Outline

Convex Sets

Pontus Giselsson

- Definition and convex hull
- Examples of convex sets
- Convexity preserving operations
- Concluding convexity Examples
- Separating and supporting hyperplanes

1

Convex combination and convex hull

Convex hull (conv S) of S is smallest convex set that contains S:

- "Every line segment that connect any two points in ${\cal C}$ is in ${\cal C}$ "

 $\bullet \ \ {\rm A \ set} \ C \ {\rm is \ convex} \ {\rm if \ for \ every} \ x,y \in C \ {\rm and} \ \theta \in [0,1] ;$

 $\theta x + (1 - \theta)y \in C$

Convex sets - Definition

Nonconvex

Nonconvex

Convex

• Will assume that all sets are nonempty and closed

3

Mathematical construction:

ullet Convex combinations of x_1,\dots,x_k are all points x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_k x_k$$

where $\theta_1 + \ldots + \theta_k = 1$ and $\theta_i \geq 0$

 \bullet Convex hull: set of all convex combinations of points in S

4

2

Outline

- Definition and convex hull
- Examples of convex sets
- Convexity preserving operations
- Concluding convexity Examples
- Separating and supporting hyperplanes

Affine sets

• Take any two points $x,y \in V \colon V$ is affine if full line in $V \colon$

Lines and planes are affine sets

 $\bullet \ \ {\rm Definition} \colon {\rm A \ set} \ V \ \ {\rm is \ affine \ if \ for \ every} \ x,y \in V \ \ {\rm and} \ \ \alpha \in \mathbb{R} :$

$$\alpha x + (1 - \alpha)y \in V \tag{1}$$

hence convex this holds in particular for $\alpha \in [0,1]$

6

Affine hyperplanes

 \bullet Affine hyperplanes in \mathbb{R}^n are affine sets that cut \mathbb{R}^n in two halves

- Dimension of affine hyperplane in \mathbb{R}^n is n-1 (If $s \neq 0$)
- ullet All affine sets in \mathbb{R}^n of dimension n-1 are hyperplanes
- Mathematical definition:

$$h_{s,r} := \{ x \in \mathbb{R}^n : s^T x = r \}$$

where $s \in \mathbb{R}^n$ and $r \in \mathbb{R},$ i.e., defined by one affine function

 \bullet Vector \boldsymbol{s} is called normal to hyperplane

Halfspaces

A halfspace is one of the halves constructed by a hyperplane

Mathematical definition:

$$H_{r,s} = \{ x \in \mathbb{R}^n : s^T x \le r \}$$

ullet Halfspaces are convex, and vector s is called normal to halfspace

8

Polytopes

• A polytope is intersection of halfspaces and hyperplanes

• Mathematical representation:

$$C = \{x \in \mathbb{R}^n: s_i^Tx \le r_i \text{ for } i \in \{1,\dots,m\} \text{ and }$$

$$s_i^Tx = r_i \text{ for } i \in \{m+1,\dots,p\}\}$$

• Polytopes convex since intersection of convex sets

Cones

- A set K is a cone if for all $x \in K$ and $\alpha > 0$: $\alpha x \in K$
- If x is in cone K, so is entire ray from origin passing through x:

Examples:

9

11

13

10

Convex cones

• Cones can be convex or nonconvex:

Nonconvex cone

- Convex cone examples:
 - Linear subspaces $\{x \in \mathbb{R}^n : Ax = 0\}$ (but not affine subspaces)
 - Halfspaces based on linear (not affine) hyperplanes $\{x: s^T x \leq 0\}$

 - Positive semi-definite matrices $\{X\in\mathbb{R}^{n\times n}:X\text{ symmetric and }z^TXz\geq 0\text{ for all }z\in\mathbb{R}^n\}$ Nonnegative orthant $\{x\in\mathbb{R}^n:x\geq 0\}$ Second order cone $\{(x,r)\in\mathbb{R}^n\times\mathbb{R}:\|x\|_2\leq r\}$

Sublevel sets

- \bullet Suppose that $g:\mathbb{R}^n \to \mathbb{R}$ is a real-valued function
- ullet The (0th) sublevel set of g is defined as

$$S:=\{x\in\mathbb{R}^n:g(x)\leq 0\}$$

 \bullet Example: construction giving 1D interval S=[a,b]

- ullet S is a convex set if g is a convex function
- ullet S is not necessarily nonconvex although g is

12

Sublevel sets - Examples

• Levelset of convex quadratic function

 $\{x\in\mathbb{R}^n:\frac{1}{2}x^TPx+q^Tx+r\leq 0\},$ with P positive definite

- $\bullet \ \ \text{Norm balls} \ \{x \in \mathbb{R}^n: \|x\| r \leq 0\}$
- $\bullet \ \ \text{Second-order cone} \ \{(x,r) \in \mathbb{R}^n \times \mathbb{R} : \|x\|_2 r \leq 0\}$
- Halfspaces $\{x \in \mathbb{R}^n : c^T x r \le 0\}$

Outline

- Definition and convex hull
- Examples of convex sets
- Convexity preserving operations
- Concluding convexity Examples
- Separating and supporting hyperplanes

Convexity preserving operations

- Intersection (but not union)
- Affine image and inverse affine image of a set

Intersection and union

- Intersection $C=C_1\cap C_2$ means $x\in C$ if $x\in C_1$ and $x\in C_2$
- Union $C=C_1\cup C_2$ means $x\in C$ if $x\in C_1$ or $x\in C_2$

- Intersection of any number of, e.g., infinite, convex sets is convex
- Union of convex sets need not be convex

Image sets and inverse image sets

- ullet Let L(x)=Ax+b be an affine mapping defined by
 - matrix $A \in \mathbb{R}^{m \times m}$
 - vector $b \in \mathbb{R}^m$
- ullet Let C be a convex set in \mathbb{R}^n then the image set of C under L

$$\{Ax+b:x\in C\}$$

is convex

ullet Let D be a convex set in \mathbb{R}^m then the inverse image of D under L

$$\{x:Ax+b\in D\}$$

is convex

Outline

- Definition and convex hull
- Examples of convex sets

17

19

- Convexity preserving operations
- Concluding convexity Examples
- Separating and supporting hyperplanes

18

Ways to conclude convexity

- Use convexity definition
- Show that set is sublevel set of a convex function
- Show that set constructed by convexity preserving operations

Example - Nonnegative orthant

- Nonnegative orthant is set $C = \{x \in \mathbb{R}^n : x \ge 0\}$
- Prove convexity from definition:
 - $\bullet \ \ \mbox{Let} \ x \geq 0 \ \mbox{and} \ y \geq 0 \ \mbox{be} \ \mbox{arbitrary points} \ \mbox{in} \ C$
 - $\bullet \ \ \text{For all} \ \theta \in [0,1] :$

 $\theta x > 0$ $(1-\theta)y \ge 0$ and

· All convex combinations therefore also satisfy

 $\theta x + (1 - \theta)y \ge 0$

i.e., they belongs to ${\cal C}$ and the set is convex

20

Example - Positive semidefinite cone

• The positive semidefinite (PSD) cone is

$$\{X \in \mathbb{R}^{n \times n} : X \text{ symmetric}\} \bigcap \{X \in \mathbb{R}^{n \times n} : z^T X z \ge 0 \text{ for all } z \in \mathbb{R}^n\}$$

 \bullet This can be written as the following intersection over all $z \in \mathbb{R}^n$

$$\{X \in \mathbb{R}^{n \times n} : X \text{ symmetric}\} \bigcap_{z \in \mathbb{R}^n} \{X \in \mathbb{R}^{n \times n} : z^T X z \geq 0\}$$

which, by noting that $z^TXz=\operatorname{tr}(z^TXz)=\operatorname{tr}(zz^TX)$, is equal to

$$\{X \in \mathbb{R}^{n \times n} : X \text{ symmetric}\} \bigcap_{z \in \mathbb{R}^n} \{X \in \mathbb{R}^{n \times n} : \operatorname{tr}(zz^TX) \geq 0\}$$

where $\operatorname{tr}(zz^TX) \geq 0$ is a halfspace in $\mathbb{R}^{n \times n}$ (except when z = 0)

- · The PSD cone is convex since it is intersection of
 - symmetry set, which is a finite set of (convex) linear equalities an infinite number of (convex) halfspaces in $\mathbb{R}^{n\times n}$
- \bullet Notation: If X belong to the PSD cone, we write $X\succeq 0$

Example - Linear matrix inequality

• Let us consider a linear matrix inequality (LMI) of the form

$$\{x \in \mathbb{R}^k : A + \sum_{i=1}^k x_i B_i \succeq 0\}$$

where A and B_i are fixed matrices in $\mathbb{R}^{n\times n}$

· Convex since inverse image of PSD cone under affine mapping

22

Outline

- Definition and convex hull
- Examples of convex sets
- Convexity preserving operations
- Concluding convexity Examples
- Separating and supporting hyperplanes

Separating hyperplane theorem

- \bullet Suppose that $C,D\subseteq \mathbb{R}^n$ are two non-intersecting convex sets
- \bullet Then there exists hyperplane with C and D in opposite halves

Example

Counter-example D nonconvex

for all $x \in C$ $\text{ for all } x \in D$

ullet Mathematical formulation: There exists s
eq 0 and r such that

$$s^T x \leq r$$

ullet The hyperplane $\{x: s^Tx = r\}$ is called separating hyperplane

24

A strictly separating hyperplane theorem

- \bullet Suppose that $C,D\subseteq\mathbb{R}^n$ are non-intersecting closed and convex sets and that one of them is compact (closed and bounded)
- Then there exists hyperplane with strict separation

 $D = \{(x, y) : y \ge x^{-1}, x > 0\}$ $C=\{(x,y):y\leq 0\}$

25

27

 \bullet Mathematical formulation: There exists $s \neq 0$ and r such that

$$s^T x < r$$
$$s^T x > r$$

 $\text{ for all } x \in C$

for all $x \in D$

Consequence – ${\cal C}$ is intersection of halfspaces

a closed convex set ${\cal C}$ is the intersection of all halfspaces that contain it

proof:

- \bullet let H be the intersection of all halfspaces containing C
- $\Rightarrow \text{: obviously } x \in C \Rightarrow x \in H$ $\Leftarrow \text{: assume } x \not\in C, \text{ since } C \text{ closed and convex and } \{x\} \text{ compact}$ singleton, there exists a strictly separating hyperplane, i.e., $x \not\in H$:

26

Supporting hyperplanes

• Supporting hyperplanes touch set and have full set on one side:

- We call the halfspace that contains the set supporting halfspace
- ullet s is called *normal vector* to C at x
- \bullet Definition: Hyperplane $\{y: s^Ty = r\}$ supports C at $x \in \operatorname{bd} C$ if

$$s^T x = r$$
 and $s^T y \le r$ for all $y \in C$

Supporting hyperplane theorem

Let C be a nonempty convex set and let $x \in bd(C)$. Then there exists a supporting hyperplane to C at x.

- Does not exist for all point on boundary for nonconvex sets
- · Many supporting hyperplanes exist for points of nonsmoothness

28

Normal cone operator

• Normal cone to C at $x \in \mathrm{bd}(C)$ is set of normals at x

- $\bullet\,$ Normal cone operator N_C to C takes point input and returns set:
 - $x\in \mathrm{bd}(C)\cap C$: set of normal vectors to supporting halfspaces $x\in \mathrm{int}(C)$: returns zero set $\{0\}$
 - $x \notin C$: returns emptyset \emptyset
- ullet Mathematical definition: The normal cone operator to a set C is

chematical definition: The normal cone operator to a set
$$C$$
 $N_C(x) = \begin{cases} \{s: s^T(y-x) \leq 0 \text{ for all } y \in C\} & \text{if } x \in C \\ \emptyset & \text{else} \end{cases}$

i.e., vectors that form obtuse angle between s and all y-x, $y\in C$

• For all $x \in C$: the N_C outputs a set that contains 0

Outline

Convex Functions

Pontus Giselsson

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- Convexity preserving operations
- Concluding convexity Examples
- Strict and strong convexity
- Smoothness

2

Extended-valued functions and domain

- We consider extended-valued functions $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\} =: \overline{\mathbb{R}}$
- ullet Example: Indicator function of interval [a,b]

$$\iota_{[a,b]}(x) = \begin{cases} 0 & \text{if } a \leq x \leq b \\ \infty & \text{else} \end{cases}$$

1

3

ullet The (effective) domain of $f:\mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is the set

$$\mathrm{dom}\; f=\{x\in\mathbb{R}^n: f(x)<\infty\}$$

• (Will always assume $dom f \neq \emptyset$, this is called proper)

Convex functions

 \bullet Graph below line connecting any two pairs (x,f(x)) and (y,f(y))

• Function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is convex if for all $x,y \in \mathbb{R}^n$ and $\theta \in [0,1]$:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

(in extended valued arithmetics)

• A function f is concave if -f is convex

4

Epigraphs

ullet The epigraph of a function f is the set of points above graph

Mathematical definition:

$$\mathrm{epi} f = \{(x,r) \mid f(x) \leq r\}$$

ullet The epigraph is a set in $\mathbb{R}^n imes \mathbb{R}$

Epigraphs and convexity

• Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$

• Then f is convex if and only $\mathrm{epi} f$ is a convex set in $\mathbb{R}^n \times \mathbb{R}$

ullet f is called closed (lower semi-continuous) if $\mathrm{epi}f$ is closed set

6

Convex envelope

 $\bullet\,$ Convex envelope of f is largest convex minorizer

ullet Definition: The convex envelope $\mathrm{env} f$ satisfies: $\mathrm{env} f$ convex,

 $\mathrm{env} f \geq g \text{ for all convex } g \leq f$ $\operatorname{env} f \leq f$ and

Convex envelope and convex hull

• Assume $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is closed

ullet Epigraph of convex envelope of f is closed convex hull of $\mathrm{epi} f$

ullet epif in light gray, $\operatorname{epi}\operatorname{env} f$ includes dark gray

8

Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- Convexity preserving operations
- Concluding convexity Examples
- Strict and strong convexity
- Smoothness

Affine functions

• Affine functions $f:\mathbb{R}^n \to \mathbb{R}$ are of the form

$$f(y) = s^T y + r$$

• Affine functions $f:\mathbb{R}^n \to \mathbb{R}$ cut $\mathbb{R}^n \times \mathbb{R}$ in two halves

- ullet s defines slope of function
- \bullet Upper halfspace is epigraph with normal vector $(s,-1)\colon$

$$epif = \{(y,t) : t \ge s^T y + r\} = \{(y,t) : (s,-1)^T (y,t) \le -r\}$$

9

11

10

Affine functions - Reformulation

 \bullet Pick any fixed $x \in \mathbb{R}^n$; affine $f(y) = s^T y + r$ can be written as

$$f(y) = f(x) + s^{T}(y - x)$$

(since $r = f(x) - s^T x$)

• Affine function of this form is important in convex analysis

First-order condition for convexity

ullet A differentiable function $f \ : \ \mathbb{R}^n o \mathbb{R}$ is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x,y\in\mathbb{R}^n$

- Function f has for all $x \in \mathbb{R}^n$ an affine minorizer that:

 - coincides with function f at x has slope s defined by ∇f , which coincides the function slope
 - ullet is supporting hyperplane to epigraph of f
 - ullet defines normal $(\nabla f(x),-1)$ to epigraph of f

12

Second-order condition for convexity

• A twice differentiable function is convex if and only if

$$\nabla^2 f(x) \succeq 0$$

for all $x \in \mathbb{R}^n$ (i.e., the Hessian is positive semi-definite)

- "The function has non-negative curvature"
- Nonconvex example: $f(x) = x^T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} x$ with $\nabla^2 f(x) \not\succeq 0$

13

Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- Convexity preserving operations
- Concluding convexity Examples
- Strict and strong convexity
- Smoothness

14

Operations that preserve convexity

- Positive sum
- Marginal function
- Supremum of family of convex functions
- Composition rules
- Prespective of convex function

Positive sum

- Assume that f_j are convex for all $j \in \{1, \dots, m\}$
- Assume that there exists x such that $f_i(x) < \infty$ for all j
- Then the positive sum

$$f = \sum_{j=1}^{m} t_j f_j$$

with $t_j > 0$ is convex

Marginal function

- Let $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$ be convex
- Define the marginal function

$$g(x) := \inf_{y} f(x, y)$$

 \bullet The marginal function g is convex if f is

Supremum of convex functions

• Point-wise supremum of convex functions from family $\{f_j\}_{j\in J}$:

$$f(x) := \sup\{f_j(x) : j \in J\}$$

- ullet Supremum is over functions in family for fixed x
- Example:

17

19

• Convex since epigraph is intersection of convex epigraphs

18

Scalar composition rule

 \bullet Consider the function $f:\mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ defined as

$$f(x) = h(q(x))$$

where $h:\mathbb{R}\to\mathbb{R}\cup\{\infty\}$ is convex and $g:\mathbb{R}^n\to\mathbb{R}$

- Suppose that one of the following holds:
 - $\bullet \ \ h \ \text{is nondecreasing and} \ g \ \text{is convex}$
 - ullet h is nonincreasing and g is concave
 - $\bullet \ g \ {\rm is \ affine}$

Then f is convex

Vector composition rule

 \bullet Consider the function $f:\mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ defined as

$$f(x) = h(g_1(x), g_2(x), \dots, g_k(x))$$

where $h: \mathbb{R}^k \to \mathbb{R} \cup \{\infty\}$ is convex and $g_i: \mathbb{R}^n \to \mathbb{R}$

- ullet Suppose that for each $i \in \{1,\ldots,k\}$ one of the following holds:
 - ullet h is nondecreasing in the ith argument and g_i is convex
 - $\bullet \ h$ is nonincreasing in the $i{\rm th}$ argument and g_i is concave
 - ullet g_i is affine

Then f is convex

20

Perspective of function

- $\bullet \ f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex
- t be positive, i.e, $t \in \mathbb{R}_+$

then the perspective function $g:\mathbb{R}^n imes\mathbb{R} o \overline{\mathbb{R}}$, defined by

$$g(x,t) := \begin{cases} tf(x/t) & \text{if } t > 0 \\ \infty & \text{else} \end{cases}$$

is convex

Outline

- Definition, epigraph, convex envelope
- · First- and second-order conditions for convexity
- Convexity preserving operations
- Concluding convexity Examples
- Strict and strong convexity
- Smoothness

Ways to conclude convexity

- · Use convexity definition
- Show that epigraph is convex set
- Use first or second order condition for convexity
- Show that function constructed by convexity preserving operations

Conclude convexity - Some examples

- From definition:
 - indicator function of convex set C

$$\iota_C(x) := \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{else} \end{cases}$$

- ullet norms: $\|x\|$
- From first- or second-order conditions:

 - affine functions: $f(x)=s^Tx+r$ quadratics: $f(x)=\frac{1}{2}x^TQx$ with Q positive semi-definite matrix
- From convex epigraph:
 - $\bullet \ \ \text{matrix fractional function:} \ f(x,Y) = \begin{cases} x^T Y^{-1} x & \text{if } Y \succ 0 \\ \infty & \text{else} \end{cases}$
- From marginal function:
 - (shortest) distance to convex set $C\colon \operatorname{dist}_C(x)=\inf_{y\in C}(\|y-x\|)$

23

Example - Convexity of norms

Show that f(x) := ||x|| is convex from convexity definition

• Norms satisfy the triangle inequality

$$||u+v|| \le ||u|| + ||v||$$

• For arbitrary x, y and $\theta \in [0, 1]$:

$$\begin{split} f(\theta x + (1 - \theta)y) &= \|\theta x + (1 - \theta)y\| \\ &\leq \|\theta x\| + \|(1 - \theta)y\| \\ &= \theta\|x\| + (1 - \theta)\|y\| \\ &= \theta f(x) + (1 - \theta)f(y) \end{split}$$

which is definition of convexity

• Proof uses triangle inequality and $\theta \in [0,1]$

Example - Matrix fractional function

Show that the matrix fractional function is convex via its epigraph

The matrix fractional function

$$f(x,Y) = \begin{cases} x^T Y^{-1} x & \text{if } Y \succ 0 \\ \infty & \text{else} \end{cases}$$

· The epigraph satisfies

$$\begin{split} \operatorname{epi} & f(x,Y,t) = \{(x,Y,t): f(x,Y) \leq t\} \\ & = \{(x,Y,t): x^T Y^{-1} x \leq t \text{ and } Y \succ 0\} \end{split}$$

• Schur complement condition says for $Y\succ 0$ that

$$x^T Y^{-1} x \le t \quad \Leftrightarrow \quad \begin{bmatrix} Y & x \\ x^T & t \end{bmatrix} \succeq 0$$

which is a (convex) linear matrix inequality (LMI) in (x, Y, t)

• Epigraph is intersection between LMI and positive definite cone

26

Example - Composition with matrix

- Let
 - $\begin{array}{l} \bullet \ \ f: \mathbb{R}^m \to \overline{\mathbb{R}} \ \mbox{be convex} \\ \bullet \ \ L \in \mathbb{R}^{m \times n} \ \mbox{be a matrix} \end{array}$

then composition with a matrix

$$(f \circ L)(x) := f(Lx)$$

is convex

Vector composition with convex function and affine mappings

Example - Image of function under linear mapping

25

27

- $\begin{array}{l} \bullet \ \ f: \mathbb{R}^n \to \overline{\mathbb{R}} \ \mbox{be convex} \\ \bullet \ \ L \in \mathbb{R}^{m \times n} \ \mbox{be a matrix} \end{array}$

then image function (sometimes called infimal postcomposition)

$$(Lf)(x) := \inf_y \{ f(y) \ : \ Ly = x \}$$

is convex

• Proof: Define

$$h(x,y)=f(y)+\iota_{\{0\}}(Ly-x)$$

which is convex in (x, y), then

$$(Lf)(x) = \inf_{x} h(x, y)$$

which is convex since marginal of convex function

28

Example - Nested composition

Show that: $f(x) := e^{\|Lx - b\|_2^3}$ is convex where L is matrix b vector:

• Let

$$g_1(u) = \|u\|_2, \qquad g_2(u) = \begin{cases} 0 & \text{if } u < 0 \\ u^3 & \text{if } u \geq 0 \end{cases}, \qquad g_3(u) = e^u$$

then $f(x) = g_3(g_2(g_1(Lx - b)))$

- $g_1(Lx-b)$ convex: convex g_1 and Lx-b affine
- ullet $g_2(g_1(Lx-b))$ convex: cvx nondecreasing g_2 and cvx $g_1(Lx-b)$
- f(x) convex: convex nondecreasing g_3 and convex $g_2(g_1(Lx-b))$

Example - Conjugate function

Show that the *conjugate* $f^*(s) := \sup_{x \in \mathbb{R}^n} (s^T x - f(x))$ is convex:

- Define (uncountable) index set J and x_j such that $\bigcup_{j\in J} x_j = \mathbb{R}^n$
- ullet Define $r_j := f(x_j)$ and affine (in s): $a_j(s) := s^T x_j r_j$
- Therefore $f^*(s) = \sup(a_j(s) : j \in J)$
- · Convex since supremum over family of convex (affine) functions
- \bullet Note convexity of f^{\ast} not dependent on convexity of f

29

30

Outline

- · Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- Convexity preserving operations
- Concluding convexity Examples
- Strict and strong convexity
- Smoothness

Strict convexity

• A function is strictly convex if

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for all $x \neq y$ and $\theta \in (0,1)$

- · Convexity definition with strict inequality
- No flat (affine) regions
- Example: f(x) = 1/x for x > 0

