dual optimality condition
0€8f* (1) +8(g" o —LT)(n) 1
solves dual problem minimize,, f*(u) + g*(—L" 1)
® |f CQ-D holds, all dual problem solutions satisfy (1)
39 ® Dual searches for v such that LTy € 9f(2) and —LTp € dg(z) 40

121

Solving the primal via the dual

® Why solve dual? Sometimes easier to solve than primal

® Only interesting if primal solution can be recovered

Assume f, g closed convex and CQ
® Assume optimal dual p known: 0 € 9f* (1) + 9(g* o —LT)(p)

® Optimal primal z must satisfy any and all primal-dual conditions:
w € Of (Lx) Lz € 0f*(p)
LTy € dg() —L"p € dg()
i€ Of (L) La € 0f* ()
x € dg*(—~L"p) z € 99" (—=L"p)

If one of these uniquely characterizes x, then must be solution:

® 9g* is differentiable at —L7 i for dual solution

® Jf* is differentiable at dual solution p and L invertible
e ...

Algorithms

41 42
Proximal gradient method Proximal gradient — Fixed-points
® Consider minimize f(z) + g(x) where
x
® fis -smooth f:R™ — R (not necessarily convex) ® Denote TSG = prox,),_q(l —~V), gives algorithm zy 41 = Tgczk
¢ gis closed convex ® Proximal gradient fixed-point set definition
® Due to -smoothness of f, we have
ixTpo ={z: 2z =Tpgz} = {z : x = prox, (v — vV f(z))}
8 PG PG vg
F@) +9() < f2) + V@) (y —2) + 5lly — Il + 9(y)
. . o . . i.e., set of points for which z;41 = x,
for all z,y € R™, i.e., r.h.s. is majorizing function for fixed x
® Majorization minimization with majorizer if v € [e, 371, € > 0: Let > 0. Then 7 € fixT], if and only if 0 € dg(z) + V£ (). ‘
wiepr = argmin (£ (ox) + VS @) (y = 2) + 35 |y = 23 + 9(0)) L
y ® Consequence: fixed-point set same for all v > 0
= argmin (g(y) 4 ?)%Hy — (g — %vf(mk))‘@) ® We call inclusion 0 € dg(z) + V f(Z) fixed-point characterization
Y ® For convex problems: global solutions
= prox,, ,(zx — %V f(zK)) ® For nonconvex problems: critical points
gives proximal gradient method
43 44
Applying proximal gradient to primal problems Applying proximal gradient to dual problem
ST w(_ 7T,).
Problem minimize f(z) + g(z): Dual problem mlmVImZ(,f W)+ g (=L v):
x
® Assumptions: ® Assumptions:
® f B-smooth ® f closed convex and prox friendly s
® g closed convex and prox friendly" ® g o-strongly convex (which implies g* o —L” %—smooth)
® e, 2~ 'Wké[eyuiﬁ]’b—d
® Algorithm: &1 = prox,, 4(zx — 1V f(2x)) ® Gradient: V(g* o —L")(v) = —LVg*(~L"v)
Problem minizmizef(L;v) +g(): ® Prox (Moreau): prox,, ;- (v) =v — ",';‘,.proxvglf('y;lu)
® Assumptions: ® Algorithm:
® f B-smooth (implies f o L S| L||3-smooth) T
® g closed convex and prox friendly! Vi1 = PTOX»M.f*(Vk —mV(g" o —L") ()
> -
® e €l g — € = (I = wprox, -1 5 (% Yo I))(vk + 1w LVg* (=L vy))
e Gradient V(f o L)(z) = LYV f(Lx)
o Algorithm: 41 = prox., ,(x — LTV f(Lay)) ® Problem must be convex to have dual!
n ; - - ® Enough to know prox of f
Prox friendly: proximal operator cheap to evaluate, e.g., g separable
45 46
What problems cannot be solved (efficiently)? Training problems
Problem minimize f(z) + g(z) ¢ Training problem format
x
N n
® Assumptions: f and g convex and nonsmooth minimizcz L(m(xi;0),y:)+ Zg,(ﬁj)
® No term differentiable, another method must be used: o i=1 j=1
® Subgradient method £(X0) T
® Douglas-Rachford splitting g
® Primal-dual methods where f is data misfit term and g is regularizer
. ® Regularizers (0 = (w,b))
Problem minmize fx) +g(Lz) ® Tikhonov g(8) = ||lw]|3 is prox-friendly
oA L ® Sparsity inducing 1-norm g(0) = [|wl|y is prox-friendly
ssumptions: e Data misfit terms (with m(z;0) = ¢(2)7'0 for convex problems)
® f smooth ® Least squares L(u,y) = ||u — y||3 smooth, hence f smooth
¢ g nonsmooth convex . ® Logistic L(u,y) = log(1 + €") — yu smooth, hence f smooth
¢ L arbitrary structured matrix ® SVM L(u,y) = max(0,1 — yu) not smooth, hence f not smooth
® Can apply proximal gradient method, but ® Proximal gradient method
. ® |east squares: can efficiently solve primal
TOX (2) = argmin g(La) + 5= ||z — 2)3) ot ; ;
ProX., (goL) g 9 2 2 ® Logistic regression: can solve primal
* ® SVM: add strongly convex regularization and solve dual
often not “prox friendly”, i.e., it is expensive to evaluate ® Strongly convex regulariztion to have one conjugate smooth
47 ® |f bias term not regularized, only strongly convex in w 8

® SVM with || - ||1-regularization not solvable with prox-grad

122

Dual training problem

® Convex training problem

HlllllIanCE L(p(z:)T0,y; JrE g;(0
i=1
,/
F(X0) 9(0)

has dual

N n
R . S(_xT).
mlmgmue; L* (i) + ngj((—X ©);)
i= j=
N——— —

F(n) g* (=X T)

where the conjugate of L is w.r.t. first argument

® Dual has same structure as primal, finite-sum plus separable

49

Training problem structure

® Primal training problem

N
minigmize Z L(m(z;
i=1

0,90+ 9,0
=1

—_—

f(x0) 9(0)
® Dual training problem
N
R “ T
mungmlze;L +ZgJ —-X" 1))
=
Fr(w) g* (=X Tp)

® Common structure, finite sum plus separable:
)+

® Primal: f; = L(m(x;;-),y:) (one summand per training example)
® Dual: f; = g} ((—X"");), ¥ = L*

nnnlnnzc Z fi((X0);

i=1

50

Exploiting structure

® Common structure, finite sum plus separable:

+Zv

® Stochastic gradient descent exploits finite-sum structure:

mlmmueg fi((X0);

® Computes stochastic gradient of smooth part f
® Pick summand f; at random and perform gradient step
® Primal formulations: Pick training example and compute gradient
® Deep learning: evaluted via backpropagation
® Coordinate gradient descent exploits separable structure:
® Coordinate-wise updates if nonsmooth ¢; separable
® Requires efficient coordinate-wise evaluations of V f

51

123