Strong convexity

- $\bullet \ \ {\rm Let} \ \sigma > 0$
- A function f is $\sigma\text{-strongly convex}$ if $f-\frac{\sigma}{2}\|\cdot\|_2^2$ is convex
- Alternative equivalent definition of σ -strong convexity:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) - \frac{\sigma}{2}\theta(1 - \theta)||x - y||^2$$

holds for every $x,y\in\mathbb{R}^n$ and $\theta\in[0,1]$

- Strongly convex functions are strictly convex and convex
- \bullet Example: f 2-strongly convex since $f-\|\cdot\|_2^2$ convex:

33

35

37

Uniqueness of minimizers

- Strictly (strongly) convex functions have unique minimizers
- Strictly convex functions may not have a minimizing point
- Strongly convex functions always have a unique minimizing point

34

First-order condition for strict convexity

- ullet Let $f \ : \ \mathbb{R}^n \to \mathbb{R}$ be differentiable
- ullet f is strictly convex if and only if

$$f(y) > f(x) + \nabla f(x)^T (y - x)$$

for all $x,y\in\mathbb{R}^n$ where $x\neq y$

- ullet Function f has for all $x\in\mathbb{R}^n$ an affine minorizer that:
 - \bullet has slope s defined by ∇f
 - \bullet coincides with function f only at x
 - $\bullet\,$ is supporting hyperplane to epigraph of f
 - defines normal $(\nabla f(x), -1)$ to epigraph of f

First-order condition for strong convexity

- Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable
- f is σ -strongly convex with $\sigma>0$ if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\sigma}{2} ||x - y||_2^2$$

for all $x,y\in\mathbb{R}^n$

- Function f has for all $x \in \mathbb{R}^n$ a quadratic minorizer that:
 - has curvature defined by σ
 - ullet coincides with function f at x
 - ullet defines normal $(\nabla f(x), -1)$ to epigraph of f

36

Second-order condition for strict/strong convexity

Let $f:\mathbb{R}^n \to \mathbb{R}$ be twice differentiable

f is strictly convex if

$$\nabla^2 f(x) \succ 0$$

for all $x \in \mathbb{R}^n$ (i.e., the Hessian is positive definite)

 $\bullet \ f$ is $\sigma\text{-strongly convex}$ if and only if

$$\nabla^2 f(x) \succeq \sigma I$$

for all $x \in \mathbb{R}^n$

Examples of strictly/strongly convex functions

Strictly convex

- $f(x) = -\log(x) + \iota_{>0}(x)$
- $\bullet \ f(x) = 1/x + \iota_{>0}(x)$
- $f(x) = e^{-x}$

Strongly convex

- $f(x) = \frac{\lambda}{2} ||x||_2^2$
- $f(x) = \frac{1}{2}x^TQx$ where Q positive definite
- ullet $f(x)=f_1(x)+f_2(x)$ where f_1 strongly convex and f_2 convex
- ullet $f(x)=f_1(x)+f_2(x)$ where f_1,f_2 strongly convex
- $f(x) = \frac{1}{2}x^TQx + \iota_C(x)$ where Q positive definite and C convex

38

Proofs for two examples

Strict convexity of $f(x) = e^{-x}$:

 $\bullet \ \, \nabla f(x) = -e^{-x}, \, \nabla^2 f(x) = e^{-x} > 0 \, \, \text{for all} \, \, x \in \mathbb{R}$

Strong convexity of $f(x) = \frac{1}{2}x^TQx$ with Q positive definite

• $\nabla f(x) = Qx$, $\nabla^2 f(x) = Q \succeq \lambda_{\min}(Q)I$ where $\lambda_{\min}(Q) > 0$

Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- Convexity preserving operations
- Concluding convexity Examples
- Strict and strong convexity
- Smoothness

Smoothness

• A function is called β -smooth if its gradient is β -Lipschitz:

$$\|\nabla f(x) - \nabla f(y)\|_2 \le \beta \|x - y\|_2$$

for all $x,y\in\mathbb{R}^n$ (it is not necessarily convex)

ullet Alternative equivalent definition of eta-smoothness

$$\begin{split} f(\theta x + (1 - \theta)y) &\geq \theta f(x) + (1 - \theta)f(y) - \frac{\beta}{2}\theta(1 - \theta)\|x - y\|^2 \\ f(\theta x + (1 - \theta)y) &\leq \theta f(x) + (1 - \theta)f(y) + \frac{\beta}{2}\theta(1 - \theta)\|x - y\|^2 \end{split}$$

hold for every $x,y\in\mathbb{R}^n$ and $\theta\in[0,1]$

- Smoothness does not imply convexity
- Example:

41

43

First-order condition for smoothness

• f is β -smooth with $\beta \geq 0$ if and only if

$$f(y) \le f(x) + \nabla f(x)^{T} (y - x) + \frac{\beta}{2} ||x - y||_{2}^{2}$$

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) - \frac{\beta}{2} ||x - y||_{2}^{2}$$

for all $x,y\in\mathbb{R}^n$

- Quadratic upper/lower bounds with curvatures defined by β
- ullet Quadratic bounds coincide with function f at x

42

First-order condition for smooth convex

• f is $\beta\text{-smooth}$ with $\beta\geq 0$ and convex if and only if

$$f(y) \le f(x) + \nabla f(x)^{T} (y - x) + \frac{\beta}{2} ||x - y||_{2}^{2}$$

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x)$$

for all $x,y\in\mathbb{R}^n$

- Quadratic upper bounds and affine lower bound
- \bullet Bounds coincide with function f at \boldsymbol{x}
- Quadratic upper bound is called descent lemma

Second-order condition for smoothness

Let $f:\mathbb{R}^n \to \mathbb{R}$ be twice differentiable

• f is β -smooth if and only if

$$-\beta I \preceq \nabla^2 f(x) \preceq \beta I$$

for all $x \in \mathbb{R}^n$

 $\bullet \ f$ is $\beta\text{-smooth}$ and convex if and only if

$$0 \le \nabla^2 f(x) \le \beta I$$

for all $x \in \mathbb{R}^n$

44

Convex Optimization Problems

Composite optimization form

 $\bullet\,$ We will consider optimization problem on composite form

$$\min_{x} \inf f(Lx) + g(x)$$

where f and g are convex functions and L is a matrix

- Convex problem due to convexity preserving operations
- Can model constrained problems via indicator function
- This model format is suitable for many algorithms

45

Subdifferentials and Proximal Operators

Pontus Giselsson

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples

1

3

- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Gradients of convex functions

• Recall: A *differentiable* function $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x,y\in\mathbb{R}^n$

- Function f has for all $x \in \mathbb{R}^n$ an affine minorizer that:
 - ullet has slope s defined by ∇f
 - ullet coincides with function f at x
 - ullet defines normal $(\nabla f(x), -1)$ to epigraph of f
- What if function is nondifferentiable?

Subdifferentials and subgradients

 \bullet Subgradients s define affine minorizers to the function that:

- ullet coincide with f at x
- ullet define normal vector (s,-1) to epigraph of f
- \bullet can be one of many affine minorizers at nondifferentiable points x
- \bullet Subdifferential of $f:\mathbb{R}^n\to\overline{\mathbb{R}}$ at x is set of vectors s satisfying

$$f(y) \ge f(x) + s^T(y - x)$$
 for all $y \in \mathbb{R}^n$, (1)

- Notation:
 - ullet subdifferential: $\partial f:\mathbb{R}^n o 2^{\mathbb{R}^n}$ (power-set notation $2^{\mathbb{R}^n}$)
 - subdifferential at x: $\partial f(x) = \{s : (1) \text{ holds}\}$
 - elements $s \in \partial f(x)$ are called *subgradients* of f at x

4

Relation to gradient

- If f differentiable at x and $\partial f(x) \neq \emptyset$ then $\partial f(x) = {\nabla f(x)}$:
- $\bullet \ \mbox{ If } f \mbox{ convex but not differentiable at } x \in \operatorname{int} \operatorname{dom} f$, then

$$\partial f(x) = \operatorname{cl}\left(\operatorname{conv} S(x)\right)$$

where S(x) is set of all s such that $\nabla f(x_k) \to s$ when $x_k \to x$

• In general for convex $f: \partial f(x) = \operatorname{cl}(\operatorname{conv} S(x)) + N_{\operatorname{dom} f}(x)$

Subgradient existence - Convex setting

For *finite-valued convex* functions, a subgradient exists for every x

- In extended-valued setting, let $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be convex:
 - (i) Subgradients exist for all x in relative interior of dom f
 - (ii) Subgradients sometimes exist for x on relative boundary of $\mathrm{dom} f$
- (iii) No subgradient exists for x outside $\mathrm{dom} f$ ullet Examples for second case, boundary points of $\mathrm{dom} f$:

ullet No subgradient (affine minorizer) exists for left function at x=1

Subgradient existence - Nonconvex setting

ullet Function can be differentiable at x but $\partial f(x) = \emptyset$

- x_1 : $\partial f(x_1) = \{0\}$, $\nabla f(x_1) = 0$ x_2 : $\partial f(x_2) = \emptyset$, $\nabla f(x_2) = 0$ x_3 : $\partial f(x_3) = \emptyset$, $\nabla f(x_3) = 0$

- Gradient is a local concept, subdifferential is a global property

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

7

Monotonicity of subdifferential

• Subdifferential operator is monotone:

$$(s_x - s_y)^T (x - y) \ge 0$$

for all $s_x \in \partial f(x)$ and $s_y \in \partial f(y)$

• Proof: Add two copies of subdifferential definition

$$f(y) \ge f(x) + s_x^T (y - x)$$

with \boldsymbol{x} and \boldsymbol{y} swapped

• $\partial f:\mathbb{R} o 2^{\mathbb{R}}$: Minimum slope 0 and maximum slope ∞

Monotonicity beyond subdifferentials

• Let $A: \mathbb{R}^n \to 2^{\mathbb{R}^n}$ be monotone, i.e.:

$$(u-v)^T(x-y) \ge 0$$

for all $u \in Ax$ and $v \in Ay$

• If n=1, then $A=\partial f$ for some function $f:\mathbb{R}\to\mathbb{R}\cup\{\infty\}$

ullet If $n\geq 2$ there exist monotone A that are not subdifferentials

10

Maximal monotonicity

- Let the set $gph \partial f := \{(x,u) : u \in \partial f(x)\}$ be the graph of ∂f
- \bullet $\,\partial f$ is maximally monotone if no other function g exists with

$$gph \partial f \subset gph \partial g$$
,

with strict inclusion

• A result (due to Rockafellar):

f is closed convex if and only if ∂f is maximally monotone

Minty's theorem

• Let $\partial f: \mathbb{R}^n \to 2^{\mathbb{R}^n}$ and $\alpha > 0$

9

11

• ∂f is maximally monotone if and only if $\mathrm{range}(\alpha I + \partial f) = \mathbb{R}^n$

 \bullet Interpretation: No "holes" in $\operatorname{gph} \partial f$

12

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Example – Absolute value

The absolute value:

- Subdifferential
 - For x > 0, f differentiable and $\nabla f(x) = 1$, so $\partial f(x) = \{1\}$
 - For x < 0, f differentiable and $\nabla f(x) = 1$, so $\partial f(x) = \{1\}$
 - For x = 0, f not differentiable, but since f convex:

$$\partial f(0) = \operatorname{cl}(\operatorname{conv} S(0)) = \operatorname{cl}(\operatorname{conv}(\{-1,1\}) = [-1,1]$$

• The subdifferential operator:

1

A nonconvex example

Nonconvex function:

- Subdifferential
 - For x > b, f differentiable and $\nabla f(x) = 1$, so $\partial f(x) = \{1\}$
 - For x < a, f differentiable and $\nabla f(x) = -1$, so $\partial f(x) = \{-1\}$
 - ullet For $x\in(a,b)$, no affine minorizer, $\partial f(x)=\emptyset$
 - For x = a, f not differentiable, $\partial f(x) = [-1, 0]$
 - For x=b, f not differentiable, $\partial f(x)=[0,1]$
- The subdifferential operator:

Example - Separable functions

- \bullet Consider the separable function $f(x) = \sum_{i=1}^n f_i(x_i)$
- $\bullet \ \ \mathsf{Subdifferential}$

$$\partial f(x) = \{ s = (s_1, \dots, s_n) : s_i \in \partial f_i(x_i) \}$$

- The subgradient $s \in \partial f(x)$ if and only if each $s_i \in \partial f_i(x_i)$
- Proof:
 - Assume all $s_i \in \partial f(x_i)$:

$$f(y) - f(x) = \sum_{i=1}^{n} f_i(y_i) - f_i(x_i) \ge \sum_{i=1}^{n} s_i(y_i - x_i) = s^T(y - x)$$

• Assume $s_j \notin \partial f(x_j)$ and $x_i = y_i$ for all $i \neq j$:

$$f_j(y_j) - f_j(x_j) < s_j(y_j - x_j)$$

which gives

$$f(y) - f(x) = f_j(y_j) - f_j(x_j) < s_j(y_j - x_j) = s^T(y - x)$$

16

Example - 1-norm

- Consider the 1-norm $f(x) = ||x||_1 = \sum_{i=1}^n |x_i|$
- It is a separable function of absolute values
- From previous examples, we conclude that the subdifferential is

$$\partial f(x) = \left\{ (s_1,\dots,s_n) : \begin{cases} s_i = -1 & \text{if } x_i < 0 \\ s_i \in [-1,1] & \text{if } x_i = 0 \\ s_i = 1 & \text{if } x_i > 0 \end{cases} \right\}$$

Example - 2-norm

- Consider the 2-norm $f(x) = ||x||_2 = \sqrt{||x||_2^2}$
- ullet The function is differentiable everywhere except for when x=0
- Divide into two cases; x = 0 and $x \neq 0$
- Subdifferential for $x \neq 0$: $\partial f(x) = {\nabla f(x)}$:
 - Let $h(u)=\sqrt{u}$ and $g(x)=\|x\|_2^2$, then $f(x)=(h\circ g)(x)$ The gradient for all $x\neq 0$ by chain rule (since $h:\mathbb{R}_+\to\mathbb{R}$):

$$\nabla f(x) = \nabla h(g(x)) \nabla g(x) = \frac{1}{2\sqrt{\|x\|_2^2}} 2x = \frac{x}{\|x\|_2}$$

17

19

18

Example cont'd - 2-norm

Subdifferential of $\|x\|_2$ at x=0

- (i) educated guess of subdifferential from $\partial f(0) = \operatorname{cl}(\operatorname{conv} S(0))$
 - recall S(0) is set of all limit points of $(\nabla f(x_k))_{k\in\mathbb{N}}$ when $x_k\to 0$ let $x_k=t^kd$ with $t\in (0,1)$ and $d\in\mathbb{R}^n\setminus 0$, then $\nabla f(x_k)=\frac{d}{\|d\|_2}$

 - since d arbitrary, $(\nabla f(x_k))$ can converge to any unit norm vector so $S(0) = \{s: \|s\|_2 = 1\}$ and $\partial f(0) = \{s: \|s\|_2 \le 1\}$?
- (ii) verify using subgradient definition $f(y) \geq f(0) + s^T(y-0) = s^Ty$
 - \bullet Let $\|s\|_2>1,$ then for, e.g., y=2s

$$s^Ty = 2\|s\|_2^2 > 2\|s\|_2 = f(y)$$

so such s are not subgradients

• Let $||s||_2 \le 1$, then for all y:

$$s^T y \le ||s||_2 ||y||_2 \le ||y||_2 = f(y)$$

so such \boldsymbol{s} are subgradients

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples
- · Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- · Optimality conditions
- Proximal operators

20

Strong convexity revisited

- Recall that f is σ -strongly convex if $f \frac{\sigma}{2} \| \cdot \|_2^2$ is convex
- $\bullet \ \mbox{ If } f \mbox{ is } \sigma\mbox{-strongly convex then }$

$$f(y) \ge f(x) + s^{T}(y - x) + \frac{\sigma}{2} ||x - y||_{2}^{2}$$

holds for all $x \in \text{dom}\partial f$, $s \in \partial f(x)$, and $y \in \mathbb{R}^n$

• The function has convex quadratic minorizers instead of affine

ullet Multiple lower bounds at x_2 with subgradients $s_{2,1}$ and $s_{2,2}$

Strong monotonicity

• If f σ -strongly convex function, then ∂f is σ -strongly monotone:

$$(s_x - s_y)^T (x - y) \ge \sigma ||x - y||_2^2$$

for all $s_x \in \partial f(x)$ and $s_y \in \partial f(y)$

· Proof: Add two copies of strong convexity inequality

$$f(y) \ge f(x) + s_x^T(y - x) + \frac{\sigma}{2} ||x - y||_2^2$$

with x and y swapped

- ullet ∂f is σ -strongly monotone if and only if $\partial f \sigma I$ is monotone
- $\partial f: \mathbb{R} \to 2^{\mathbb{R}}$: Minimum slope σ and maximum slope ∞

22

Strongly convex functions - An equivalence

The following are equivalent for $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$

- (i) f is closed and σ -strongly convex
- (ii) ∂f is maximally monotone and σ -strongly monotone

 $(i)\Rightarrow(ii)$: we know this from before

$$\begin{array}{ll} (i) \Rightarrow (i): & \text{(ii)} & \Rightarrow \partial f - \sigma I = \partial (f - \frac{\sigma}{2} \| \cdot \|_2^2) \text{ maximally monotone} \\ & \Rightarrow f - \frac{\sigma}{2} \| \cdot \|_2^2 \text{ closed convex} \\ & \Rightarrow f \text{ closed and } \sigma\text{-strongly convex} \\ \end{array}$$

Smooth convex functions

• A differentiable function $f:\mathbb{R}^n \to \mathbb{R}$ is convex and β -smooth if

$$f(y) \le f(x) + \nabla f(x)^{T} (y - x) + \frac{\beta}{2} ||x - y||_{2}^{2}$$

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x)$$

hold for all $x, y \in \mathbb{R}^n$

ullet f has convex quadratic majorizers and affine minorizers

• Quadratic upper bound is called descent lemma

24

13

Cocoercivity of gradient

• Gradient of smooth convex function is monotone and Lipschitz

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge 0$$
$$\|\nabla f(y) - \nabla f(x)\|_2 \le \beta \|x - y\|_2$$

• $\nabla f: \mathbb{R} \to \mathbb{R}$: Minimum slope 0 and maximum slope β

• Actually satisfies the stronger $\frac{1}{\beta}$ -cocoercivity property:

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge \frac{1}{\beta} \|\nabla f(y) - \nabla f(x)\|_2^2$$

due to the Baillon-Haddad theorem

25

Smooth convex functions - An equivalence

Let $f:\mathbb{R}^n \to \mathbb{R}$ be differentiable. The following are equivalent:

- (i) ∇f is $\frac{1}{\beta}$ -cocoercive
- (ii) ∇f is maximally monotone and $\beta ext{-Lipschitz}$ continuous
- (iii) f is closed convex and satisfies descent lemma (is β -smooth)

Will later connect smooth convexity and strong convexity via conjugates

26

Smooth strongly convex functions

- ullet Let $f \ : \ \mathbb{R}^n \to \mathbb{R}$ be differentiable
- f is β -smooth and σ -strongly convex with $0<\sigma\leq\beta$ if

$$\begin{split} f(y) & \leq f(x) + \nabla f(x)^T (y-x) + \frac{\beta}{2} \|x-y\|_2^2 \\ f(y) & \geq f(x) + \nabla f(x)^T (y-x) + \frac{\sigma}{2} \|x-y\|_2^2 \end{split}$$

hold for all $x,y\in\mathbb{R}^n$

ullet f has quadratic minorizers and quadratic majorizers

ullet We say that the ratio $rac{eta}{\sigma}$ is the *condition number* for the function

27

Gradient of smooth strongly convex function

 \bullet Gradient of $\beta\text{-smooth }\sigma\text{-strongly convex function }f$ satisfies

$$\|\nabla f(y) - \nabla f(x)\|_{2} \le \beta \|x - y\|_{2}$$
$$(\nabla f(x) - \nabla f(y))^{T} (x - y) \ge \sigma \|x - y\|_{2}^{2}$$

so is $\beta\text{-Lipschitz}$ continuous and $\sigma\text{-strongly}$ monotone

• $\nabla f: \mathbb{R} \to \mathbb{R}$: Minimum slope σ and maximum slope β

• Actually satisfies this stronger property:

$$\begin{split} &(\nabla f(x) - \nabla f(y))^T(x-y) \geq \tfrac{1}{\beta+\sigma} \|\nabla f(y) - \nabla f(x)\|_2^2 + \tfrac{\sigma\beta}{\beta+\sigma} \|x-y\|_2^2 \\ &\text{for all } x,y \in \mathbb{R}^n \end{split}$$

28

Proof of stronger property

- f is σ -strongly convex if and only if $g:=f-\frac{\sigma}{2}\|\cdot\|_2^2$ is convex
- Since f is β -smooth g is $(\beta \sigma)$ -smooth
- Since g convex and $(\beta \sigma)$ -smooth, ∇g is $\frac{1}{\beta \sigma}$ -cocoercive:

$$(\nabla g(x) - \nabla g(y))^T(x - y) \ge \frac{1}{\beta - \sigma} \|\nabla g(x) - \nabla g(y)\|_2^2$$

which by using $\nabla g = \nabla f - \sigma I$ gives

$$(\nabla f(x) - \nabla f(y))^T(x - y) - \sigma \|x - y\|_2^2 \ge \frac{1}{\beta - \sigma} \|\nabla f(x) - \nabla f(y) - \sigma(x - y)\|_2^2$$

which by expanding the square and rearranging is equivalent to

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge \frac{1}{\beta + \sigma} \|\nabla f(x) - \nabla f(y)\|_2^2 + \frac{\sigma \beta}{\beta + \sigma} \|x - y\|_2^2$$

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples
- · Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions

• Proximal operators

Fermat's rule

Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$, then x minimizes f if and only if $0 \in \partial f(x)$

ullet Proof: x minimizes f if and only if

$$f(y) \ge f(x) = f(x) + 0^T (y - x) \quad \text{for all } y \in \mathbb{R}^n$$

which by definition of subdifferential is equivalent to $0 \in \partial f(x)$

• Example: several subgradients at solution, including 0

Fermat's rule - Nonconvex example

- Fermat's rule holds also for nonconvex functions
- Example:

- $\begin{array}{l} \bullet \ \partial f(x_1) = 0 \ \text{and} \ \nabla f(x_1) = 0 \ \text{(global minimum)} \\ \bullet \ \partial f(x_2) = \emptyset \ \text{and} \ \nabla f(x_2) = 0 \ \text{(local minimum)} \\ \end{array}$
- ullet For nonconvex f, we can typically only hope to find local minima

32

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Subdifferential calculus rules

- Subdifferential of sum $\partial (f_1 + f_2)$
- Subdifferential of composition with matrix $\partial(g \circ L)$

33

35

34

Subdifferential of sum

If f_1, f_2 closed convex and relint $\operatorname{dom} f_1 \cap \operatorname{relint} \operatorname{dom} f_2 \neq \emptyset$: $\partial (f_1 + f_2) = \partial f_1 + \partial f_2$

• One direction always holds: if $x \in \text{dom}\partial f_1 \cap \text{dom}\partial f_2$:

$$\partial (f_1 + f_2)(x) \supseteq \partial f_1(x) + \partial f_2(x)$$

Proof: let $s_i \in \partial f_i(x)$, add subdifferential definitions:

$$f_1(y) + f_2(y) \ge f_1(x) + f_2(x) + (s_1 + s_2)^T (y - x)$$

i.e. $s_1 + s_2 \in \partial (f_1 + f_2)(x)$

• If f_1 and f_2 differentiable, we have (without convexity of f)

$$\nabla (f_1 + f_2) = \nabla f_1 + \nabla f_2$$

Subdifferential of composition

If f closed convex and relint $dom(f \circ L) \neq \emptyset$: $\partial(f \circ L)(x) = L^T \partial f(Lx)$

ullet One direction always holds: If $Lx\in {
m dom} f$, then

$$\partial (f \circ L)(x) \supseteq L^T \partial f(Lx)$$

Proof: let $s \in \partial f(Lx)$, then by definition of subgradient of f:

$$(f \circ L)(y) \ge (f \circ L)(x) + s^T (Ly - Lx) = (f \circ L)(x) + (L^T s)^T (y - x)$$

i.e., $L^Ts \in \partial (f \circ L)(x)$

• If f differentiable, we have chain rule (without convexity of f)

$$\nabla (f \circ L)(x) = L^T \nabla f(Lx)$$

36

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Composite optimization problems

• We consider optimization problems on composite form

minimize
$$f(Lx) + g(x)$$

where $f:\mathbb{R}^m o \mathbb{R} \cup \{\infty\}$, $g:\mathbb{R}^n o \mathbb{R} \cup \{\infty\}$, and $L \in \mathbb{R}^{m imes n}$

- Can model constrained problems via indicator function
- This model format is suitable for many algorithms

37

38

(1)

A sufficient optimality condition

Let
$$f:\mathbb{R}^m o \overline{\mathbb{R}}$$
, $g:\mathbb{R}^n o \overline{\mathbb{R}}$, and $L \in \mathbb{R}^{m imes n}$ then:

minimize
$$f(Lx) + g(x)$$
 (1)

is solved by every $x \in \mathbb{R}^n$ that satisfies

$$0 \in L^T \partial f(Lx) + \partial g(x) \tag{2}$$

• Subdifferential calculus inclusions say:

$$0 \in L^T \partial f(Lx) + \partial g(x) \subseteq \partial ((f \circ L)(x) + g(x))$$

which by Fermat's rule is equivalent to x solution to (1)

ullet Note: (1) can have solution but no x exists that satisfies (2)

A necessary and sufficient optimality condition

Let $f: \mathbb{R}^m \to \overline{\mathbb{R}}, \ g: \mathbb{R}^n \to \overline{\mathbb{R}}, \ L \in \mathbb{R}^{m \times n}$ with f, g closed convex and assume $\operatorname{relint} \operatorname{dom}(f \circ L) \cap \operatorname{relint} \operatorname{dom} g \neq \emptyset$ then:

minimize
$$f(Lx) + g(x)$$

is solved by $x \in \mathbb{R}^n$ if and only if x satisfies

$$0 \in L^T \partial f(Lx) + \partial g(x) \tag{2}$$

• Subdifferential calculus equality rules say:

$$0 \in L^T \partial f(Lx) + \partial g(x) = \partial ((f \circ L)(x) + g(x))$$

which by Fermat's rule is equivalent to x solution to (1)

• Algorithms search for x that satisfy $0 \in L^T \partial f(Lx) + \partial g(x)$

40

A comment on constraint qualification

• The condition

 $\operatorname{relint} \operatorname{dom}(f \circ L) \cap \operatorname{relint} \operatorname{dom} g \neq \emptyset$

is called constraint qualification and referred to as CQ

• It is a mild condition that rarely is not satisfied

 $\frac{\mathrm{dom}(f\circ L)}{\mathrm{dom}g}$ solution CQ

41

43

Evaluating subgradients of convex functions

• Obviously need to evaluate subdifferentials to solve

$$0 \in L^T \partial f(Lx) + \partial g(x)$$

- Explicit evaluation:
 - ullet If function is differentiable: abla f (unique)
 - ullet If function is nondifferentiable: compute element in ∂f
- Implicit evaluation:
 - Proximal operator (specific element of subdifferential)

42

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Proximal operators

44

Proximal operator - Definition

ullet Proximal operator of g defined as:

$$\operatorname{prox}_{\gamma g}(z) = \operatorname{argmin}_{\sigma}(g(x) + \frac{1}{2\gamma} ||x - z||_2^2)$$

where $\gamma>0$ is a parameter

- Evaluating *prox* requires solving optimization problem
- ullet For convex g, prox is well-defined and single-valued
 - \bullet Why? Objective is strongly convex \Rightarrow argmin exists and is unique

Prox is generalization of projection

ullet Recall the indicator function of a set C

$$\iota_C(x) := \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{otherwise} \end{cases}$$

• Then

$$\begin{aligned} \text{prox}_{\iota_{C}}(z) &= \underset{x}{\operatorname{argmin}} (\frac{1}{2} \|x - z\|_{2}^{2} + \iota_{C}(x)) \\ &= \underset{x}{\operatorname{argmin}} (\frac{1}{2} \|x - z\|_{2}^{2} : x \in C) \\ &= \underset{x}{\operatorname{argmin}} (\|x - z\|_{2} : x \in C) \\ &= \Pi_{C}(z) \end{aligned}$$

ullet Projection onto C equals prox of indicator function of C

4

Prox computes a subgradient

 \bullet Fermat's rule on prox definition: $x = \mathrm{prox}_{\gamma g}(z)$ if and only if

$$0 \in \partial g(x) + \gamma^{-1}(x-z) \quad \Leftrightarrow \quad \gamma^{-1}(z-x) \in \partial g(x)$$

Hence, $\gamma^{-1}(z-x)$ is element in $\partial g(x)$

 \bullet A subgradient $\partial g(x)$ where $x = \mathrm{prox}_{\gamma g}(z)$ is computed

Prox is 1-cocoercive

ullet For convex g, the proximal operator is 1-cocoercive:

$$(x-y)^T(\operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma f}(y)) \ge \|\operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma f}(y)\|_2^2$$

- Proof
 - Combine monotonicity of ∂g , that for all $z_u \in \partial g(u), z_v \in \partial g(v)$:

$$(z_u - z_v)^T (u - v) \ge 0$$

ullet with Fermat's rule on prox that evalutes subgradients of g:

$$\begin{split} u &= \mathrm{prox}_{\gamma g}(x) & \text{if and only if} & \gamma^{-1}(x-u) \in \partial g(u) \\ v &= \mathrm{prox}_{\gamma g}(y) & \text{if and only if} & \gamma^{-1}(y-v) \in \partial g(v) \end{split}$$

• which gives, by letting $z_u = \gamma^{-1}(x-u)$ and $z_v = \gamma^{-1}(y-v)$:

$$\begin{split} & \gamma^{-1}((x-u)-(y-v))^T(u-v) \geq 0 \\ \Leftrightarrow & (x-\operatorname{prox}_{\gamma g}(x)-(y-\operatorname{prox}_{\gamma g}(y)))^T(\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma g}(y)) \geq 0 \\ \Leftrightarrow & (x-y)^T(\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma g}(y)) \geq \|\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma g}(y)\|_2^2 \end{split}$$

4

Prox is (firmly) nonexpansive

• We know 1-cocoercivity implies nonexpansiveness (1-Lipschitz)

$$\|\operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma g}(y)\|_2 \le \|x - y\|_2$$

which was shown using Cauchy-Schwarz inequality

• Actually the stronger firm nonexpansive inequality holds

$$\begin{split} \|\operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma g}(y)\|_2^2 &\leq \|x - y\|_2^2 \\ &- \|x - \operatorname{prox}_{\gamma g}(x) - (y - \operatorname{prox}_{\gamma g}(y))\|_2^2 \end{split}$$

which implies nonexpansiveness

• Proof:

• take 1-cocoercivity and multiply both sides by 2:

$$2(x-y)^T(\operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma f}(y)) \ge 2\|\operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma f}(y)\|_2^2$$

 \bullet use the following equality with $u=\mathrm{prox}_{\gamma g}(x)$ and $v=\mathrm{prox}_{\gamma g}(y)$:

$$(x-y)^T(u-v) = \frac{1}{2} (\|x-y\|_2^2 + \|u-v\|_2^2 - \|x-y-(u-v)\|_2^2)$$

49

Proximal operator - Separable functions

• Let $x=(x_1,\ldots,x_n)$ and $g(x)=\sum_{i=1}^n g_i(x_i)$ be separable, then

$$\mathrm{prox}_{\gamma g}(z) = (\mathrm{prox}_{\gamma g_1}(z_1), \dots, \mathrm{prox}_{\gamma g_n}(z_n))$$

decomposes into n individual proxes

 \bullet Why? Since also $\|\cdot\|_2^2$ is separable:

$$\begin{aligned} \operatorname{prox}_{\gamma g}(z) &= \underset{x}{\operatorname{argmin}}(g(x) + \frac{1}{2\gamma} \|x - z\|_2^2) \\ &= \underset{x}{\operatorname{argmin}} \left(\sum_{i=1}^n (g_i(x_i) + \frac{1}{2\gamma} (x_i - z_i)^2) \right) \end{aligned}$$

which gives n independent optimization problems

$$\underset{x_i}{\operatorname{argmin}}(g_i(x_i) + \frac{1}{2\gamma}(x_i - z_i)^2) = \operatorname{prox}_{\gamma g_i}(z_i)$$

50

Proximal operator - Example 1

• Consider the function g with subdifferential ∂g :

$$g(x) = \begin{cases} -x & \text{if } x \leq 0 \\ 0 & \text{if } x \geq 0 \end{cases} \qquad \partial g(x) = \begin{cases} -1 & \text{if } x < 0 \\ [-1,0] & \text{if } x = 0 \\ 0 & \text{if } x > 0 \end{cases}$$

• Graphical representations

• Fermat's rule for $x = \text{prox}_{\gamma q}(z)$:

$$0 \in \partial g(x) + \gamma^{-1}(x - z)$$

51

Proximal operator - Example 1 cont'd

ullet Let x < 0, then Fermat's rule reads

$$0 = -1 + \gamma^{-1}(x - z) \quad \Leftrightarrow \quad x = z + \gamma$$

which is valid (x < 0) if $z < -\gamma$

ullet Let x=0, then Fermat's rule reads

$$0 \in [-1, 0] + \gamma^{-1}(0 - z)$$

which is valid (x = 0) if $z \in [-\gamma, 0]$

• Let x > 0, then Fermat's rule reads

$$0 = 0 + \gamma^{-1}(x - z) \quad \Leftrightarrow \quad x = z$$

which is valid (x>0) if z>0

• The prox satisfies

$$\operatorname{prox}_{\gamma g}(z) = \begin{cases} z + \gamma & \text{if } z < -\gamma \\ 0 & \text{if } z \in [-\gamma, 0] \\ z & \text{if } z > 0 \end{cases}$$

52

Proximal operator - Example 2

Let $g(x) = \frac{1}{2}x^TPx + q^Tx$ with P positive semidefinite

- Gradient satisfies $\nabla g(x) = Px + q$
- Fermat's rule for $x = \text{prox}_{\gamma q}(z)$:

$$\begin{split} 0 = \nabla g(x) + \gamma^{-1}(x-z) & \Leftrightarrow & 0 = Px + q + \gamma^{-1}(x-z) \\ & \Leftrightarrow & (I + \gamma P)x = z - \gamma q \\ & \Leftrightarrow & x = (I + \gamma P)^{-1}(z - \gamma q) \end{split}$$

• So $\operatorname{prox}_{\gamma g}(z) = (I + \gamma P)^{-1}(z - \gamma q)$

Computational cost

Evaluating prox requires solving optimization problem

$$\operatorname{prox}_{\gamma g}(z) = \operatorname*{argmin}_{x}(g(x) + \tfrac{1}{2\gamma} \|x - z\|_{2}^{2})$$

- Prox often more expensive to evaluate than gradient
 - Example: Quadratic $g(x) = \frac{1}{2}x^T P x + q^T x$:

$$\operatorname{prox}_{\gamma g}(z) = (I + \gamma P)^{-1}(z - \gamma q), \quad \nabla g(z) = Pz + q$$

- But typically cheap to evaluate for separable functions
- $\bullet\,$ Prox often used for nondifferentiable and separable functions

Conjugate Functions, Optimality Conditions, and Duality

Pontus Giselsson

Outline

- Conjugate function Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

1

2

Conjugate Functions

Conjugate function – Definition

 \bullet The conjugate function of $f:\mathbb{R}^n\to\mathbb{R}\cup\{\infty\}$ is defined as

$$f^*(s) := \sup_{x} \left(s^T x - f(x) \right)$$

• Implicit definition via optimization problem

3

4

Conjugate function properties

• Let $a_x(s) := s^T x - f(x)$ be affine function parameterized by x:

$$f^*(s) = \sup a_x(s)$$

is supremum of family of affine functions

 \bullet Epigraph of f^{\ast} is intersection of epigraphs of (below three) a_{x}

- $\bullet \ f^*$ closed: epigraph intersection of closed halfspaces ${\rm epi}\,a_x$

5

Conjugate interpretation

ullet Conjugate $f^*(s)$ defines affine minorizer to f with slope s:

where $-f^{*}(s)$ decides constant offset to get support

Why?

$$\begin{split} f^*(s) &= \sup_x \left(s^T x - f(x) \right) &&\Leftrightarrow & f^*(s) \geq s^T x - f(x) \text{ for all } x \\ &&\Leftrightarrow & f(x) \geq s^T x - f^*(s) \text{ for all } x \end{split}$$

- \bullet Maximizing argument x^* gives support: $f(x^*) = s^T x^* f^*(s)$
- We have $f(x^*) = s^T x^* f^*(s)$ if and only if $s \in \partial f(x^*)$

6

Consequence

 \bullet Conjugate of f and $\mathrm{env}f$ are the same, i.e., $f^*=(\mathrm{env}f)^*$

- Functions have same supporting affine functions
- $\bullet\,$ Epigraphs have same supporting hyperplanes

Outline

- Conjugate function Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

7

Example - Absolute value

- Compute conjugate of f(x) = |x|
- \bullet For given slope $s{:}\ -f^*(s)$ is point that crosses |x|-axis

Slope, s = -2 $f^*(s)$

Example - Absolute value

- Compute conjugate of f(x) = |x|
- \bullet For given slope $s{:}\ -f^*(s)$ is point that crosses |x|-axis

Slope, s = -2 $f^*(s) \to \infty$

9

Example - Absolute value

- $\bullet \ \ {\rm Compute\ conjugate\ of}\ f(x) = |x|$
- \bullet For given slope $s{:}\ -f^*(s)$ is point that crosses $|x|{\text{-axis}}$

9

Example - Absolute value

- $\bullet \ \ {\rm Compute\ conjugate\ of}\ f(x) = |x|$
- $\bullet \;$ For given slope $s \colon -f^*(s)$ is point that crosses |x| -axis

9

9

Example – Absolute value

- $\bullet \ \ {\rm Compute \ conjugate \ of} \ f(x) = |x|$
- \bullet For given slope $s{:}\ -f^*(s)$ is point that crosses |x|-axis

Example - Absolute value

- $\bullet \ \ {\rm Compute\ conjugate\ of}\ f(x) = |x|$
- \bullet For given slope $s{:}\ -f^*(s)$ is point that crosses |x|-axis

9

Example - Absolute value

- Compute conjugate of f(x) = |x|
- For given slope s: $-f^*(s)$ is point that crosses |x|-axis

Example – Absolute value

- $\bullet \ \ {\rm Compute \ conjugate \ of} \ f(x) = |x|$
- \bullet For given slope $s{:}\ -f^*(s)$ is point that crosses $|x|{\text{-axis}}$

9

Example - Absolute value

- Compute conjugate of f(x) = |x|
- \bullet For given slope $s{:}\ -f^*(s)$ is point that crosses |x|-axis

Example - Absolute value

- Compute conjugate of f(x) = |x|
- ullet For given slope $s\colon -f^*(s)$ is point that crosses |x|-axis

9

9

Example - Absolute value

- $\bullet \ \ {\rm Compute\ conjugate\ of}\ f(x) = |x|$
- \bullet For given slope $s{:}~-f^*(s)$ is point that crosses |x|-axis

9

Example - Absolute value

- Compute conjugate of f(x) = |x|
- $\bullet \;$ For given slope $s \colon -f^*(s)$ is point that crosses |x| -axis

9

Example - Absolute value

- $\bullet \ \ {\rm Compute \ conjugate \ of} \ f(x) = |x|$
- \bullet For given slope $s{:}\ -f^*(s)$ is point that crosses |x|-axis

Example - Absolute value

- $\bullet \ \ {\sf Compute \ conjugate \ of} \ f(x) = |x|$
- ullet For given slope $s\colon -f^*(s)$ is point that crosses |x|-axis

 \bullet Conjugate is $f^*(s)=\iota_{[-1,1]}(s)$

9

A nonconvex example

 \bullet Draw conjugate of f ($f(x)=\infty$ outside points)

A nonconvex example

• Draw conjugate of f ($f(x) = \infty$ outside points)

 \bullet Draw all affine $a_x(s)$ and select for each s the max to get $f^*(s)$

$$f^*(s) = \sup_{x} (sx - f(x)) = \max(-s - 0, 0s - 0.2, s - 0)$$

= $\max(-s, -0.2, s) = |s|$

10

9

Example - Quadratic functions

Let $g(x) = \frac{1}{2}x^TQx + p^Tx$ with Q positive definite (invertible)

- $\bullet \ \ {\rm Gradient \ satisfies \ } \nabla g(x) = Qx + p$
- Fermat's rule for $g^*(s) = \sup_x (s^Tx \frac{1}{2}x^TQx p^Tx)$:

$$0 = s - Qx - p \quad \Leftrightarrow \quad x = Q^{-1}(s - p)$$

• So

$$\begin{split} g^*(s) &= s^T Q^{-1}(s-p) - \tfrac{1}{2}(s-p)^T Q^{-1} Q Q^{-1}(s-p) + p^T Q^{-1}(s-p) \\ &= \tfrac{1}{2}(s-p)^T Q^{-1}(s-p) \end{split}$$

11

Example - A piece-wise linear function

Consider

$$g(x) = \begin{cases} -x - 1 & \text{if } x \le -1\\ 0 & \text{if } x \in [-1, 1]\\ x - 1 & \text{if } x \ge 1 \end{cases}$$

q(x)

Subdifferential satisfies

$$\partial g(x) = \begin{cases} -1 & \text{if } x < -1 \\ [-1,0] & \text{if } x = -1 \\ 0 & \text{if } x \in (-1,1) \\ [0,1] & \text{if } x = 1 \\ 1 & \text{if } x > 1 \end{cases}$$

12

Example cont'd

- $\bullet \ \ \text{We use} \ g^*(s) = sx g(x) \ \text{if} \ s \in \partial g(x) \text{:}$
 - x < -1: s = -1, hence $g^*(-1) = -1x (-x 1) = 1$
 - x = -1: $s \in [-1, 0]$ hence $g^*(s) = -s 0 = -s$

 - $\begin{array}{l} \bullet \ \, x \in (-1,1) \colon s = 0 \ \, \text{hence} \, \, g^*(0) = 0x 0 = 0 \\ \bullet \ \, x = 1 \colon s \in [0,1] \ \, \text{hence} \, g^*(s) = s 0 = s \\ \bullet \ \, x > 1 \colon s = 1 \ \, \text{hence} \, g^*(1) = x (x 1) = 1 \\ \end{array}$
- That is

$$g^*(s) = \begin{cases} -s & \text{if } s \in [-1, 0] \\ s & \text{if } s \in [0, 1] \end{cases}$$

- For s<-1 and s>1, $g^*(s)=\infty$:
 - $\begin{array}{l} \bullet \ \ s<-1 \text{: let } x=t\to -\infty \ \text{and} \ \ g^*(s)\geq ((s+1)t+1)\to \infty \\ \bullet \ \ s>1 \text{: let } x=t\to \infty \ \text{and} \ \ g^*(s)\geq ((s-1)t+1)\to \infty \end{array}$

13

Example - Separable functions

• Let $f(x) = \sum_{i=1}^{n} f_i(x_i)$ be a separable function, then

$$f^*(s) = \sum_{i=1}^n f_i^*(s_i)$$

is also separable

Proof:

$$f^*(s) = \sup_{x} (s^T x - \sum_{i=1}^{n} f_i(x_i))$$

$$= \sup_{x} (\sum_{i=1}^{n} (s_i x_i - f_i(x_i)))$$

$$= \sum_{i=1}^{n} \sup_{x_i} (s_i x_i - f_i(x_i))$$

$$= \sum_{i=1}^{n} f_i^*(s_i)$$

14

Example - 1-norm

- Let $f(x) = \|x\|_1 = \sum_{i=1}^n |x_i|$ be the 1-norm
- It is a separable sum of absolute values
- ullet Use separable sum formula and that $|\cdot|^*=\iota_{[-1,1]}$:

$$f^*(s) = \sum_{i=1}^n f_i^*(s_i) = \sum_{i=1}^n \iota_{[-1,1]}(s_i) = \begin{cases} 0 & \text{if } \max_i(|s_i|) \le 1\\ \infty & \text{else} \end{cases}$$

ullet We have $\max_i(|s_i|) = \|s\|_{\infty}$, let

$$B_{\infty}(r) = \{s : ||s||_{\infty} \le r\}$$

be the infinity norm ball of radius r, then

$$f^{*}(s) = \iota_{B_{\infty}(1)}(s)$$

is the indicator function for the unit infinity norm ball

Outline

- Conjugate function Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

16

Biconjugate

• Biconjuate $f^{**} := (f^*)^*$ is conjugate of conjugate

$$f^{**}(x) = \sup(x^T s - f^*(s))$$

 \bullet For every x, it is largest value of all affine minorizers

- Why?:
 - $x^Ts f^*(s)$: supporting affine minorizer to f with slope s
 - $f^{**}(x)$ picks largest over all these affine minorizers evaluated at x

Biconjugate and convex envelope

ullet Biconjugate is closed convex envelope of f

• $f^{**} \leq f$ and $f^{**} = f$ if and only if f (closed and) convex

18

Biconjugate - Example

 \bullet Draw the biconjugate of f $(f(x)=\infty$ outside points)

Biconjugate - Example

• Draw the biconjugate of f ($f(x) = \infty$ outside points)

ullet Biconjugate is convex envelope of f

 \bullet We found before $f^*(s) = |s|,$ and now $(f^*)^*(x) = \iota_{[-1,1]}(x)$

$$\begin{tabular}{ll} \bullet & \mbox{Therefore also } \iota_{[-1,1]}^*(s) = |s| \\ \mbox{(since } f^* = (\mbox{env} f)^* = (f^{**})^* =: f^{***} \end{tabular}$$

19

19

Outline

- Conjugate function Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

Fenchel-Young's inequality

Going back to conjugate interpretation:

- Fenchel-Youngs's inequality: $f(x) \ge s^T x f^*(s)$ for all x, s
- Follows immediately from definition: $f^*(s) = \sup_x (s^T x f(x))$

20

21

Fenchel-Young's equality

• When is do we have equality in Fenchel-Young?

$$f(x) = s^T x - f^*(s)$$

• Fenchel-Young's equality and equivalence:

$$f(x^*) = s^T x^* - f^*(s)$$
 holds if and only if $s \in \partial f(x^*)$

22

Proof – Fenchel-Young's equality

$$f(x) = s^T x - f^*(s)$$
 holds if and only if $s \in \partial f(x)$

• $s \in \partial f(x)$ if and only if (by defintion of subgradient)

$$\begin{split} f(y) &\geq f(x) + s^T(y-x) \text{ for all } y \\ \Leftrightarrow & s^Tx - f(x) \geq s^Ty - f(y) \text{ for all } y \\ \Leftrightarrow & s^Tx - f(x) \geq \sup_y \left(s^Ty - f(y) \right) \\ \Leftrightarrow & s^Tx - f(x) \geq f^*(s) \end{split}$$

which is Fenchel-Young's inequality with inequality reversed

• Fenchel-Young's inequality always holds:

$$f^*(s) \ge s^T x - f(x)$$

so we have equality if and only if $s\in\partial f(x)$

2

A subdifferential formula for convex \boldsymbol{f}

Assume f closed convex, then $\partial f(x) = \operatorname{Argmax}_s(s^Tx - f^*(s))$

- Since $f^{**}=f$, we have $f(x)=\sup_s(x^Ts-f^*(s))$ and $s^*\in \operatorname*{Argmax}_s(x^Ts-f^*(s)) \iff f(x)=x^Ts^*-f^*(s^*)$
- The last equivalence is from previous slide

Subdifferential formulas for f^*

ullet For general f, we have that

$$\partial f^*(s) = \underset{x}{\operatorname{Argmax}}(s^T x - f^{**}(x))$$

by previous formula and since f^{\ast} closed and convex

ullet For closed convex f, we have, since $f=f^{**}$, that

$$\partial f^*(s) = \underset{x}{\operatorname{Argmax}}(s^T x - f(x))$$

24

Relation between ∂f and ∂f^* – General case

 $s \in \partial f(x)$ implies that $x \in \partial f^*(s)$

 $\bullet \;$ Since $f^{**} \leq f$ and $s \in \partial f(x),$ Fenchel-Young's equality gives:

$$0 = f^*(s) + f(x) - s^T x \ge f^*(s) + f^{**}(x) - s^T x \ge 0$$

where last step is Fenchel-Young's inequality

• Hence $f^*(s) + f^{**}(x) - s^T x = 0$ and FY $\Rightarrow x \in \partial f^*(s)$

Inverse relation between ∂f and ∂f^* – Convex case

Suppose f closed convex, then $s \in \partial f(x) \Longleftrightarrow x \in \partial f^*(s)$

• Using implication on previous slide twice and $f^{**} = f$:

$$s \in \partial f(x) \Rightarrow x \in \partial f^*(s) \Rightarrow s \in \partial f^{**}(x) \Rightarrow s \in \partial f(x)$$

• Another way to write the result is that for closed convex f:

$$\partial f^* = (\partial f)^{-1}$$

(Definition of inverse of set-valued $A: x \in A^{-1}u \iff u \in Ax$)

26

27

Example 1 – Relation between ∂f and ∂f^*

• What is ∂f^* for below ∂f ?

Example 1 – Relation between ∂f and ∂f^*

• What is ∂f^* for below ∂f ?

 \bullet Since $\partial f^*=(\partial f)^{-1}$, we flip the figure

28

Example 2 – Relation between ∂f and ∂f^*

- region with slope σ in $\partial f(x)\Leftrightarrow \text{region with slope }\frac{1}{\sigma} \text{ in }\partial f^*(s)$
- Implication: ∂f σ -strong monotone $\Leftrightarrow \partial f^*(s)$ σ -cocoercive? (Recall: σ -cocoercivity $\Leftrightarrow \frac{1}{\sigma}$ -Lipschitz and monotone)

Outline

- Conjugate function Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

2

30

Cocoercivity and strong monotonicity

$$\begin{split} \partial f:\mathbb{R}^n &\to 2^{\mathbb{R}^n} \text{ maximal monotone and } \sigma\text{-strongly monotone} \\ &\iff \\ \partial f^* &= \nabla f^*:\mathbb{R}^n \to \mathbb{R}^n \text{ single-valued and } \sigma\text{-cocoercive} \end{split}$$

• $\sigma\text{-strong}$ monotonicity: for all $u\in\partial f(x)$ and $v\in\partial f(y)$

$$(u-v)^T(x-y) \ge \sigma ||x-y||_2^2$$
 (1)

or equivalently for all $x \in \partial f^*(u)$ and $y \in \partial f^*(v)$

- $\bullet \ \partial f^* \ \text{is single-valued} :$
 - Assume $x\in\partial f^*(u)$ and $y\in\partial f^*(u)$, then lhs of (1) 0 and x=y
- ∇f^* is σ -cocoercive: plug $x = \nabla f^*(u)$ and $y = \nabla f^*(v)$ into (1)
- \bullet That ∂f^* has full domain follows from Minty's theorem

Duality correspondance

Let $f:\mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$. Then the following are equivalent:

- (i) f is closed and $\sigma\text{-strongly}$ convex
- (ii) ∂f is maximally monotone and $\sigma\text{-strongly}$ monotone
- (iii) ∇f^* is $\sigma\text{-cocoercive}$
- (iv) $abla f^*$ is maximally monotone and $rac{1}{\sigma}$ -Lipschitz continuous
- (v) f^* is closed convex and satisfies descent lemma (is $\frac{1}{\sigma}$ -smooth)

where $\nabla f^*:\mathbb{R}^n o \mathbb{R}^n$ and $f^*:\mathbb{R}^n o \mathbb{R}$

Comments:

- (i) \Leftrightarrow (ii) and (iii) \Leftrightarrow (iv) \Leftrightarrow (v): Previous lecture
- (ii) ⇔ (iii): This lecture
- Since $f = f^{**}$ the result holds with f and f^* interchanged
- Full proof available on course webpage

Example - Proximal operator is 1-cocoercive

Assume g closed convex, then $\mathrm{prox}_{\gamma g}$ is 1-cocoercive

- \bullet Prox definition $\mathrm{prox}_{\gamma g}(z) = \mathrm{argmin}_x(g(x) + \frac{1}{2\gamma}\|x z\|_2^2)$
- Let $r = \gamma g + \frac{1}{2} \|\cdot\|_2^2$, then

$$\begin{aligned} \operatorname{prox}_{\gamma g}(z) &= \underset{x}{\operatorname{argmin}}(g(x) + \frac{1}{2\gamma}\|x - z\|_2^2) \\ &= \underset{x}{\operatorname{argmax}}(-\gamma g(x) - \frac{1}{2}\|x - z\|_2^2) \\ &= \underset{x}{\operatorname{argmax}}(z^T x - (\frac{1}{2}\|x\|_2^2 + \gamma g(x))) \\ &= \underset{x}{\operatorname{argmax}}(z^T x - r(x)) \\ &= \nabla r^*(z) \end{aligned}$$

where last step is subdifferential formula for r^{st} for convex r

 \bullet Now, r is 1-strongly convex and $\nabla r^* = \mathrm{prox}_{\gamma g}$ is 1-cocoercive

33

35

37

Example – Proximal operator for strongly convex g

Assume g is σ -strongly convex, then $\mathrm{prox}_{\gamma g}$ is $(1+\gamma\sigma)$ -cocoercive

- Let $r = \gamma g + \frac{1}{2} \| \cdot \|_2^2$, and use $\operatorname{prox}_{\gamma g}(z) = \nabla r^*(z)$
- r is $(1+\gamma\sigma)$ -strongly convex and ∇r^* is $(1+\gamma\sigma)$ -cocoercive

34

Outline

- Conjugate function Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

Moreau decomposition - Statement

Assume g closed convex, then $\mathrm{prox}_g(z) + \mathrm{prox}_{g^*}(z) = z$

ullet When g scaled by $\gamma>0$, Moreau decomposition is

$$z = \operatorname{prox}_{\gamma g}(z) + \operatorname{prox}_{(\gamma g)^*}(z) = \operatorname{prox}_{\gamma g}(z) + \gamma \operatorname{prox}_{\gamma^{-1} g^*}(\gamma^{-1} z)$$

 $\begin{array}{l} \text{(since $\operatorname{prox}_{(\gamma g)^*} = \gamma \operatorname{prox}_{\gamma^{-1}g^*} \circ \gamma^{-1} \mathrm{Id})} \\ \bullet \ \ \mathsf{Don't} \ \mathsf{need to know} \ g^* \ \mathsf{to compute $\operatorname{prox}_{\gamma g^*}$} \end{array}$

36

Moreau decomposition - Proof

- Let u = z x
- ullet Fermat's rule: $x = \operatorname{prox}_q(z)$ if and only if

$$\begin{split} 0 \in \partial g(x) + x - z & \Leftrightarrow & z - x \in \partial g(x) \\ & \Leftrightarrow & u \in \partial g(x) \\ & \Leftrightarrow & x \in \partial g^*(u) \\ & \Leftrightarrow & z - u \in \partial g^*(u) \\ & \Leftrightarrow & 0 \in \partial g^*(u) + u - z \end{split}$$

if and only if $u = \operatorname{prox}_{g^*}(z)$ by Fermat's rule

• Using z = x + u, we get

$$z = x + u = \operatorname{prox}_q(z) + \operatorname{prox}_{q^*}(z)$$

Optimality Conditions and Duality

38

Outline

- Conjugate function Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

Composite optimization problem

• Consider primal composite optimization problem

minimize f(Lx) + g(x)

where f,g closed convex and L is a matrix

• We will derive primal-dual optimality conditions and dual problem

39

Primal optimality condition

Let $f: \mathbb{R}^m \to \overline{\mathbb{R}}$, $g: \mathbb{R}^n \to \overline{\mathbb{R}}$, $L \in \mathbb{R}^{m \times n}$ with f, g closed convex and assume CQ, then:

$$minimize f(Lx) + g(x)$$

is solved by $x^\star \in \mathbb{R}^n$ if and only if x^\star satisfies

$$0 \in L^T \partial f(Lx^\star) + \partial g(x^\star)$$

 \bullet Optimality condition implies that vector \boldsymbol{s} exists such that

$$s \in L^T \partial f(Lx^\star) \qquad \text{and} \qquad -s \in \partial g(x^\star)$$

• So CQ implies a subgradient exists for both functions at solution

Primal-dual optimality condition 1

• Introduce dual variable $\mu \in \partial f(Lx)$, then optimality condition

$$0 \in L^T \underbrace{\partial f(Lx)}_{\mu} + \partial g(x)$$

is equivalent to

$$\mu \in \partial f(Lx)$$
$$-L^T \mu \in \partial g(x)$$

- This is a necessary and sufficient primal-dual optimality condition
- (Primal-dual since involves primal x and dual μ variables)

Primal-dual optimality condition 2

• Primal-dual optimality condition

$$\mu \in \partial f(Lx)$$
$$-L^T \mu \in \partial g(x)$$

• Using subdifferential inverse:

$$\mu \in \partial f(Lx) \iff Lx \in \partial f^*(\mu)$$

gives equivalent primal dual optimality condition

$$Lx \in \partial f^*(\mu)$$
$$-L^T \mu \in \partial g(x)$$

Dual optimality condition

• Using subdifferential inverse on other condition

$$-L^T \mu \in \partial g(x) \qquad \Longleftrightarrow \qquad x \in \partial g^*(-L^T \mu)$$

gives equivalent primal dual optimality condition

$$Lx \in \partial f^*(\mu)$$
$$x \in \partial g^*(-L^T \mu)$$

• This is equivalent to that:

$$0 \in \partial f^*(\mu) - L \underbrace{\partial g^*(-L^T \mu)}_x$$

which is a dual optimality condition since it involves only $\boldsymbol{\mu}$

44

42

Dual problem

• The dual optimality condition

$$0 \in \partial f^*(\mu) - L \partial g^*(-L^T \mu)$$

is a sufficient condition for solving the dual problem

minimize
$$f^*(\mu) + g^*(-L^T\mu)$$

• Have also necessity under CQ on dual, which is mild

Why dual problem?

· Sometimes easier to solve than primal

• Only useful if primal solution can be obtained from dual

41

43

Solving primal from dual

- ullet Assume f,g closed convex and CQ holds
- \bullet Optimal primal x must satisfy any and all primal-dual conditions:

$$\begin{cases} \mu \in \partial f(Lx) \\ -L^T \mu \in \partial g(x) \end{cases} \begin{cases} Lx \in \partial f^*(\mu) \\ -L^* \mu \in \partial g(x) \end{cases}$$

$$\begin{cases} \mu \in \partial f(Lx) \\ x \in \partial g^*(-L^T \mu) \end{cases} \begin{cases} Lx \in \partial f^*(\mu) \\ x \in \partial g^*(-L^T \mu) \end{cases}$$

- ullet If one of these uniquely characterizes x, then must be solution:

 - f^* is differentiable at dual solution μ and L invertible
 - g^* is differentiable at $-L^T\mu$ for dual solution μ

Optimality conditions - Summary

- ullet Assume f,g closed convex and that CQ holds
- Problem $\min_x f(Lx) + g(x)$ is solved by x if and only if

$$0 \in L^T \partial f(Lx) + \partial g(x)$$

• Primal dual necessary and sufficient optimality conditions:

$$\begin{cases} \mu \in \partial f(Lx) & \left\{ Lx \in \partial f^*(\mu) \\ -L^T \mu \in \partial g(x) & \left\{ -L^T \mu \in \partial g(x) \right\} \end{cases} \\ \begin{cases} \mu \in \partial f(Lx) & \left\{ Lx \in \partial f^*(\mu) \\ x \in \partial g^*(-L^T \mu) & x \in \partial g^*(-L^T \mu) \right\} \end{cases}$$

• Dual optimality condition

$$0 \in \partial f^*(\mu) - L \partial g^*(-L^T \mu)$$

solves dual problem $\min_{\mu} f^*(\mu) + g^*(-L^T \mu)$

48

Outline

- Conjugate function Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

Concave dual problem

• We have defined dual as convex minimization problem

$$\underset{\mu}{\text{minimize}} f^*(\mu) + g^*(-L^T\mu)$$

• Dual problem can be written as concave maximization problem:

$$\underset{\mu}{\text{maximize}} - f^*(\mu) - g^*(-L^T\mu)$$

- Same solutions but optimal values minus of each other
- Concave formulation gives nicer optimal value comparisons
- To compare, we let the primal and dual optimal values be

$$p^\star = \inf_x (f(Lx) + g(x)) \qquad \text{ and } \qquad d^\star = \sup_x (-f^*(\mu) - g^*(-L^T\mu))$$

49

50

Weak duality

Weak duality always holds meaning $p^{\star} \geq d^{\star}$

• We have by Fenchel-Young's inequality for all μ and x:

$$\begin{split} f^*(\mu) + g^*(-L^T \mu) &\geq \mu^T L x - f(L x) + (-L^T \mu)^T x - g(x) \\ &= -f(L x) - g(x) \end{split}$$

• Negate, maximize lhs over μ , minimize rhs over x, to get

$$d^* = \sup_{\mu} (-f^*(\mu) - g^*(-L^T\mu)) \le \inf_{x} (f(Lx) + g(x)) = p^*$$

Strong duality

Assume f,g closed convex, solution x^\star exists, and CQ then strong duality holds meaning $p^\star=d^\star$

 \bullet Dual μ^{\star} and primal x^{\star} solutions exist such that

$$\mu^{\star} \in \partial f(Lx^{\star}) \qquad \text{and} \qquad -L^{T}\mu^{\star} \in \partial g(x^{\star})$$

• We have by Fenchel-Young's equality:

$$\begin{split} p^{\star} &= f(Lx^{\star}) + g(x^{\star}) \\ &= (\mu^{\star})^T L x^{\star} - f^*(\mu^{\star}) + (-L^T \mu^{\star})^T x^{\star} - g^*(-L^T \mu^{\star}) \\ &= -f^*(\mu^{\star}) - g^*(-L^T \mu^{\star}) = d^{\star} \end{split}$$

51

52

Dual problem gives lower bound

• Consider again concave dual problem with optimal value

$$d^* = \sup_{\mu} (-f^*(\mu) - g^*(-L^T \mu))$$

 \bullet We know that for all dual variables μ

$$p^* \ge d^* \ge -f^*(\mu) - g^*(-L^T\mu)$$

ullet So can find lower bound to p^\star by evaluating dual objective

Outline

Proximal Gradient Method

Pontus Giselsson

- Introducing proximal gradient method and examples
- Solving composite problem Fixed-points and convergence
- Application to primal and dual problems

1

Composite optimization problems

 \bullet We have introduced the composite optimization problem

 $\underset{x}{\operatorname{minimize}} f(Lx) + g(x)$

- Need an algorithm that solves it proximal gradient method
- We will consider the simpler composite optimization problem

$$\underset{x}{\operatorname{minimize}} f(x) + g(x)$$

that gives the former by letting $f\to f\circ L$

Problem assumptions

- $\bullet\,$ Proximal gradient method works, e.g., for problems that satisfy
 - f is β -smooth $f:\mathbb{R}^n \to \mathbb{R}$ (not necessarily convex)
 - g is closed convex
- ullet Recall that if eta-smoothness implies that f satisfies

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||y - x||_2^2$$

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) - \frac{\beta}{2} ||y - x||_2^2$$

it has convex quadratic upper and concave quadratic lower bounds

ullet If f in addition is convex, we instead have

$$\begin{split} f(y) &\leq f(x) + \nabla f(x)^T (y-x) + \tfrac{\beta}{2} \|y-x\|_2^2 \\ f(y) &\geq f(x) + \nabla f(x)^T (y-x) \end{split}$$

where the concave quadratic lower bound is replaced by affine

4

2

Minimizing upper bound

 $\bullet \;$ Due to $\beta\text{-smoothness}$ of f , we have

$$f(y) + g(y) \leq f(x) + \nabla f(x)^T (y - x) + \tfrac{\beta}{2} \|y - x\|_2^2 + g(y)$$

for all $x,y\in\mathbb{R}^n$, i.e., r.h.s. is upper bound to l.h.s.

 \bullet Minimizing in every iteration the r.h.s. w.r.t. y for given x gives

$$\begin{split} v &= \operatorname*{argmin}_{y} \left(f(x) + \nabla f(x)^{T} (y-x) + \frac{\beta}{2} \|y-x\|_{2}^{2} + g(y) \right) \\ &= \operatorname*{argmin}_{y} \left(g(y) + \frac{\beta}{2} \|y - (x-\beta^{-1} \nabla f(x))\|_{2}^{2} \right) \\ &= \operatorname*{prox}_{\beta^{-1} g} (x-\beta^{-1} \nabla f(x)) \end{split}$$

5

3

Proximal gradient method

• Let us replace β by γ_k^{-1} , x by x_k , and v by x_{k+1} to get:

$$\begin{split} x_{k+1} &= \operatorname*{argmin}_{y} \left(f(x_k) + \nabla f(x_k)^T (y - x_k) + \frac{1}{2\gamma_k} \|y - x_k\|_2^2 + g(y) \right) \\ &= \operatorname*{argmin}_{y} \left(g(y) + \frac{1}{2\gamma_k} \|y - (x_k - \gamma_k \nabla f(x_k))\|_2^2 \right) \\ &= \operatorname*{prox}_{\gamma_k g} (x_k - \gamma_k \nabla f(x_k)) \end{split}$$

- This is exactly the proximal gradient method
- ullet The method replaces f by quadratic approximation and minimizes
- (Note that we need an initial guess x_0 to start the iteration)

6

Proximal gradient - Example

- \bullet Proximal gradient iterations for problem $\operatornamewithlimits{minimize} \frac{1}{2}(x-a)^2 + |x|$
- $\bullet \ f(x) = \frac{1}{2}(x-a)^2$ is smooth term and g(x) = |x| is nonsmooth
- Iteration: $x_{k+1} = \text{prox}_{\gamma g}(x_k \gamma \nabla f(x_k))$
- Note: convergence in finite number of iterations (not always)

Proximal gradient - Example

- \bullet Proximal gradient iterations for problem $\operatornamewithlimits{minimize} \frac{1}{2}(x-a)^2 + |x|$
- $f(x) = \frac{1}{2}(x-a)^2$ is smooth term and g(x) = |x| is nonsmooth
- Iteration: $x_{k+1} = \text{prox}_{\gamma g}(x_k \gamma \nabla f(x_k))$
- Note: convergence in finite number of iterations (not always)

Proximal gradient - Example

- Proximal gradient iterations for problem minimize $\frac{1}{2}(x-a)^2 + |x|$
- $f(x) = \frac{1}{2}(x-a)^2$ is smooth term and g(x) = |x| is nonsmooth
- Iteration: $x_{k+1} = \text{prox}_{\gamma g}(x_k \gamma \nabla f(x_k))$
- Note: convergence in finite number of iterations (not always)

Proximal gradient - Example

- Proximal gradient iterations for problem minimize $\frac{1}{2}(x-a)^2 + |x|$
- $f(x) = \frac{1}{2}(x-a)^2$ is smooth term and g(x) = |x| is nonsmooth
- Iteration: $x_{k+1} = \text{prox}_{\gamma g}(x_k \gamma \nabla f(x_k))$
- Note: convergence in finite number of iterations (not always)

Proximal gradient - Example

- Proximal gradient iterations for problem minimize $\frac{1}{2}(x-a)^2 + |x|$
- $f(x) = \frac{1}{2}(x-a)^2$ is smooth term and g(x) = |x| is nonsmooth
- Iteration: $x_{k+1} = \text{prox}_{\gamma g}(x_k \gamma \nabla f(x_k))$
- Note: convergence in finite number of iterations (not always)

Proximal gradient - Example

- Proximal gradient iterations for problem minimize $\frac{1}{2}(x-a)^2 + |x|$
- $f(x) = \frac{1}{2}(x-a)^2$ is smooth term and g(x) = |x| is nonsmooth
- Iteration: $x_{k+1} = \text{prox}_{\gamma g}(x_k \gamma \nabla f(x_k))$
- Note: convergence in finite number of iterations (not always)

7

Proximal gradient - Special cases

- Proximal gradient method:
 - solves minimize(f(x) + g(x))
 - iteration: $x_{k+1} = \text{prox}_{\gamma_k g}(x_k \gamma_k \nabla f(x_k))$
- ullet Proximal gradient method with g=0:
 - solves minimize(f(x))
 - $\operatorname{prox}_{\gamma_k g}(z) = \operatorname{argmin}_x(0 + \frac{1}{2\gamma} ||x z||_2^2) = z$
 - $\begin{array}{ll} & \text{iteration: } x_{k+1} = \operatorname{prox}_{\gamma_k g}(x_k \gamma_k \nabla f(x_k)) = x_k \gamma_k \nabla f(x_k) \\ \bullet & \text{reduces to gradient method} \end{array}$
- Proximal gradient method with f = 0:
 - solves minimize(g(x))
 - $\nabla f(x) = 0$

 - iteration: $x_{k+1} = \operatorname{prox}_{\gamma_k g}(x_k \gamma_k \nabla f(x_k)) = \operatorname{prox}_{\gamma_k g}(x_k)$ reduces to *proximal point method* (which is not very useful)

Outline

- Introducing proximal gradient method and examples
- Solving composite problem Fixed-points and convergence
- Application to primal and dual problems

9

Proximal gradient method - Fixed-point set

• Proximal gradient step

$$x_{k+1} = \text{prox}_{\gamma_k g}(x_k - \gamma_k \nabla f(x_k))$$

• If $x_{k+1} = x_k$, they are in proximal gradient fixed-point set

$$\{x: x = \mathrm{prox}_{\gamma g}(x - \gamma \nabla f(x))\}$$

- ullet Under some assumptions, algorithm will satisfy $x_{k+1}-x_k o 0$
 - this means that fixed-point equation will be satisfied in limit
 - what does it mean for x to be a fixed-point?

Proximal gradient - Optimality condition

· Proximal gradient step:

$$v = \text{prox}_{\gamma g}(x - \gamma \nabla f(x)) = \underset{y}{\operatorname{argmin}} (g(y) + \underbrace{\frac{1}{2\gamma} \|y - (x - \gamma \nabla f(x))\|_2^2})$$

where \boldsymbol{v} is unique due to strong convexity of \boldsymbol{h}

• Fermat's rule (since CQ holds) gives $v = \text{prox}_{\gamma q}(x - \gamma \nabla f(x))$ iff:

$$\begin{split} 0 &\in \partial g(v) + \partial h(v) \\ &= \partial g(v) + \gamma^{-1}(v - (x - \gamma \nabla f(x))) \\ &= \partial g(v) + \nabla f(x) + \gamma^{-1}(v - x) \end{split}$$

since h differentiable

11

Proximal gradient - Fixed-point characterization

For $\gamma > 0$, we have that

 $\bar{x} = \mathrm{prox}_{\gamma g}(\bar{x} - \gamma \nabla f(\bar{x})) \quad \text{if and only if} \quad 0 \in \partial g(\bar{x}) + \nabla f(\bar{x})$

• Proof: the proximal step equivalence

$$v=\mathrm{prox}_{\gamma g}(x-\gamma\nabla f(x))\quad\Leftrightarrow\quad 0\in\partial g(v)+\nabla f(x)+\gamma^{-1}(v-x)$$
 evaluated at a fixed-point $x=v=\bar{x}$ reads

$$\bar{x} = \text{prox}_{\gamma g}(\bar{x} - \gamma \nabla f(\bar{x})) \quad \Leftrightarrow \quad 0 \in \partial g(\bar{x}) + \nabla f(\bar{x})$$

• We call inclusion $0 \in \partial g(\bar{x}) + \nabla f(\bar{x})$ fixed-point characterization

Meaning of fixed-point characterization

- What does fixed-point characterization $0 \in \partial g(\bar{x}) + \nabla f(\bar{x})$ mean?
- For convex differentiable f, subdifferential $\partial f(x) = \{\nabla f(x)\}$ and

$$0 \in \partial f(\bar{x}) + \partial g(\bar{x}) = \partial (f+g)(\bar{x})$$

(subdifferential sum rule holds), i.e., fixed-points solve problem

- \bullet For nonconvex differentiable f , we might have $\partial f(\bar{x})=\emptyset$
 - Fixed-point are not in general global solutions
 - Points \bar{x} that satisfy $0 \in \partial g(\bar{x}) + \nabla f(\bar{x})$ are called *critical points*
 - If g=0, the condition is $\nabla f(\bar{x})=0$, i.e., a stationary point
- $\bullet\,$ Quality of fixed-points differs between convex and nonconvex f

Conditions on γ_k for convergence

ullet We replace in proximal gradient method f(y) by

$$f(x_k) + \nabla f(x_k)^T (y - x_k) + \frac{1}{2\gamma_k} ||y - x_k||_2^2$$

and minimize this plus g(y) over y to get the next iterate

ullet We know from eta-smoothness of f that for all x,y

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||y - x||_2^2$$

- $\bullet \ \ \mbox{If} \ \gamma_k \in [\epsilon, \frac{1}{\beta}] \ \mbox{with} \ \epsilon > 0 \mbox{, an upper bound is minimized}$
- Can use $\gamma_k \in [\epsilon, \frac{2}{\beta} \epsilon]$ and show convergence of some quantity

Practical convergence - Example

- ullet Logarithmic y axis of quantity that should go to 0 for convergence
- Linear x axis with iteration number

- Fast convergence to medium accuracy, slow from medium to high
- Many iterations may be required

15

13

Stopping conditions

ullet For eta-smooth $f:\mathbb{R}^n o \mathbb{R}$, we can stop algorithm when

$$\frac{1}{\beta}u_k := \frac{1}{\beta}(\gamma_k^{-1}(x_k - x_{k+1}) + \nabla f(x_{k+1}) - \nabla f(x_k))$$

is small (notation and reason will be motivated in future lecture)

- $\bullet\,$ This is the plotted quantity on the previous slide
- We can use absolute or relative stopping conditions:
 - ${}^{\bullet}{}$ absolute stopping conditions with small $\epsilon_{\rm abs}>0$

$$\frac{1}{\beta} \|u_k\|_2 \le \epsilon_{\rm abs}$$
 or $\frac{1}{\beta} \|u_k\|_2 \le \epsilon_{\rm abs} \sqrt{n}$

• relative stopping condition with small $\epsilon_{\rm rel}, \epsilon > 0$:

$$\frac{1}{\beta} \frac{\|u_k\|_2}{\|x_k\|_2 + \beta^{-1} \|\nabla f(x_k)\|_2 + \epsilon} \le \epsilon_{\text{rel}}$$

- Problem considered solved to optimality if, say, $\frac{1}{\beta} \|u_k\|_2 \leq 10^{-6}$
- $\bullet\,$ Often lower accuracy of 10^{-3} or 10^{-4} is enough

Outline

- Introducing proximal gradient method and examples
- Solving composite problem Fixed-points and convergence
- Application to primal and dual problems

]

12

14

17

Applying proximal gradient to primal problems

Problem minimize f(x) + g(x):

- Assumptions:
 - f smooth
 - ullet g closed convex and prox friendly 1
- Algorithm: $x_{k+1} = \text{prox}_{\gamma_k g}(x_k \gamma_k \nabla f(x_k))$

Problem minimize f(Lx) + g(x):

- Assumptions:
 - $\bullet \ \ f \ \mathsf{smooth} \ \big(\mathsf{implies} \ f \circ L \ \mathsf{smooth}\big)$
 - g closed convex and prox friendly
- $\bullet \ \ \mathsf{Gradient} \ \nabla (f \circ L)(x) = L^T \nabla f(Lx)$

 1 Prox friendly: proximal operator cheap to evaluate, e.g., \boldsymbol{g} separable

Applying proximal gradient to dual problem

• Let us apply the proximal gradient method to the dual problem

$$\min_{\mu} f^*(\mu) + g^*(-L^T \mu)$$

- Assumptions:
 - f: closed convex and prox friendly
 - g: σ -strongly convex
- Why these assumptions?
 - f^* : closed convex and prox friendly $g^* \circ -L^T$: $\frac{\|L\|_2^2}{\sigma}$ -smooth and convex
- Algorithm:

$$\mu_{k+1} = \operatorname{prox}_{\gamma_k f^*} (\mu_k - \gamma_k \nabla (g^* \circ -L^T)(\mu_k))$$

19

Dual proximal gradient method - Explicit version 1

• We will make the dual proximal gradient method more explicit

$$\mu_{k+1} = \operatorname{prox}_{\gamma_k f^*} (\mu_k - \gamma_k \nabla (g^* \circ -L^T)(\mu_k))$$

• Use $\nabla (g^* \circ -L^T)(\mu) = -L \nabla g^* (-L^T \mu)$ to get

$$\begin{aligned} x_k &= \nabla g^*(-L^T \mu_k) \\ \mu_{k+1} &= \operatorname{prox}_{\gamma_k f^*}(\mu_k + \gamma_k L x_k) \end{aligned}$$

Dual proximal gradient method - Explicit version 2

• Restating the previous formulation

$$x_k = \nabla g^* (-L^T \mu_k)$$

$$\mu_{k+1} = \operatorname{prox}_{\gamma_k f^*} (\mu_k + \gamma_k L x_k)$$

• Use Moreau decomposition for prox:

$$\operatorname{prox}_{\gamma f^*}(v) = v - \gamma \operatorname{prox}_{\gamma^{-1}f}(\gamma^{-1}v)$$

to get

$$\begin{split} x_k &= \nabla g^*(-L^T \mu_k) \\ v_k &= \mu_k + \gamma_k L x_k \\ \mu_{k+1} &= v_k - \gamma_k \mathrm{prox}_{\gamma_k^{-1} f}(\gamma_k^{-1} v_k) \end{split}$$

20

22

21

Dual proximal gradient method - Explicit version 3

• Restating the previous formulation

$$\begin{aligned} x_k &= \nabla g^*(-L^T \mu_k) \\ v_k &= \mu_k + \gamma_k L x_k \\ \mu_{k+1} &= v_k - \gamma_k \mathrm{prox}_{\gamma_k^{-1} f}(\gamma_k^{-1} v_k) \end{aligned}$$

ullet Use subdifferential formula, since g^* differentiable:

$$\nabla g^*(\nu) = \operatorname{argmax}(\nu^T x - g(x)) = \operatorname{argmin}(g(x) - \nu^T x)$$

with $\nu = -L^T \mu_k$ to get

$$\begin{aligned} x_k &= \operatorname*{argmin}_x (g(x) + (\mu_k)^T L x) \\ v_k &= \mu_k + \gamma_k L x_k \\ \mu_{k+1} &= v_k - \gamma_k \mathrm{prox}_{\gamma_k^{-1} f} (\gamma_k^{-1} v_k) \end{aligned}$$

• Can implement method without computing conjugate functions

Dual proximal gradient method - Primal recovery

- Can we recover a primal solution from dual prox grad method?
- Let us use explicit version 1

$$\begin{aligned} x_k &= \nabla g^*(-L^T \mu_k) \\ \mu_{k+1} &= \operatorname{prox}_{\gamma_k f^*}(\mu_k + \gamma_k L x_k) \end{aligned}$$

and assume we have found fixed-point $(\bar x,\bar\mu)\colon$ for some $\bar\gamma>0$,

$$\begin{split} \bar{x} &= \nabla g^* (-L^T \bar{\mu}) \\ \bar{\mu} &= \operatorname{prox}_{\bar{\gamma} f^*} (\bar{\mu} + \bar{\gamma} L \bar{x}) \end{split}$$

• Fermat's rule for proximal step

$$0 \in \partial f^*(\bar{\mu}) + \bar{\gamma}^{-1}(\bar{\mu} - (\bar{\mu} + \bar{\gamma}L\bar{x})) = \partial f^*(\bar{\mu}) - L\bar{x}$$

is with $\bar{x} = \nabla g^*(-L^T\bar{\mu})$ a primal-dual optimality condition

 $\bullet\,$ So x_k will solve primal problem if algorithm converges

23

Problems that prox-grad cannot solve

- Problem minimize f(x) + g(x)
- \bullet Assumptions: f and g convex but nondifferentiable
- No term differentiable, another method must be used:
 - Subgradient method
 - Douglas-Rachford splitting
 - · Primal-dual methods

Problems that prox-grad cannot solve efficiently

- Problem minimize f(x) + g(Lx)
- Assumptions:
 - f smooth

 - g nonsmooth convex L arbitrary structured matrix
- Can apply proximal gradient method

$$x_{k+1} = \underset{y}{\operatorname{argmin}} (g(Ly) + \frac{1}{2\gamma_k} ||y - (x_k - \gamma_k \nabla f(x_k))||_2^2)$$

but proximal operator of $g\circ L$

$$\operatorname{prox}_{\gamma(g \circ L)}(z) = \operatorname*{argmin}_{x}(g(Lx) + \tfrac{1}{2\gamma}\|x - z\|_2^2)$$

often not "prox friendly", i.e., it is expensive to evaluate

Outline Least Squares • Supervised learning - Overview • Least squares - Basics • Nonlinear features Pontus Giselsson • Generalization, overfitting, and regularization • Cross validation • Feature selection • Training problem properties 1 2 Machine learning Supervised learning ullet Let (x,y) represent object and label pairs • Object $x \in \mathcal{X} \subseteq \mathbb{R}^r$ • Label $y \in \mathcal{Y} \subseteq \mathbb{R}^K$ • Machine learning can very roughly be divided into: \bullet Available: Labeled training data (training set) $\{(x_i,y_i)\}_{i=1}^N$ • Supervised learning • Data $x_i \in \mathbb{R}^n$, or examples (often n large) • Labels $y_i \in \mathbb{R}^K$, or response variables (often K=1) Unsupervised learning Semisupervised learning (between supervised and unsupervised) **Objective**: Find a model (function) m(x): Reinforcement learning • We will focus on supervised learning ullet that takes data (example, object) x as input ullet and predicts corresponding label (response variable) y \bullet learn m from training data, but should $\emph{generalize}$ to all (x,y)3 4 Relation to optimization Regression vs Classification There are two main types of supervised learning tasks: Regression: · Predicts quantities Training the "machine" m consists in solving optimization problem • Real-valued labels $y \in \mathcal{Y} = \mathbb{R}^K$ (will mainly consider K = 1) • Classification: • Predicts class belonging • Finite number of class labels, e.g., $y \in \mathcal{Y} = \{1, 2, \dots, k\}$ 6 5 Examples of data and label pairs In this course Lectures will cover different supervised learning methods: • Classical methods with convex training problems · Least squares (this lecture) • Logistic regression Support vector machines • Deep learning methods with nonconvex training problem

Data	Label	R/C
text in email	spam?	C
dna	blood cell concentration	R
dna	cancer?	C
image	cat or dog	C
advertisement display	click?	C
image of handwritten digit	digit	C
house address	selling cost	R
stock	price	R
sport analytics	winner	C
speech representation	spoken word	C

R/C is for regression or classification

Highlight difference:

• Deep learning (specific) nonlinear model instead of linear

8

Notation

- (Primal) Optimization variable notation:
 - \bullet Optimization literature: x,y,z (as in first part of course)
 - ullet Statistics literature: eta
 - $\bullet \ \ {\rm Machine\ learning\ literature:}\ \theta, w, b$
- $\bullet\,$ Reason: data, labels in statistics and machine learning are x,y
- Will use machine learning notation in these lectures
- We collect training data in matrices (one example per row)

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_N^T \end{bmatrix}$$

$$Y = \begin{bmatrix} y_1^T \\ \vdots \\ y_N^T \end{bmatrix}$$

ullet Columns X_j of data matrix $X=[X_1,\ldots,X_n]$ are called *features*

Outline

- Supervised learning Overview
- Least squares Basics
- Nonlinear features
- Generalization, overfitting, and regularization
- Cross validation
- Feature selection
- Training problem properties

10

Regression training problem

ullet Objective: Find data model m such that for all (x,y):

$$m(x) - y \approx 0$$

ullet Let model output u=m(x); Examples of data misfit losses

$$L(u,y) = \frac{1}{2}(u-y)^2$$

$$L(u,y) = |u-y|$$

$$L(u,y) = \begin{cases} \frac{1}{2}(u-y)^2 & \text{if } |u-v| \le c \\ c(|u-y|-c/2) & \text{else} \end{cases}$$

 \bullet Training: find model m that minimizes sum of training set losses

$$\underset{m}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i), y_i)$$

11

Huber

9

Supervised learning - Least squares

ullet Parameterize model m and set a linear (affine) structure

$$m(x;\theta) = w^T x + b$$

where $\theta = (w,b)$ are parameters (also called weights)

• Training: find model parameters that minimize training cost

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i;\theta), y_i) = \frac{1}{2} \sum_{i=1}^{N} (w^T x_i + b - y_i)^2$$

(note: optimization over model parameters θ)

ullet Once trained, predict response of new input x as $\hat{y} = w^T x + b$

12

Example - Least squares

• Find affine function parameters that fit data:

Example - Least squares

• Find affine function parameters that fit data:

ullet Data points (x,y) marked with (*), LS model wx+b (---)

Example - Least squares

• Find affine function parameters that fit data:

- ullet Data points (x,y) marked with (*), LS model wx+b (——)
- Least squares finds affine function that minimizes squared distance 13

Solving for constant term

- \bullet Constant term b also called $\it bias\ term\ or\ intercept$
- What is optimal b?

$$\underset{w,b}{\text{minimize}} \frac{1}{2} \sum_{i=1}^{N} (w^T x_i + b - y_i)^2$$

• Optimality condition w.r.t. b (gradient w.r.t. b is 0):

$$0 = Nb + \sum_{i=1}^{N} (w^{T} x_i - y_i) \quad \Leftrightarrow \quad b = \bar{y} - w^{T} \bar{x}$$

where $\bar{x}=\frac{1}{N}\sum_{i=1}^N x_i$ and $\bar{y}=\frac{1}{N}\sum_{i=1}^N y_i$ are mean values

Equivalent problem

• Plugging in optimal $b = \bar{y} - w^T \bar{x}$ in least squares estimate gives

$$\underset{w,b}{\text{minimize}} \, \tfrac{1}{2} \sum_{i=1}^{N} (w^T x_i + b - y_i)^2 = \tfrac{1}{2} \sum_{i=1}^{N} (w^T (x_i - \bar{x}) - (y_i - \bar{y}))^2$$

 $\bullet \ \ {\rm Let} \ \tilde{x}_i = x_i - \bar{x} \ {\rm and} \ \tilde{y}_i = y_i - \bar{y}, \ {\rm then} \ {\rm it} \ {\rm is} \ {\rm equivalent} \ {\rm to} \ {\rm solve}$

minimize
$$\frac{1}{2} \sum_{i=1}^{N} (w^T \tilde{x}_i - \tilde{y}_i)^2 = \frac{1}{2} ||Xw - Y||_2^2$$

where X and Y now contain all \tilde{x}_i and \tilde{y}_i respectively

- \bullet Obviously \tilde{x}_i and \tilde{y}_i have zero averages (by construction)
- Will often assume averages subtracted from data and responses

Least squares - Solution

· Training problem

$$\min_{w} \operatorname{minimize} \frac{1}{2} \|Xw - Y\|_{2}^{2}$$

- ullet Strongly convex if X full column rank

 - Features linearly independent and more examples than features Consequences: X^TX is invertible and solution exists and is unique
- ullet Optimal w satisfies (set gradient to zero)

$$0 = X^T X w - X^T Y$$

if X full column rank, then unique solution $w = (X^TX)^{-1}X^TY$

16

Outline

- Supervised learning Overview
- Least squares Basics
- Nonlinear features
- Generalization, overfitting, and regularization
- Cross validation
- Feature selection
- Training problem properties

Nonaffine example

What if data that cannot be well approximated by affine mapping?

17

15

Nonaffine example

• What if data that cannot be well approximated by affine mapping?

Nonaffine example

· What if data that cannot be well approximated by affine mapping?

18

Adding nonlinear features

- A linear model is not rich enough to model relationship
- Try, e.g., a quadratic model

$$m(x; \theta) = b + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=1}^{i} q_{ij} x_i x_j$$

where $x=(x_1,\ldots,x_n)$ and parameters $\theta=(b,w,q)$

ullet For $x\in\mathbb{R}^2$, the model is

$$m(x;\theta) = b + w_1x_1 + w_2x_2 + q_{11}x_1^2 + q_{12}x_1x_2 + q_{22}x_2^2 = \theta^T\phi(x)$$
 where $x = (x_1,x_2)$ and

$$\theta = (b, w_1, w_2, q_{11}, q_{12}, q_{22})$$

$$\phi(x) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)$$

ullet Add nonlinear features $\phi(x)$, but model still linear in parameter θ

Least squares with nonlinear features

- $\bullet\,$ Can, of course, use other nonlinear feature maps ϕ
- Gives models $m(x;\theta)=\theta^T\phi(x)$ with increased fitting capacity
- Use least squares estimate with new model

minimize
$$\frac{1}{2} \sum_{i=1}^{N} (m(x_i; \theta) - y_i)^2 = \frac{1}{2} \sum_{i=1}^{N} (\theta^T \phi(x_i) - y_i)^2$$

which is still convex since ϕ does not depend on θ !

Build new data matrix (with one column per feature in ϕ)

$$X = \begin{bmatrix} \phi(x_1)^T \\ \vdots \\ \phi(x_N)^T \end{bmatrix}$$

to arrive at least squares formulation

$$\underset{\theta}{\text{minimize }} \frac{1}{2} \|X\theta - Y\|_2^2$$

 \bullet The more features, the more parameters θ to optimize (lifting)

20

Nonaffine example

 \bullet Fit polynomial of degree k to data using LS ($\!J$ is cost):

Nonaffine example

 \bullet Fit polynomial of degree k to data using LS (J is cost):

21

Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

21

Nonaffine example

ullet Fit polynomial of degree k to data using LS (J is cost):

Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

21

Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

21

21

Nonaffine example

ullet Fit polynomial of degree k to data using LS (J is cost):

Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

21

21

Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

Outline

- Supervised learning Overview
- Least squares Basics
- Nonlinear features
- Generalization, overfitting, and regularization
- Cross validation
- Feature selection
- Training problem properties

21

22

Generalization and overfitting

- \bullet Generalization : How well does model perform on unseen data
- Overfitting: Model explains training data, but not unseen data
- How to reduce overfitting/improve generalization?

Tikhonov Regularization

- \bullet Example indicates: Reducing $\|\theta\|_2$ seems to reduce overfitting
- Least squares with Tikhonov regularization:

$$\underset{\theta}{\text{minimize }} \tfrac{1}{2} \|X\theta - Y\|_2^2 + \tfrac{\lambda}{2} \|\theta\|_2^2$$

- \bullet Regularization parameter $\lambda \geq 0$ controls fit vs model expressivity
- \bullet Optimization problem called ridge regression in statistics
- ullet (Could regularize with $\|\theta\|_2$, but square easier to solve)
- $\bullet \ \ (\mathsf{Don't} \ \mathsf{regularize} \ b \mathsf{constant} \ \mathsf{data} \ \mathsf{offset} \ \mathsf{gives} \ \mathsf{different} \ \mathsf{solution}) \\$

23

24

Ridge Regression - Solution

• Recall ridge regression problem for given λ :

minimize
$$\frac{1}{2} ||X\theta - Y||_2^2 + \frac{\lambda}{2} ||\theta||_2^2$$

- Objective λ -strongly convex for all $\lambda>0$, hence unique solution
- Objective is differentiable, Fermat's rule:

$$\begin{split} 0 = \boldsymbol{X}^T (\boldsymbol{X} \boldsymbol{\theta} - \boldsymbol{Y}) + \lambda \boldsymbol{\theta} &\iff & (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}) \boldsymbol{\theta} = \boldsymbol{X}^T \boldsymbol{Y} \\ &\iff & \boldsymbol{\theta} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{Y} \end{split}$$

Ridge Regression - Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights

Ridge Regression - Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights

• Same problem data as before

• Fit 10-degree polynomial with Tikhonov regularization

• λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights

Ridge Regression - Example

26

Ridge Regression - Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- ullet λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights

Ridge Regression - Example

• Same problem data as before

26

26

- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights

26

Ridge Regression - Example

- Same problem data as before
- \bullet Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights

Ridge Regression – Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights

Ridge Regression – Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights

Ridge Regression – Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights

26

Ridge Regression - Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights

• Same problem data as before

- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights

Ridge Regression - Example

26

Outline

- Supervised learning Overview
- Least squares Basics
- Nonlinear features
- Generalization, overfitting, and regularization
- Cross validation
- Feature selection
- Training problem properties

Selecting model hyperparameters

- Parameters in machine learning models are called *hyperparameters*
- ullet Ridge model has polynomial order and λ as hyperparameters
- How to select hyperparameters?

27

26

28

Holdout

• Randomize data and assign to train, validate, or test set

Training set:

• Solve training problems with different hyperparameters

Validation set

- Estimate generalization performance of all trained models
- $\bullet\,$ Use this to select model that seems to generalize best

Test set:

- Final assessment on how chosen model generalizes to unseen data
- Not for model selection, then final assessment too optimistic

Holdout – Comments

- ullet Typical division between sets 50/25/25 (or 70/20/10)
- Sometimes no test set (then no assessment of final model)
- If no test set, then validation set often called test set
- Can work well if lots of data, if less, use (k-fold) cross validation

29

30

32

k-fold cross validation

- Similar to hold out divide first into training/validate and test set
- $\bullet \;$ Divide training/validate set into k data chunks
- ullet Train k models with k-1 chunks, use k:th chunk for validation
- Loop
 - 1. Set hyperparameters and train all \boldsymbol{k} models
 - 2. Evaluate generalization score on its validation data
 - 3. Sum scores to get model performance
- Select final model hyperparameters based on best score
- Simpler model with slightly worse score may generalize better
- Estimate generalization performance via test set

4-fold cross validation - Graphics

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\$)
- λ : regularization parameter, J_t train cost, J_v validation cost

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\$)
- λ : regularization parameter, J_t train cost, J_v validation cost

33

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\$)
- ullet λ : regularization parameter, J_t train cost, J_v validation cost

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (⋄)
- ullet λ : regularization parameter, J_t train cost, J_v validation cost

33

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\$)
- \bullet λ : regularization parameter, J_t train cost, J_v validation cost

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (♦)
- λ : regularization parameter, J_t train cost, J_v validation cost

33

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (♦)
- \bullet λ : regularization parameter, J_t train cost, J_v validation cost

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\diamond)
- ullet λ : regularization parameter, J_t train cost, J_v validation cost

33

33

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\$)
- λ : regularization parameter, J_t train cost, J_v validation cost

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\$)
- λ : regularization parameter, J_t train cost, J_v validation cost

33

33

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\$)
- ullet λ : regularization parameter, J_t train cost, J_v validation cost

33

Selecting model

- Average training and test error vs model complexity
- Average training error smaller than average test error
- Large λ (left) model not rich enough
- Small λ (right) model too rich (overfitting)

34

Outline

- Supervised learning Overview
- Least squares Basics
- Nonlinear features
- Generalization, overfitting, and regularization
- Cross validation
- Feature selection
- Training problem properties

Feature selection

- \bullet Assume $X \in \mathbb{R}^{m \times n}$ with m < n (fewer examples than features)
- Want to find a subset of features that explains data well
- Example: Which genes in genome control eyecolor

3

36

Lasso

• Feature selection by regularizing least squares with 1-norm:

minimize
$$\frac{1}{2} ||Xw - Y||_2^2 + \lambda ||w||_1$$

• Problem can be written as

$$\underset{w}{\text{minimize}} \ \frac{1}{2} \left\| \sum_{i=1}^n w_i X_i - Y \right\|_2^2 + \lambda \|w\|_1$$

if $w_i = 0$, then feature X_i not important

- The 1-norm promotes sparsity (many 0 variables) in solution
- It also reduces size (shrinks) w (like $\|\cdot\|_2^2$ regularization)
- Problem is called the Lasso problem

Example - Lasso

• Data $X \in \mathbb{R}^{30 \times 200}$, Lasso solution for different λ

- $\bullet \ \ \text{For large enough} \ \lambda \ \text{solution} \ w = 0 \\$
- ullet More nonzero elements in solution as λ decreases
- \bullet For small $\lambda,$ 30 (nbr examples) nonzero w_i (i.e., 170 $w_i=0)$

38

Lasso and correlated features

ullet Assume two equal features exist, e.g., $X_1=X_2$, lasso problem is

minimize
$$\frac{1}{2} \left\| (w_1 + w_2) X_1 + \sum_{i=3}^n w_i X_i - Y \right\|_2^2 + \lambda (|w_1| + |w_2| + ||w_{3:n}||_1)$$

• Assume w^* solves the problem and let $\Delta := w_1^* + w_2^* > 0$ (wlog)

- Then all $w_1 \in [0, \Delta]$ with $w_2 = \Delta w_1$ solves problem:
 - quadratic cost unchanged since sum w_1+w_2 still Δ
 - the remainder of the regularization part reduces to

$$\min_{w_1} \lambda(|w_1| + |\Delta - w_1|)$$

- For almost correlated features:
 - ullet often only w_1 or w_2 nonzero (the one with slightly better fit)
 - ullet however, features highly correlated, if X_1 explains data so does X_2

39

41

Elastic net

• Add Tikhonov regularization to the Lasso

minimize
$$\frac{1}{2}||Xw - Y||^2 + \lambda_1||w||_1 + \frac{\lambda_2}{2}||w||_2^2$$

- \bullet This problem is called $\mathit{elastic}$ net in statistics
- Can perform better with correlated features

40

Elastic net and correlated features

- ullet Assume equal features $X_1=X_2$ and that w^* solves the elastic net
- Let $\Delta := w_1^* + w_2^* > 0$ (wlog), then $w_1^* = w_2^* = \frac{\Delta}{2}$
 - ullet Data fit cost still unchanged for $w_2 = \Delta w_1$ with $w_1 \in [0,\Delta]$
 - Remaining (regularization) part is

$$\min_{w_1} \lambda_1(|w_1| + |\Delta - w_1|) + \lambda_2(w_1^2 + (\Delta - w_1)^2)$$

which is minimized in the middle at $w_1=w_2=rac{\Delta}{2}$

• For highly correlated features, both (or none) probably selected

Group lasso

- Sometimes want groups of variables to be 0 or nonzero
- Introduce blocks $w = (w_1, \dots, w_p)$ where $w_i \in \mathbb{R}^{n_i}$
- The group Lasso problem is

minimize
$$\frac{1}{2}\|Xw-Y\|_2^2 + \lambda \sum_{i=1}^p \|w_i\|_2$$

(note $\|\cdot\|_2$ -norm without square)

- ullet With all $n_i=1$, it reduces to the Lasso
- ullet Promotes block sparsity, meaning full block $w_i \in \mathbb{R}^{n_i}$ would be 0

42

Outline

- Supervised learning Overview
- Least squares Basics
- Nonlinear features
- Generalization, overfitting, and regularization
- Cross validation
- Feature selection
- Training problem properties

Composite optimization

• Least squares problems are convex problems of the form

$$\min_{\theta} \operatorname{minimize} f(X\theta) + g(\theta),$$

where

- $f = \frac{1}{2}\|\cdot -Y\|_2^2$ is data misfit term
- ullet X is training data matrix (potentially extended with features)
- ullet g is regularization term (1-norm, squared 2-norm, group lasso)
- Function properties
 - \bullet f is 1-strongly convex and 1-smooth and $f\circ X$ is $\|X\|_2^2\text{-smooth}$
 - ullet g is convex and possibly nondifferentiable
- Gradient $\nabla (f \circ X)(\theta) = X^T(X\theta Y)$

Outline

Logistic Regression

Pontus Giselsson

- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties

Classification

- ullet Let (x,y) represent object and label pairs
 - Object $x \in \mathcal{X} \subseteq \mathbb{R}^n$
 - Label $y \in \mathcal{Y} = \{1, \dots, K\}$ that corresponds to K different classes
- \bullet Available: Labeled training data (training set) $\{(x_i,y_i)\}_{i=1}^N$

Objective: Find parameterized model (function) $m(x; \theta)$:

- that takes data (example, object) x as input
- and predicts corresponding label (class) $y \in \{1, \dots, K\}$

How?:

 \bullet learn parameters θ by solving training problem with training data

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

with some loss function L

Binary classification

- Labels y = 0 or y = 1 (alternatively y = -1 or y = 1)
- Training problem

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

- \bullet Design loss L to train model parameters θ such that:
 - $m(x_i; \theta) < 0$ for pairs (x_i, y_i) where $y_i = 0$
- $m(x_i; \theta) > 0$ for pairs (x_i, y_i) where $y_i = 1$
- Predict class belonging for new data points x with trained θ^* : $\bullet \ \ m(x;\theta^*)<0 \ {\rm predict \ class} \ y=0$
 - $\bullet \ \ m(x;\theta^*)>0 \ \text{predict class} \ y=1$

objective is that this prediction is accurate on unseen data

4

Binary classification - Cost functions

- ullet Different cost functions L can be used:
 - y=0: Small cost for $m(x;\theta)\ll 0$ large for $m(x;\theta)\gg 0$
 - y=1: Small cost for $m(x;\theta)\gg 0$ large for $m(x;\theta)\ll 0$

nonconvex (Neyman Pearson loss)

Binary classification - Cost functions

- ullet Different cost functions L can be used:
 - y=0: Small cost for $m(x;\theta)\ll 0$ large for $m(x;\theta)\gg 0$
 - y=1: Small cost for $m(x;\theta)\gg 0$ large for $m(x;\theta)\ll 0$

5

1

3

 $L(m(x;\theta),1)$ $\rightarrow m(x; \theta)$

 $L(u,y) = \max(0,u) - yu$

5

2

Binary classification - Cost functions

- Different cost functions L can be used:
 - $y=-1\colon \mathsf{Small}$ cost for $m(x;\theta)\ll 0$ large for $m(x;\theta)\gg 0$
 - y=1: Small cost for $m(x;\theta)\gg 0$ large for $m(x;\theta)\ll 0$

 $L(u,y) = \max(0,1-yu)$ (hinge loss used in SVM)

Binary classification - Cost functions

- Different cost functions L can be used:
 - y=-1: Small cost for $m(x;\theta)\ll 0$ large for $m(x;\theta)\gg 0$
 - y=1: Small cost for $m(x;\theta)\gg 0$ large for $m(x;\theta)\ll 0$

 $L(u,y) = \max(0,1-yu)^2$ (squared hinge loss)

5

Binary classification - Cost functions

- ullet Different cost functions L can be used:
 - y=0: Small cost for $m(x;\theta)\ll 0$ large for $m(x;\theta)\gg 0$
 - y=1: Small cost for $m(x;\theta)\gg 0$ large for $m(x;\theta)\ll 0$

 $L(u, y) = \log(1 + e^u) - yu$ (logistic loss)

Outline

- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties

6

Logistic regression

- · Logistic regression uses:
 - affine parameterized model $m(x; \theta) = w^T x + b$ (where $\theta = (w, b)$)
 - loss function $L(u,y) = \log(1+e^u) yu$ (if labels y=0, y=1)
- Training problem, find model parameters by solving:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i;\theta), y_i) = \sum_{i=1}^{N} \left(\log(1 + e^{x_i^T w + b}) - y_i(x_i^T w + b) \right)$$

- \bullet Training problem convex in $\theta=(w,b)$ since:

 - model $m(x;\theta)$ is affine in θ loss function L(u,y) is convex in u

7

5

Prediction

- Use trained model m to predict label y for unseen data point x
- Since affine model $m(x; \theta) = w^T x + b$, prediction for x becomes:

 - If $w^Tx + b < 0$, predict corresponding label y = 0• If $w^Tx + b > 0$, predict corresponding label y = 1
 - $\bullet \ \ \text{If} \ w^Tx+b=0, \ \text{predict either} \ y=0 \ \text{or} \ y=1$
- A hyperplane (decision boundary) separates class predictions:

8

Training problem interpretation

ullet Every parameter choice $\theta=(w,b)$ gives hyperplane in data space:

$$H := \{x: w^Tx + b = 0\} = \{x: m(x;\theta) = 0\}$$

- Training problem searches hyperplane to "best" separates classes
- Example models with different parameters θ :

Training problem interpretation

• Every parameter choice $\theta = (w,b)$ gives hyperplane in data space:

$$H:=\{x:w^Tx+b=0\}=\{x:m(x;\theta)=0\}$$

- Training problem searches hyperplane to "best" separates classes
- Example models with different parameters θ :

Training problem interpretation

 \bullet Every parameter choice $\theta=(w,b)$ gives hyperplane in data space:

$$H := \{x : w^T x + b = 0\} = \{x : m(x; \theta) = 0\}$$

- Training problem searches hyperplane to "best" separates classes
- Example models with different parameters θ :

9

Training problem interpretation

• Every parameter choice $\theta=(w,b)$ gives hyperplane in data space:

$$H:=\{x:w^Tx+b=0\}=\{x:m(x;\theta)=0\}$$

- Training problem searches hyperplane to "best" separates classes
- Example models with different parameters θ :

Training problem interpretation

• Every parameter choice $\theta=(w,b)$ gives hyperplane in data space:

$$H:=\{x:w^Tx+b=0\}=\{x:m(x;\theta)=0\}$$

- Training problem searches hyperplane to "best" separates classes
- Example models with different parameters θ :

9

10

10

What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot;\theta)$ with parameter $\theta=\theta_1$:

• Training loss:

10

10

10

What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot;\theta)$ with parameter $\theta=\theta_2$:

• Training loss:

What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot;\theta)$ with parameter $\theta=\theta_3$:

Training loss:

What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot; \theta)$ with parameter $\theta = \theta_4$:

• Training loss:

What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot;\theta)$ with parameter $\theta=\theta^*$:

• Training loss:

Fully separable data - Solution

• Let $\bar{\theta}=(\bar{w},\bar{b})$ give model that separates data:

- Let $H_{\bar{\theta}}:=\{x:m(x;\bar{\theta})=\bar{w}^Tx+\bar{b}=0\}$ be hyperplane separates
- Training loss:

Fully separable data - Solution

• Also $2\bar{\theta}=(2\bar{w},2\bar{b})$ separates data:

- Hyperplane $H_{2\bar{\theta}}:=\{x:m(x;2\bar{\theta})=2(\bar{w}^Tx+\bar{b})=0\}=H_{\bar{\theta}}$ same Training loss reduced since input $m(x;2\bar{\theta})=2m(x;\bar{\theta})$ further out:

45

Fully separable data - Solution

• And $3\bar{\theta}=(3\bar{w},3\bar{b})$ also separates data:

- $\bullet \ \ \text{Hyperplane} \ H_{3\bar{\theta}}:=\{x:m(x;3\bar{\theta})=3(\bar{w}^Tx+\bar{b})=0\}=H_{\bar{\theta}}\text{_same}$
- Training loss further reduced since input $m(x; 3\bar{\theta}) = 3m(x; \bar{\theta})$:

11

Fully separable data - Solution

• And $3 \bar{\theta} = (3 \bar{w}, 3 \bar{b})$ also separates data:

- Hyperplane $H_{3ar{ heta}}:=\{x:m(x;3ar{ heta})=3(ar{w}^Tx+ar{b})=0\}=H_{ar{ heta}}$ same
- Training loss

• Let $\theta=t\bar{\theta}$ and $t\to\infty$, then loss $\to 0 \Rightarrow$ no optimal point

11

The bias term

- The model $m(x;\theta) = w^T x + b$ bias term is b
- ullet Least squares: optimal b has simple formula
- No simple formula to remove bias term here!

Bias term gives shift invariance

- $\bullet \ \ \text{Assume all data points shifted} \ x_i^c := x_i + c$
- · We want same hyperplane to separate data, but shifted

- Assume $\theta = (w,b)$ is optimal for $\{(x_i,y_i)\}_{i=1}^N$
- Then $\theta_c = (w, b_c)$ with $b_c = b w^T c$ optimal for $\{(x_i^c, y_i)\}_{i=1}^N$
- Why? Model outputs the same for all x_i :

 - $\begin{array}{l} \bullet \ m(x_i;\theta) = w^Tx_i + b \\ \bullet \ m(x_i^c;\theta_c) = w^Tx_i^c + b_c = w^Tx_i + b + w^T(c-c) = w^Tx_i + b \end{array}$

12

13

Another derivation of logistic loss

- Assume model is instead $\sigma(w^T x + b)$, with $\sigma(u) = \frac{1}{1 + e^{-u}}$
- Binary cross entropy applied to model with sigmoid output:

$$\begin{split} -y\log(\sigma(u)) - (1-y)\log(1-\sigma(u)) \\ &= -y\log(\frac{1}{1+e^{-u}}) - (1-y)\log(1-\frac{1}{1+e^{-u}}) \\ &= -y\log(\frac{e^u}{1+e^u}) - (1-y)\log(\frac{e^{-u}}{1+e^{-u}}) \\ &= -y(u-\log(1+e^u)) + (1-y)\log(1+e^u) \\ &= \log(1+e^u) - yu \text{ (= logistic loss)} \end{split}$$

- Two equivalent formulations to arrive at same problem:
 - \bullet Real-valued model $m(x;\theta)$ and logistic loss $\log(1+e^u)-yu$
 - (0,1)-valued model $\sigma(m(x;\theta))$ and binary cross entropy
- Prefer previous formulation
 - easier to see how deviations penalized
 - easier to conclude convexity of training problem

Outline

- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression • Training problem properties

15

17

Logistic regression - Nonlinear example

- Logistic regression tries to affinely separate data
- Can nonlinear boundary be approximated by logistic regression?
- Introduce features (perform lifting)

Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

Logistic regression - Example

- $\bullet\,$ Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

17

17

Logistic regression – Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

17

Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

17

Logistic regression - Example

- $\bullet\,$ Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

17

Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- $\bullet\,$ Add a third feature which is feature 1 squared

17

Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

17

Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

Logistic regression - Example

- $\bullet\,$ Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

Logistic regression – Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

17

17

17

Logistic regression – Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

• Data linearly separable in lifted (feature) space

Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

• Data linearly separable in lifted (feature) space

17

Logistic regression – Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

• Data linearly separable in lifted (feature) space

Logistic regression – Example

- $\bullet\,$ Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

• Data linearly separable in lifted (feature) space

1

Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

• Data linearly separable in lifted (feature) space

Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

• Data linearly separable in lifted (feature) space

17

Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- · Add a third feature which is feature 1 squared

• Data linearly separable in lifted (feature) space

Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

• Data linearly separable in lifted (feature) space

17

Logistic regression – Example

17

17

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

• Data linearly separable in lifted (feature) space

Logistic regression – Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

• Data linearly separable in lifted (feature) space

17

Logistic regression – Example

- Seems linear in feature 2 and quadratic in feature 1
- ullet Add a third feature which is feature 1 squared

• Data linearly separable in lifted (feature) space

Nonlinear models - Features

- ullet Create feature map $\phi:\mathbb{R}^n o \mathbb{R}^p$ of training data
- Data points $x_i \in \mathbb{R}^n$ replaced by featured data points $\phi(x_i) \in \mathbb{R}^p$
- New model: $m(x;\theta) = w^T \phi(x) + b$, still linear in parameters
- ullet Feature can include original data x
- ullet We can add feature 1 and remove bias term b
- Logistic regression training problem

minimize
$$\sum_{i=1}^{N} \left(\log(1 + e^{\phi(x_i)^T w + b}) - y_i(\phi(x_i)^T w + b) \right)$$

same as before, but with features as inputs

18

Graphical model representation

• A graphical view of model $m(x;\theta) = w^T \phi(x)$:

- ullet The input x_i is transformed by \emph{fixed} nonlinear features ϕ
- \bullet Feature-transformed input is multiplied by model parameters θ
- Model output is then fed into cost $L(m(x_i;\theta),y)$
- \bullet Problem convex since L convex and model affine in θ

Polynomial features

 \bullet Polynomial feature map for \mathbb{R}^n with n=2 and degree d=3

$$\phi(x) = (x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, x_1^2x_2, x_1x_2^2, x_2^3)$$

(note that original data is also there)

- New model: $m(x;\theta) = w^T \phi(x) + b$, still linear in parameters
- Number of features $p+1=\binom{n+d}{d}=\frac{(n+d)!}{d!n!}$ grows fast!
- \bullet Training problem has p+1 instead of n+1 decision variables

20

Example - Different polynomial model orders

- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree:

Example - Different polynomial model orders

• "Lifting" example with fewer samples and some mislabels

• Logistic regression (no regularization) polynomial features of degree: 2

Example - Different polynomial model orders

• "Lifting" example with fewer samples and some mislabels

• Logistic regression (no regularization) polynomial features of degree: 3

21

21

Example - Different polynomial model orders

• "Lifting" example with fewer samples and some mislabels

• Logistic regression (no regularization) polynomial features of degree: 4

21

21

Example - Different polynomial model orders

• "Lifting" example with fewer samples and some mislabels

• Logistic regression (no regularization) polynomial features of degree: 5

Example - Different polynomial model orders

• "Lifting" example with fewer samples and some mislabels

• Logistic regression (no regularization) polynomial features of degree: 6

Outline

• Classification

• Logistic regression

• Nonlinear features

• Overfitting and regularization

• Multiclass logistic regression

• Training problem properties

Overfitting

• Models with higher order polynomials overfit

 \bullet Logistic regression (no regularization) polynomial features of degree 6

• Tikhonov regularization can reduce overfitting

23

Tikhonov regularization

Regularized problem:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} \left(\log(1 + e^{x_i^T w + b}) - y_i(x_i^T w + b) \right) + \lambda \|w\|_2^2$$

Regularization:

- $\bullet\,$ Regularize only w and not the bias term b
- \bullet Why? Model looses shift invariance if also b regularized

Problem properties:

ullet Problem is strongly convex in $w\Rightarrow$ optimal w exists and is unique

24

25

ullet Optimal b is bounded if examples from both classes exist

Example – Different regularization

- Regularized logistic regression and polynomial features of degree 6
- \bullet Regularization parameter $\lambda,$ training cost $J,\ \#$ mislabels in training

25

Example - Different regularization

- \bullet Regularized logistic regression and polynomial features of degree 6
- ullet Regularization parameter λ , training cost J, # mislabels in training

Example – Different regularization

- \bullet Regularized logistic regression and polynomial features of degree 6
- ullet Regularization parameter λ , training cost J, # mislabels in training

25

Example - Different regularization

- Regularized logistic regression and polynomial features of degree 6
- \bullet Regularization parameter $\lambda,$ training cost $J,\ \#$ mislabels in training

Example - Different regularization

- Regularized logistic regression and polynomial features of degree 6
- ullet Regularization parameter λ , training cost J, # mislabels in training

25

Example - Different regularization

- Regularized logistic regression and polynomial features of degree 6
- \bullet Regularization parameter $\lambda,$ training cost $J,\,\#$ mislabels in training

Example - Different regularization

- \bullet Regularized logistic regression and polynomial features of degree 6
- \bullet Regularization parameter $\lambda,$ training cost $J,\,\#$ mislabels in training

25

Example - Different regularization

- Regularized logistic regression and polynomial features of degree 6
- \bullet Regularization parameter $\lambda,$ training cost J,~# mislabels in training

Generalization

- Interested in models that generalize well to unseen data
- ullet Assess generalization using holdout or k-fold cross validation

26

Example - Validation data

 \bullet Regularized logistic regression and polynomial features of degree 6

25

27

 \bullet J and # mislabels specify training/test values

Example - Validation data

- Regularized logistic regression and polynomial features of degree 6
- \bullet J and # mislabels specify training/test values

27

Example - Validation data

- Regularized logistic regression and polynomial features of degree 6
- \bullet J and # mislabels specify training/test values

Example - Validation data

- Regularized logistic regression and polynomial features of degree 6
- \bullet J and # mislabels specify training/test values

27

Example - Validation data

- \bullet Regularized logistic regression and polynomial features of degree 6
- \bullet J and # mislabels specify training/test values

Example – Validation data

- \bullet Regularized logistic regression and polynomial features of degree 6
- \bullet J and # mislabels specify training/test values

27

Example - Validation data

- Regularized logistic regression and polynomial features of degree 6
- \bullet J and # mislabels specify training/test values

Example - Validation data

- Regularized logistic regression and polynomial features of degree 6
- \bullet J and # mislabels specify training/test values

27

Test vs training error - Cost

- \bullet Decreasing λ gives higher complexity model
- Overfitting to the right, underfitting to the left
- Select lowest complexity model that gives good generalization

Test vs training error - Classification accuracy

- \bullet Decreasing λ gives higher complexity model
- Overfitting to the right, underfitting to the left
- · Cost often better measure of over/underfitting

29

Outline

- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties

What is multiclass classification?

- We have previously seen binary classification
 - Two classes (cats and dogs)
 - Each sample belongs to one class (has one label)
- Multiclass classification
 - \bullet K classes with $K \geq 3$ (cats, dogs, rabbits, horses)
 - Each sample belongs to one class (has one label)
 - (Not to confuse with multilabel classification with ≥ 2 labels)

27

28

31

Multiclass classification from binary classification

- 1-vs-1: Train binary classifiers between all classes
 - Example:
 - cat-vs-dog,cat-vs-rabbit
 - cat-vs-horse
 - dog-vs-rabbit

 - dog-vs-horserabbit-vs-horse
 - Prediction: Pick, e.g., the one that wins the most classifications • Number of classifiers: $\frac{K(K-1)}{2}$
- 1-vs-all: Train each class against the rest
 - Example

 - cat-vs-(dog,rabbit,note)
 dog-vs-(cat,rabbit,horse)
 rabbit-vs-(cat,dog,horse)
 horse-vs-(cat,dog,rabbit)
 - horse-vs-(cat,dog,rabbit)
 - Prediction: Pick, e.g., the one that wins with highest margin
 - Number of classifiers: K
 - · Always skewed number of samples in the two classes

Multiclass logistic regression

- K classes in $\{1,\ldots,K\}$ and data/labels $(x,y)\in\mathcal{X}\times\mathcal{Y}$
- Labels: $y \in \mathcal{Y} = \{e_1, \dots, e_K\}$ where $\{e_i\}$ coordinate basis
- Example, K = 5 class 2: $y = e_2 = [0, 1, 0, 0, 0]^T$
- Use one model per class $m_j(x;\theta_j)$ for $j\in\{1,\ldots,K\}$
- Objective: Find $\theta = (\theta_1, \dots, \theta_K)$ such that for all models j: • $m_j(x;\theta_j)\gg 0$, if label $y=e_j$ and $m_j(x;\theta_j)\ll 0$ if $y\neq e_j$
- Training problem loss function:

$$L(u, y) = \log \left(\sum_{j=1}^{K} e^{u_j} \right) - u^T y$$

where label y is a "one-hot" basis vector, is convex in u

33

Multiclass logistic loss function - Example

ullet Multiclass logistic loss for $K=3,\ u_1=1,\ y=e_1$

$$L((1, u_2, u_3), 1) = \log(e^1 + e^{u_2} + e^{u_3}) - 1$$

• Model outputs $u_2 \ll 0$, $u_3 \ll 0$ give smaller cost for label $y=e_1$

Multiclass logistic loss function - Example

• Multiclass logistic loss for $K=3,\ u_2=-1,\ y=e_1$

$$L((u_1, -1, u_3), 1) = \log(e^{u_1} + e^{-1} + e^{u_3}) - u_1$$

• Model outputs $u_1\gg 0$ and $u_3\ll 0$ give smaller cost for $y=e_1$

36

Multiclass logistic regression – Training problem

• Affine data model $m(x;\theta) = w^T x + b$ with

$$w = [w_1, \dots, w_K] \in \mathbb{R}^{n \times K}, \qquad b = [b_1, \dots, b_K]^T \in \mathbb{R}^K$$

• One data model per class

$$m(x;\theta) = \begin{bmatrix} m_1(x;\theta_1) \\ \vdots \\ m_K(x;\theta_K) \end{bmatrix} = \begin{bmatrix} w_1^Tx + b_1 \\ \vdots \\ w_K^Tx + b_K \end{bmatrix}$$

• Training problem:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} \log \left(\sum_{j=1}^{K} e^{w_{j}^{T} x_{i} + b_{j}} \right) - y_{i}^{T} (\boldsymbol{w}^{T} x_{i} + b)$$

- Problem is convex since affine model is used
- \bullet (Alt.: model $\sigma(w^Tx+b)$ with σ softmax and cross entropy loss)

Multiclass logistic regression - Prediction

- \bullet Assume model is trained and want to predict label for new data \boldsymbol{x}
- \bullet Predict class with parameter θ for x according to:

$$\underset{j \in \{1, \dots, K\}}{\operatorname{argmax}} m_j(x; \theta)$$

i.e., class with largest model value (since trained to achieve this)

37

Special case - Binary logistic regression

- · Consider two-class version and let
 - $\begin{array}{l} \bullet \ \ \Delta u = u_1 u_2, \ \Delta w = w_1 w_2, \ \text{and} \ \ \Delta b = b_1 b_2 \\ \bullet \ \ \Delta u = m_{\mathrm{bin}}(x;\theta) = m_1(x;\theta_1) m_2(x;\theta_2) = \Delta w^T x + \Delta b \end{array}$

 - $y_{\mathrm{bin}}=1$ if y=(1,0) and $y_{\mathrm{bin}}=0$ if y=(0,1)
- ullet Loss L is equivalent to binary, but with different variables:

$$\begin{split} L(u,y) &= \log(e^{u_1} + e^{u_2}) - y_1 u_1 - y_2 u_2 \\ &= \log\left(1 + e^{u_1 - u_2}\right) + \log(e^{u_2}) - y_1 u_1 - y_2 u_2 \\ &= \log\left(1 + e^{\Delta u}\right) - y_1 u_1 - (y_2 - 1) u_2 \\ &= \log\left(1 + e^{\Delta u}\right) - y_{\text{bin}} \Delta u \end{split}$$

Example - Linearly separable data

• Problem with 7 classes

Example - Linearly separable data

Problem with 7 classes and affine multiclass model

Example - Quadratically separable data

• Same data, new labels in 6 classes

40

Example - Quadratically separable data

• Same data, new labels in 6 classes, affine model

• Same data, new labels in 6 classes, quadratic model

Example - Quadratically separable data

40

Outline

Features

- Used quadratic features in last example
- Same procedure as before:
 - replace data vector x_i with feature vector $\phi(x_i)$
 - run classification method with feature vectors as inputs

Classification

40

- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties

41

Composite optimization - Binary logistic regression

Regularized (with g) logistic regression training problem (no features)

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} \left(\log \left(1 + e^{w^T x_i + b} \right) - y_i(w^T x_i + b) \right) + g(\theta)$$

can be written on the form

$$\underset{\theta}{\text{minimize}} f(L\theta) + g(\theta),$$

- $f(u) = \sum_{i=1}^N (\log(1+e^{u_i}) y_i u_i)$ is data misfit term $L = [X, \mathbf{1}]$ where training data matrix X and $\mathbf{1}$ satisfy

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_N^T \end{bmatrix}$$

 $ullet \ g$ is regularization term

Gradient and function properties

• Gradient of
$$h_i(u_i)=\log(1+e^{u_i})-y_iu_i$$
 is:
$$\nabla h_i(u_i)=\frac{e^{u_i}}{1+e^{u_i}}-y_i=\frac{1}{1+e^{-u_i}}-y_i=:\sigma(u_i)-y_i$$

where $\sigma(u_i)=(1+e^{-u_i})^{-1}$ is called a sigmoid function • Gradient of $(f\circ L)(\theta)$ satisfies:

$$\nabla (f \circ L)(\theta) = \nabla \sum_{i=1}^{N} h_i(L_i \theta) = \sum_{i=1}^{N} L_i^T \nabla h_i(L_i \theta)$$
$$= \sum_{i=1}^{N} \begin{bmatrix} x_i \\ 1 \end{bmatrix} (\sigma(x_i^T w + b) - y_i)$$
$$= \begin{bmatrix} X^T \\ 1^T \end{bmatrix} (\sigma(X w + b \mathbf{1}) - Y)$$

where last $\sigma:\mathbb{R}^N \to \mathbb{R}^N$ applies $\frac{1}{1+e^{-u_i}}$ to all $[Xw+b\mathbf{1}]_i$ • Function and sigmoid properties:
• sigmoid σ is 0.25-Lipschitz continuous:

- - f is convex and 0.25-smooth and $f \circ L$ is $0.25 \|L\|_2^2$ -smooth

42

Outline

Support Vector Machines

Pontus Giselsson

- Classification
- Support vector machines
- Nonlinear features
- Overfitting and regularization
- Dual problem
- Kernel SVM

1

3

• Training problem properties

2

Binary classification

- Labels y = 0 or y = 1 (alternatively y = -1 or y = 1)
- Training problem

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

- \bullet Design loss L to train model parameters θ such that:

 - $\begin{array}{l} \bullet \quad m(x_i;\theta) < 0 \text{ for pairs } (x_i,y_i) \text{ where } y_i = 0 \\ \bullet \quad m(x_i;\theta) > 0 \text{ for pairs } (x_i,y_i) \text{ where } y_i = 1 \end{array}$
- \bullet Predict class belonging for new data points x with trained $\bar{\theta} :$
 - $\bullet \ \ m(x;\bar{\theta})<0 \ {\rm predict \ class} \ y=0$
 - $m(x; \bar{\theta}) > 0$ predict class y = 1

Binary classification - Cost functions

- ullet Different cost functions L can be used:
 - y=0: Small cost for $m(x;\theta)\ll 0$ large for $m(x;\theta)\gg 0$
 - y=1: Small cost for $m(x;\theta)\gg 0$ large for $m(x;\theta)\ll 0$

 $L(u,y) = \log(1+e^u) - yu \text{ (logistic loss)}$

4

Binary classification - Cost functions

- ullet Different cost functions L can be used:
 - y=0: Small cost for $m(x;\theta)\ll 0$ large for $m(x;\theta)\gg 0$
 - y=1: Small cost for $m(x;\theta)\gg 0$ large for $m(x;\theta)\ll 0$

nonconvex (Neyman Pearson loss)

Binary classification - Cost functions

- ullet Different cost functions L can be used:
 - y=0: Small cost for $m(x;\theta)\ll 0$ large for $m(x;\theta)\gg 0$
 - y=1: Small cost for $m(x;\theta)\gg 0$ large for $m(x;\theta)\ll 0$

 $L(u,y) = \max(0,u) - yu$

Binary classification - Cost functions

- \bullet Different cost functions L can be used:
 - $y=-1\colon \mathsf{Small}$ cost for $m(x;\theta)\ll 0$ large for $m(x;\theta)\gg 0$
 - y=1: Small cost for $m(x;\theta)\gg 0$ large for $m(x;\theta)\ll 0$

 $L(u,y) = \max(0,1-yu)$ (hinge loss used in SVM)

Binary classification - Cost functions

- \bullet Different cost functions L can be used:
 - y=-1: Small cost for $m(x;\theta)\ll 0$ large for $m(x;\theta)\gg 0$
 - y=1: Small cost for $m(x;\theta)\gg 0$ large for $m(x;\theta)\ll 0$

 $L(u,y) = \max(0,1-yu)^2$ (squared hinge loss)

 $m(x; \theta)$

Outline

- Classification
- Support vector machines
- Nonlinear features
- Overfitting and regularization
- Dual problem
- Kernel SVM
- Training problem properties

Support vector machine

- SVM uses:
- affine parameterized model $m(x;\theta)=w^Tx+b$ (where $\theta=(w,b)$)
 loss function $L(u,y)=\max(0,1-yu)$ (if labels $y=-1,\ y=1$)
 Training problem, find model parameters by solving:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i;\theta), y_i) = \sum_{i=1}^{N} \max(0, 1 - y_i(w^Tx_i + b))$$

- Training problem convex in $\theta=(w,b)$ since:

 - model $m(x;\theta)$ is affine in θ loss function L(u,y) is convex in u

5

Training problem interpretation

• Every parameter choice $\theta=(w,b)$ gives hyperplane in data space:

$$H := \{x : w^T x + b = 0\} = \{x : m(x; \theta) = 0\}$$

- Training problem searches hyperplane to "best" separates classes
- Example models with different parameters θ :

8

9

9

6

Prediction

- ullet Use trained model m to predict label y for unseen data point x
- Since affine model $m(x; \theta) = w^T x + b$, prediction for x becomes:
 - If $w^Tx + b < 0$, predict corresponding label y = -1• If $w^Tx + b > 0$, predict corresponding label y = 1
 - $\bullet \ \ \text{If} \ w^Tx+b=0, \ \text{predict either} \ y=-1 \ \text{or} \ y=1 \\$
- A hyperplane (decision boundary) separates class predictions:

$$H := \{x : w^T x + b = 0\}$$

7

What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot; \theta)$ with parameter $\theta = \theta_1$:

• Training loss:

9

What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot; \theta)$ with parameter $\theta = \theta_2$:

• Training loss:

What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot; \theta)$ with parameter $\theta = \theta_3$:

• Training loss:

What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot; \theta)$ with parameter $\theta = \theta_4$:

• Training loss:

What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- \bullet Hyperplane for model $m(\cdot;\theta)$ with parameter $\theta=\theta^*$:

• Training loss:

Fully separable data - Solution

• Let $\bar{\theta}=(\bar{w},\bar{b})$ give model that separates data:

- Let $H_{\bar{\theta}}:=\{x:m(x;\bar{\theta})=\bar{w}^Tx+\bar{b}=0\}$ be hyperplane separates
- Training loss:

10

Fully separable data - Solution

• Also $2\bar{\theta}=(2\bar{w},2\bar{b})$ separates data:

- Hyperplane $H_{2\bar{\theta}}:=\{x:m(x;2\bar{\theta})=2(\bar{w}^Tx+\bar{b})=0\}=H_{\bar{\theta}}$ same Training loss reduced since input $m(x;2\bar{\theta})=2m(x;\bar{\theta})$ further out:

10

9

Fully separable data - Solution

• And $3 \bar{\theta} = (3 \bar{w}, 3 \bar{b})$ also separates data:

- Hyperplane $H_{3ar{ heta}}:=\{x:m(x;3ar{ heta})=3(ar{w}^Tx+ar{ heta})=0\}=H_{ar{ heta}}$ same Training loss further reduced since input $m(x;3ar{ heta})=3m(x;ar{ heta})$:

10

Fully separable data - Solution

• And $3\bar{\theta}=(3\bar{w},3\bar{b})$ also separates data:

- Hyperplane $H_{3\bar{\theta}}:=\{x:m(x;3\bar{\theta})=3(\bar{w}^Tx+\bar{b})=0\}=H_{\bar{\theta}}$ same
- Training loss

• As soon as $|m(x_i;\theta)| \ge 1$ (with correct sign) for all x_i , cost is 0

Margin classification and support vectors

• Support vector machine classifiers for separable data • Classes separated with margin, o marks support vectors

Outline

- Classification
- Support vector machines
- Nonlinear features
- Overfitting and regularization
- Dual problem
- Kernel SVM
- Training problem properties

Nonlinear example

• Can classify nonlinearly separable data using lifting

13

Adding features

- \bullet Create feature map $\phi:\mathbb{R}^n\to\mathbb{R}^p$ of training data
- Data points $x_i \in \mathbb{R}^n$ replaced by featured data points $\phi(x_i) \in \mathbb{R}^p$
- \bullet Example: Polynomial feature map with n=2 and degree d=3

$$\phi(x) = (x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3)$$

- Number of features $p+1=\binom{n+d}{d}=\frac{(n+d)!}{d!n!}$ grows fast!
- SVM training problem

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} \max(0, 1 - y_i(w^T \phi(x_i) + b))$$

14

15

still convex since features fixed

Nonlinear example - Polynomial features

• SVM and polynomial features of degree 2

15

Nonlinear example - Polynomial features

• SVM and polynomial features of degree 3

Nonlinear example - Polynomial features

• SVM and polynomial features of degree 4

15

 $\label{eq:Nonlinear example - Polynomial features} \\ \text{Nonlinear example - Polynomial features}$

• SVM and polynomial features of degree 5

• SVM and polynomial features of degree 6

Nonlinear example – Polynomial features

15

Nonlinear example - Polynomial features

• SVM and polynomial features of degree 7

Nonlinear example - Polynomial features

 \bullet SVM and polynomial features of degree 8

15

Nonlinear example - Polynomial features

• SVM and polynomial features of degree 9

Nonlinear example – Polynomial features

• SVM and polynomial features of degree 10

Outline

- Classification
- Support vector machines
- Nonlinear features
- Overfitting and regularization
- Dual problem
- Kernel SVM
- Training problem properties

Overfitting and regularization

- SVM is prone to overfitting if model too expressive
- Regularization using $\|\cdot\|_1$ (for sparsity) or $\|\cdot\|_2^2$
- \bullet Tikhonov regularization with $\|\cdot\|_2^2$ especially important for SVM
- \bullet Regularize only linear terms w, not bias b
- ullet Training problem with Tikhonov regularization of w

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} \max(0, 1 - y_i(w^T \phi(x_i) + b)) + \frac{\lambda}{2} ||w||_2^2$$

(note that features are used $\phi(x_i)$)

17

Nonlinear example revisited

- Regularized SVM and polynomial features of degree 6
- ullet Regularization parameter: $\lambda=0.00001$

18

15

16

Nonlinear example revisited

- Regularized SVM and polynomial features of degree 6
- ullet Regularization parameter: $\lambda=0.00006$

18

15

Nonlinear example revisited

- \bullet Regularized SVM and polynomial features of degree 6
- \bullet Regularization parameter: $\lambda = 0.00036$

Nonlinear example revisited

- \bullet Regularized SVM and polynomial features of degree 6
- \bullet Regularization parameter: $\lambda=0.0021$

Nonlinear example revisited

- Regularized SVM and polynomial features of degree 6
- \bullet Regularization parameter: $\lambda=0.013$

Nonlinear example revisited

- Regularized SVM and polynomial features of degree 6
- ullet Regularization parameter: $\lambda=0.077$

18

Nonlinear example revisited

- \bullet Regularized SVM and polynomial features of degree 6
- \bullet Regularization parameter: $\lambda=0.46$

Nonlinear example revisited

- Regularized SVM and polynomial features of degree 6
- ullet Regularization parameter: $\lambda=2.78$

18

18

18

Nonlinear example revisited

- Regularized SVM and polynomial features of degree 6
- ullet Regularization parameter: $\lambda=16.7$

ullet λ and polynomial degree chosen using cross validation/holdout

Outline

- Classification
- Support vector machines
- Nonlinear features
- Overfitting and regularization
- Dual problem
- Kernel SVM
- Training problem properties

SVM problem reformulation

• Consider Tikhonov regularized SVM:

$$\underset{w,b}{\text{minimize}} \sum_{i=1}^{N} \max(0, 1 - y_i(\boldsymbol{w}^T \phi(\boldsymbol{x}_i) + b)) + \tfrac{\lambda}{2} \|\boldsymbol{w}\|_2^2$$

• Derive dual from reformulation of SVM:

$$\underset{x \in \mathcal{A}}{\operatorname{minimize}} \mathbf{1}^T \max(\mathbf{0}, \mathbf{1} - (X_{\phi, Y}w + Yb)) + \frac{\lambda}{2} \|w\|_2^2$$

where \max is vector valued and

$$X_{\phi,Y} = \begin{bmatrix} y_1 \phi(x_1)^T \\ \vdots \\ y_N \phi(x_N)^T \end{bmatrix}, \qquad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$

Dual problem

ullet Let $L=[X_{\phi,Y},Y]$ and write problem as

$$\underset{w,b}{\text{minimize}} \underbrace{\mathbf{1}^T \max(\mathbf{0}, \mathbf{1} - (X_{\phi, Y}w + Yb))}_{f(L(w,b))} + \underbrace{\frac{\lambda}{2} \|w\|_2^2}_{g(w,b)}$$

where

- $f(\psi) = \sum_{i=1}^N f_i(\psi_i)$ and $f_i(\psi_i) = \max(0, 1 \psi_i)$ (hinge loss) $g(w,b) = \frac{1}{2} \|w\|_2^2$, i.e., does not depend on b
- Dual problem

$$\underset{\nu}{\text{minimize}} f^*(\nu) + g^*(-L^T\nu)$$

21

18

19

Conjugate of g

- Conjugate of $g(w,b)=\frac{\lambda}{2}\|w\|_2^2=:g_1(w)+g_2(b)$ is $g^*(\mu_w,\mu_b)=g_1^*(\mu_w)+g_2^*(\mu_b)=\frac{1}{2\lambda}\|\mu_w\|_2^2+\iota_{\{0\}}(\mu_b)$
- Evaluated at $-L^T \nu = -[X_{\phi,Y},Y]^T \nu$:

$$\begin{split} g^*(-L^T\nu) &= g^*\left(-\begin{bmatrix} X_{\phi,Y}^T \\ Y^T \end{bmatrix}\nu\right) = \frac{1}{2\lambda}\|-X_{\phi,Y}^T\nu\|_2^2 + \iota_{\{0\}}(-Y^T\nu) \\ &= \frac{1}{2\lambda}\nu^T X_{\phi,Y} X_{\phi,Y}^T \nu + \iota_{\{0\}}(Y^T\nu) \end{split}$$

Conjugate of f

• Conjugate of $f_i(\psi_i) = \max(0, 1 - \psi_i)$ (hinge-loss):

$$f_i^*(\nu_i) = \begin{cases} \nu_i & \text{if } -1 \leq \nu_i \leq 0 \\ \infty & \text{else} \end{cases}$$

 \bullet Conjugate of $f(\psi) = \sum_{i=1}^N f_i(\psi_i)$ is sum of individual conjugates:

$$f^*(\nu) = \sum_{i=1}^{N} f_i^*(\nu_i) = \mathbf{1}^T \nu + \iota_{[-1,\mathbf{0}]}(\nu)$$

22

23

SVM dual

• The SVM dual is

$$\text{minimize}\, f^*(\nu) + g^*(-L^T\nu)$$

• Inserting the above computed conjugates gives dual problem

$$\begin{array}{ll} \underset{\nu}{\text{minimize}} & \sum_{i=1}^{N} \nu_i + \frac{1}{2\lambda} \nu^T X_{\phi,Y} X_{\phi,Y}^T \nu \\ \text{subject to} & -\mathbf{1} \leq \nu \leq \mathbf{0} \\ & Y^T \nu = 0 \end{array}$$

- $\bullet \; \operatorname{Since} \, Y \in \mathbb{R}^N$, $Y^T \nu = 0$ is a hyperplane constraint
- ullet If no bias term b; dual same but without hyperplane constraint

Primal solution recovery

- Meaningless to solve dual if we cannot recover primal
- · Necessary and sufficient primal-dual optimality conditions

$$0 \in \begin{cases} \partial f^*(\nu) - L(w, b) \\ \partial g^*(-L^T \nu) - (w, b) \end{cases}$$

- ullet From dual solution u, find (w,b) that satisfies both of the above
- · For SVM, second condition is

$$\partial g^*(-L^T\nu) = \begin{bmatrix} \frac{1}{\lambda}(-X_{\phi,Y}^T\nu) \\ \partial \iota_{\{0\}}(-Y^T\nu) \end{bmatrix} \ni \begin{bmatrix} w \\ b \end{bmatrix}$$

which gives optimal $w = -\frac{1}{\lambda} X_{\Phi,Y}^T \nu$ (since unique)

• Cannot recover b from this condition

24

25

Primal solution recovery - Bias term

• Necessary and sufficient primal-dual optimality conditions

$$0 \in \begin{cases} \partial f^*(\nu) - L(w, b) \\ \partial g^*(-L^T \nu) - (w, b) \end{cases}$$

ullet For SVM, row i of first condition is $0 \in \partial f_i^*(\nu_i) - L_i(w,b)$ where

$$\partial f_i^*(\nu_i) = \begin{cases} [-\infty,1] & \text{if } \nu_i = -1 \\ \{1\} & \text{if } -1 < \nu_i < 0 \\ [1,\infty] & \text{if } \nu_i = 0 \end{cases}, \quad L_i = y_i[\phi(x_i)^T \ 1]$$

 $\bullet \;\; \mbox{Pick} \; i \; \mbox{with} \; \nu_i \in (-1,0), \; \mbox{then unique subgradient} \; \partial f_i(\nu_i) \; \mbox{is} \; 1 \; \mbox{and} \;$

$$0 = 1 - y_i(w^T \phi(x_i) + b)$$

and optimal b must satisfy $b = y_i - \boldsymbol{w}^T \phi(\boldsymbol{x}_i)$ for such i

Outline

- $\bullet \ {\sf Classification}$
- Support vector machines
- Nonlinear features
- Overfitting and regularization
- Dual problem
- Kernel SVM
- Training problem properties

26

27

SVM dual - A reformulation

• Dual problem

$$\label{eq:linear_problem} \begin{array}{ll} \underset{\nu}{\text{minimize}} & \sum_{i=1}^{N} \nu_i + \frac{1}{2\lambda} \nu^T X_{\phi,Y} X_{\phi,Y}^T \nu \\ \text{subject to} & -\mathbf{1} \leq \nu \leq \mathbf{0} \\ & Y^T \nu = 0 \end{array}$$

• Let $\kappa_{ij} := \phi(x_i)^T \phi(x_j)$ and rewrite quadratic term:

$$\begin{split} \nu^T X_{\phi,Y} X_{\phi,Y}^T \nu &= \nu \operatorname{\mathbf{diag}}(Y) \begin{bmatrix} \phi(x_1)^T \\ \vdots \\ \phi(x_N)^T \end{bmatrix} \begin{bmatrix} \phi(x_1) & \cdots & \phi(x_N) \end{bmatrix} \operatorname{\mathbf{diag}}(Y) \nu \\ &= \nu \operatorname{\mathbf{diag}}(Y) \underbrace{\begin{bmatrix} \kappa_{11} & \cdots & \kappa_{1N} \\ \vdots & \ddots & \vdots \\ \kappa_{N1} & \cdots & \kappa_{NN} \end{bmatrix}}_{K} \operatorname{\mathbf{diag}}(Y) \nu \end{split}$$

where K is called Kernel matrix

SVM dual - Kernel formulation

Dual problem with Kernel matrix

• Solved without evaluating features, only scalar products:

$$\kappa_{ij} := \phi(x_i)^T \phi(x_j)$$

29

Kernel methods

- We explicitly defined features and created Kernel matrix
- We can instead create Kernel that implicitly defines features

Kernel operators

Define:

30

32

- Kernel operator $\kappa(x,y):\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$
- Kernel shortcut $\kappa_{ij} = \kappa(x_i, x_j)$
- A Kernel matrix

$$K = \begin{bmatrix} \kappa_{11} & \cdots & \kappa_{1N} \\ \vdots & \ddots & \vdots \\ \kappa_{N1} & \cdots & \kappa_{NN} \end{bmatrix}$$

- A Kernel operator $\kappa : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is:

$$\sum_{i,j}^{m} a_i a_j \kappa(x_i, x_j) \ge 0$$

for all $m \in \mathbb{N}$, $\alpha_i, \alpha_j \in \mathbb{R}$, and $x_i, x_j \in \mathbb{R}^n$

• All Kernel matrices PSD if Kernel operator PSD

31

33

Mercer's theorem

- \bullet Assume κ is a positive semidefinite Kernel operator
- · Mercer's theorem:

There exists continuous functions $\{e_j\}_{j=1}^\infty$ and nonnegative $\{\lambda_j\}_{j=1}^\infty$ such that

$$\kappa(x,y) = \sum_{j=1}^{\infty} \lambda_j e_j(x) e_j(y)$$

 \bullet Let $\phi(x)=(\sqrt{\lambda_1}e_1(x),\sqrt{\lambda_2}e_2(x),\ldots)$ be a feature map, then

$$\kappa(x, y) = \langle \phi(x), \phi(y) \rangle$$

where scalar product in ℓ_2 (space of square summable sequences)

• A PSD kernel operator implicitly defines features

Kernel SVM dual and corresponding primal

ullet SVM dual from Kernel κ with Kernel matrix $K_{ij}=\kappa(x_i,x_j)$

• Due to Mercer's theorem, this is dual to primal problem

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} \max(0, 1 - y_i(\langle w, \phi(x_i) \rangle + b)) + \frac{\lambda}{2} ||w||^2$$

with potentially an infinite number of features $\boldsymbol{\phi}$ and variables \boldsymbol{w}

Valid kernels

Primal recovery and class prediction

- Assume we know Kernel operator, dual solution, but not features

 - $\bullet \ \ \, {\sf Can\ recover} \colon {\sf Label\ prediction\ and\ primal\ solution\ } b \\ \bullet \ \ \, {\sf Cannot\ recover} \colon {\sf Primal\ solution\ } w \ \, ({\sf might\ be\ infinite\ dimensional})$
- Primal solution $b = y_i w^T \phi(x_i)$:

$$w^T \phi(x_i) = -\frac{1}{\lambda} \nu^T X_{\phi, Y} \phi(x_i) = -\frac{1}{\lambda} \nu^T \begin{bmatrix} y_1 \phi(x_1)^T \\ \vdots \\ y_N \phi(x_N)^T \end{bmatrix} \phi(x_i) = -\frac{1}{\lambda} \nu^T \begin{bmatrix} y_1 \kappa_{1i} \\ \vdots \\ y_N \kappa_{Ni} \end{bmatrix}$$

 \bullet Label prediction for new data x (sign of $w^T\phi(x)+b$):

$$w^T \phi(x) + b = -\frac{1}{\lambda} \nu^T \begin{bmatrix} y_1 \phi(x_1)^T \phi(x) \\ \vdots \\ y_N \phi(x_N)^T \phi(x) \end{bmatrix} + b = -\frac{1}{\lambda} \nu^T \begin{bmatrix} y_1 \kappa(x_1, x) \\ \vdots \\ y_N \kappa(x_N, x) \end{bmatrix} + b$$

• We are really interested in label prediction, not primal solution

 \bullet Polynomial kernel of degree $d{:}\ \kappa(x,y) = (1+x^Ty)^d$

• Radial basis function kernels:

• Gaussian kernel: $\kappa(x,y) = e^{-\frac{\|x-y\|_2^2}{2\sigma^2}}$

• Laplacian kernel: $\kappa(x,y) = e^{-\frac{\|x-y\|_2}{\sigma}}$

 $\bullet\,$ Bias term b often not needed with Kernel methods

Example - Laplacian Kernel

- \bullet Regularized SVM with Laplacian Kernel with $\sigma=1$
- ullet Regularization parameter: $\lambda=0.01$

Example - Laplacian Kernel

- \bullet Regularized SVM with Laplacian Kernel with $\sigma=1$
- Regularization parameter: $\lambda = 0.035938$

36

Example - Laplacian Kernel

- ullet Regularized SVM with Laplacian Kernel with $\sigma=1$
- ullet Regularization parameter: $\lambda=0.12915$

Example - Laplacian Kernel

- ullet Regularized SVM with Laplacian Kernel with $\sigma=1$
- ullet Regularization parameter: $\lambda=0.46416$

36

36

Example - Laplacian Kernel

- ullet Regularized SVM with Laplacian Kernel with $\sigma=1$
- ullet Regularization parameter: $\lambda=1.6681$

Example - Laplacian Kernel

- ullet Regularized SVM with Laplacian Kernel with $\sigma=1$
- Regularization parameter: $\lambda = 5.9948$

36

Example - Laplacian Kernel

- \bullet Regularized SVM with Laplacian Kernel with $\sigma=1$
- ullet Regularization parameter: $\lambda=21.5443$

Example - Laplacian Kernel

• What if there is no structure in data? (Labels are randomly set)

Outline

Example - Laplacian Kernel

- What if there is no structure in data? (Labels are randomly set)
- \bullet Regularized SVM Laplacian Kernel, regularization parameter: $\lambda=0.01$

- Linearly separable in high dimensional feature space
- ullet Can be prone to overfitting \Rightarrow Regularize and use cross validation

- Classification
- Support vector machines
- Nonlinear features
- Overfitting and regularization
- Dual problem
- Kernel SVM
- Training problem properties

Composite optimization - Dual SVM Gradient and function properties Dual SVM problems $\label{eq:linear_equation} \begin{array}{ll} \underset{\nu}{\text{minimize}} & \sum_{i=1}^{N} \nu_i + \frac{1}{2\lambda} \nu^T X_{\phi,Y} X_{\phi,Y}^T \nu \\ \text{subject to} & -\mathbf{1} \leq \nu \leq \mathbf{0} \\ & Y^T \nu = 0 \end{array}$ • Gradient of $(h_2 \circ -X_{\phi,Y}^T)$ satisfies: $\nabla (h_2 \circ - X_{\phi,Y}^T)(\nu) = \nabla \left(\frac{1}{2\lambda} \nu^T X_{\phi,Y} X_{\phi,Y}^T \nu \right) = \frac{1}{\lambda} X_{\phi,Y} X_{\phi,Y}^T \nu$ $= \tfrac{1}{\lambda}\operatorname{\mathbf{diag}}(Y)K\operatorname{\mathbf{diag}}(Y)\nu$ can be written on the form $\min_{\nu} h_1(\nu) + h_2(-X_{\phi,Y}^T \nu),$ where \boldsymbol{K} is Kernel matrix • Function properties where • h_2 is convex and λ^{-1} -smooth, $h_2\circ -X_{\phi,Y}^T$ is $\frac{\|X_{\phi,Y}\|_2^2}{\lambda}$ -smooth • h_1 is convex and nondifferentiable, use prox in algorithms $$\begin{split} & \bullet \ \ h_1(\nu) = \mathbf{1}^T \nu + \iota_{[-\mathbf{1},\mathbf{0}]}(\nu) + \iota_{\{0\}}(Y^T \nu) \\ & \bullet \ \ \text{First part } \mathbf{1}^T \nu + \iota_{[-\mathbf{1},\mathbf{0}]}(\nu) \ \text{is conjugate of sum of hinge losses} \\ & \bullet \ \ \text{Second part } \iota_{\{0\}}(Y^T \nu) \ \text{comes from that bias } b \ \text{not regularized} \end{split}$$ • $h_2(\mu)=\frac{1}{2\lambda}\|\mu\|_2^2$ is conjugate to Tikhonov regularization $\frac{\lambda}{2}\|w\|_2^2$ 39 40

Outline

• Deep learning

- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

1

Deep learning

Deep Learning

Pontus Giselsson

- Can be used both for classification and regression
- Deep learning training problem is of the form

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i;\theta), y_i)$$

where typically

- $L(u,y) = \frac{1}{2}\|u-y\|_2^2$ is used for regression
- $L(u,y) = \log\left(\sum_{j=1}^K e^{u_j}\right) y^T u$ is used for K-class classification
- \bullet Difference to previous convex methods: Nonlinear model $m(x;\theta)$
 - Deep learning regression generalizes least squares
 - DL classification generalizes multiclass logistic regression
 - Nonlinear model makes training problem nonconvex

Deep learning - Model

- Nonlinear model of the following form is often used: $m(x;\theta):=W_n\sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})+b_n$ where θ contains all W_i and b_i
- ullet Each activation σ_i constitutes a hidden layer in the model network
- We have no final layer activation (is instead part of loss)
- Graphical representation with three hidden layers

- Some reasons for using this structure:
 - (Assumed) universal function approximators
 - Efficient gradient computation using backpropagation

4

2

No final layer activation in classification

- In classification, it is common to use
 - Softmax final layer activation
 - Cross entropy loss function
- Equivalent to
 - no (identity) final layer activation
 - multiclass logistic loss

which is what we use

Activation functions

- \bullet Activation function σ_j takes as input the output of $W_j(\cdot)+b_j$
- ullet Often a function $ar{\sigma}_j:\mathbb{R} o\mathbb{R}$ is applied to each element
 - $\bullet \ \ \mathsf{Example:} \ \ \sigma_j: \mathbb{R}^3 \to \mathbb{R}^3 \ \mathsf{is} \ \sigma_j(u) = \begin{bmatrix} \bar{\sigma}_j(u_1) \\ \bar{\sigma}_j(u_2) \\ \bar{\sigma}_j(u_3) \end{bmatrix}$
- ullet We will use notation over-loading and call both functions σ_j

3

5

Examples of activation functions

Examples of affine transformations

- ullet Dense (fully connected): Dense W_j
- Sparse: Sparse W_i
 - Convolutional layer (convolution with small pictures)
 - Fixed (random) sparsity pattern
- ullet Subsampling: reduce size, W_j fat (smaller output than input)
 - average pooling

8

Prediction

- Prediction as in least squares and multiclass logistic regression
- ullet Assume model $m(x;\theta)$ trained and "optimal" θ^{\star} found
- Regression:
 - Predict response for new data x using $\hat{y} = m(x; \theta^*)$
- Classification (with no final layer activation):
 - ullet We have one model $m_j(x; heta^\star)$ output for each class
 - \bullet Predict class belonging for new data \boldsymbol{x} according to

$$\underset{j \in \{1, \dots, K\}}{\operatorname{argmax}} m_j(x; \theta^*)$$

i.e., class with largest model value (since loss designed this way)

Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation

9

11

13

• Vanishing and exploding gradients

Learning features

- Convex methods use *prespecified* feature maps (or kernels)
- Deep learning instead *learns* feature map during training
 - Define parameter dependent feature vector:

$$\phi(x;\theta) := \sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})$$

- Model becomes $m(x;\theta) = W_n \phi(x;\theta) + b_n$
- Inserted into training problem:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(W_n \phi(x_i; \theta) + b_n, y_i)$$

same as before, but with learned (parameter-dependent) features

• Learning features at training makes training nonconvex

Learning features - Graphical representation

• Fixed features gives convex training problems

• Output of last activation function is feature vector

12

10

Optimizing only final layer

- Assume:
 - \bullet that parameters $\bar{\theta}_f$ in the layers in the square are fixed
 - $\bullet\,$ that we optimize only the final layer parameters
 - that the loss is a (binary) logistic loss

• What can you say about the training problem?

Optimizing only final layer

- Assume:
 - \bullet that parameters $\bar{\theta}_f$ in the layers in the square are fixed
 - that we optimize only the final layer parameters
 - that the loss is a (binary) logistic loss

• What can you say about the training problem?

• It reduces to logistic regression with fixed features $\phi(x_i; \bar{\theta}_f)$

$$\underset{\theta=(W_n,b_n)}{\text{minimize}} \sum_{i=1}^{N} L(W_n \phi(x_i; \bar{\theta}_f) + b_n, y_i)$$

• The training problem is convex

13

Design choices

Many design choices in building model to create good features

- Number of layers
- Width of layers
- Types of layers
- Types of activation functions
- Different model structures (e.g., residual network)

Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

14

Model properties - ReLU networks

- Recall model $m(x;\theta):=W_n\sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})+b_n$ where θ contains all W_i and b_i
- Assume that all activation functions are (Leaky)ReLU
- \bullet What can you say about the properties of $m(\cdot;\theta)$ for fixed $\theta?$

Model properties - ReLU networks

- Recall model $m(x;\theta):=W_n\sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})+b_n$ where θ contains all W_i and b_i
- Assume that all activation functions are (Leaky)ReLU
- What can you say about the properties of $m(\cdot;\theta)$ for fixed θ ?
 - It is continuous piece-wise affine

1D Regression - Model properties

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyReLU

1D Regression – Model properties

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyReLU

Vertical lines show kinks

17

16

1D Regression - Model properties

• Fully connected, layers widths: 5,5,5,1,1 (78 params), Tanh

• No kinks for Tanh

Identity activation

 Do we need nonlinear activation functions? What can you say about model if all $\sigma_j=\mathrm{Id}$ in

 $m(x;\theta):=W_n\sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})+b_n$ where θ contains all W_j and b_j

17

16

17

18

Identity activation

- Do we need nonlinear activation functions?
- What can you say about model if all $\sigma_j=\mathrm{Id}$ in $m(x;\theta):=W_n\sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})+b_n$ where θ contains all W_j and b_j
- We then get

$$m(x;\theta) := W_n(W_{n-1}(\cdots(W_2(W_1x + b_1) + b_2) \cdots) + b_{n-1}) + b_n$$

$$= \underbrace{W_nW_{n-1}\cdots W_2W_1}_{W} x + \underbrace{b_n + \sum_{l=2}^{n-1} W_n \cdots W_l b_{l-1}}_{b}$$

$$= Wx + b$$

which is linear in \boldsymbol{x} (but training problem nonconvex)

Network with identity activations - Example

• Fully connected, layers widths: 5,5,5,1,1 (78 params), Identity

19

Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

Training problem properties

Recall model

 $m(x;\theta) := W_n \sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})+b_n$ where θ includes all W_j and b_j and training problem

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

- If all σ_j LeakyReLU and $L(u,y) = \frac{1}{2}\|u-y\|_2^2$, then for fixed x,y
 - $m(x;\cdot)$ is continuous piece-wise polynomial (cpp) of degree n in θ
 - $L(m(x;\theta),y)$ is cpp of degree 2n in θ

where both model output and loss can grow fast

- If σ_i is instead Tanh
 - model no longer piece-wise polynomial (but "more" nonlinear)
 - model output grows slower since $\sigma_j:\mathbb{R} o (-1,1)$

21

Loss landscape - Leaky ReLU

- Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
- Regression problem, least squares loss Plot: $\sum_{i=1}^{N} L(m(x_i; \theta^* + t_1\theta_1 + t_2\theta_2), y_i)$ vs scalars t_1, t_2 , where θ^* is numerically found solution to training problem

 - \bullet $\;\theta_1$ and θ_2 are random directions in parameter space
- First choice of θ_1 and θ_2 :

Loss landscape - Leaky ReLU

- Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
- Regression problem, least squares loss
 Plot: $\sum_{i=1}^{N} L(m(x_i; \theta^\star + t_1\theta_1 + t_2\theta_2), y_i)$ vs scalars t_1, t_2 , where
 θ^\star is numerically found solution to training problem
 θ_1 and θ_2 are random directions in parameter space
- Second choice of θ_1 and θ_2 :

22

Loss landscape - Leaky ReLU

- Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
- Regression problem, least squares loss
- Plot: $\sum_{i=1}^{N} L(m(x_i; \theta^{\star} + t_1\theta_1 + t_2\theta_2), y_i)$ vs scalars t_1, t_2 , where
 - θ^* is numerically found solution to training problem
 - ullet $heta_1$ and $heta_2$ are random directions in parameter space
- Third choice of θ_1 and θ_2 :

20

22

Loss landscape - Tanh

- Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
- Regression problem, least squares loss
- Plot: $\sum_{i=1}^{N} L(m(x_i; \theta^* + t_1\theta_1 + t_2\theta_2), y_i)$ vs scalars t_1 , t_2 , where θ^* is numerically found solution to raining problem

 - ullet θ_1 and θ_2 are random directions in parameter space
- First choice of θ_1 and θ_2 :

Loss landscape - Tanh

- Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
- Regression problem, least squares loss
- Plot: $\sum_{i=1}^{N} L(m(x_i; \theta^* + t_1\theta_1 + t_2\theta_2), y_i)$ vs scalars t_1, t_2 , where θ^* is numerically found solution to training problem

 - θ_1 and θ_2 are random directions in parameter space
- Second choice of θ_1 and θ_2 :

Loss landscape - Tanh

- Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
- Regression problem, least squares loss
- Plot: $\sum_{i=1}^{N} L(m(x_i; \theta^* + t_1\theta_1 + t_2\theta_2), y_i)$ vs scalars t_1, t_2 , where \bullet θ^* is numerically found solution to training problem

 - ullet θ_1 and θ_2 are random directions in parameter space
- Third choice of θ_1 and θ_2 :

23

ReLU vs Tanh

Previous figures suggest:

- ReLU: more regular and similar loss landscape?
- Tanh: less steep (on macro scale)?
- Tanh: Minima extend over larger regions?

Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- \bullet Vanishing and exploding gradients

24 25

Performance with increasing depth

- Increasing depth can deteriorate performance
- Deep networks may even have worse training errors than shallow
- Intuition: deeper layers bad at approximating identity mapping

Residual networks

- Add skip connections between layers
- Instead of network architecture with $z_1=x_i$ (see figure):

$$z_{j+1} = \sigma_j(W_j z_j + b_j)$$
 for $j \in \{1, \dots, n-1\}$

use residual architecture

$$z_{j+1} = z_j + \sigma_j(W_j z_j + b_j) \text{ for } j \in \{1, \dots, n-1\}$$

- Assume $\sigma(0)=0$, $W_j=0$, $b_j=0$ for $j=1,\ldots,m$ (m< n-1) \Rightarrow deeper part of network is identity mapping and does no harm
- Learns variation from identity mapping (residual)

26

28

27

Graphical representation

For graphical representation, first collapse nodes into single node

Graphical representation

Collapsed network representation

Residual network

ullet If some $h_j=0$ gives same performance as shallower network

29

Residual network - Example

- Fully connected no residual layers, LeakyReLU activation
- \bullet Layers widths: 3x5,1,1 (depth: $5,\ 78\ params)$
- Trained for 5000 epochs

Residual network - Example

- Fully connected no residual layers, LeakyReLU activation
- \bullet Layers widths: 5x5,1,1 (depth: 7, 138 params)
- Trained for 5000 epochs

30

Residual network - Example

- Fully connected no residual layers, LeakyReLU activation
- Layers widths: 10x5,1,1 (depth: 12, 288 params)
- Trained for 5000 epochs

Residual network - Example

- Fully connected no residual layers, LeakyReLU activation
- Layers widths: 15x5,1,1 (depth: 17, 438 params)
- Trained for 5000 epochs

30

Residual network – Example

- Fully connected no residual layers, LeakyReLU activation
- Layers widths: 45x5,1,1 (depth: 47, 1,338 params)
- Trained for 5000 epochs

30

Residual network - Example

- Fully connected residual layers, LeakyReLU activation
- Layers widths: 3x5,1,1 (depth: 5, 78 params)
- Trained for 5000 epochs

30

30

Residual network - Example

- Fully connected residual layers, LeakyReLU activation
- $\bullet \ \ \mathsf{Layers} \ \mathsf{widths:} \ \mathsf{5x5,1,1} \ \mathsf{(depth:} \ \mathsf{7,} \ \mathsf{138} \ \mathsf{params)}$
- Trained for 5000 epochs

3

Residual network - Example

- Fully connected residual layers, LeakyReLU activation
- \bullet Layers widths: 10x5,1,1 (depth: 12, 288 params)
- Trained for 5000 epochs

30

Residual network - Example

- Fully connected residual layers, LeakyReLU activation
- $\bullet \ \ \mathsf{Layers} \ \mathsf{widths} \colon \ 15\mathsf{x}5\mathsf{,}1\mathsf{,}1 \ \mathsf{(depth:} \ 17, \ 438 \ \mathsf{params})$
- Trained for 5000 epochs

Residual network - Example

- Fully connected residual layers, LeakyReLU activation
- Layers widths: 45x5,1,1 (depth: 47, 1,338 params)
- Trained for 5000 epochs

30

Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

Why overparameterization?

- Neural networks are often overparameterized in practice
- Why? They often perform better than underparameterized

What is overparameterization?

- We mean that many solutions exist that can:
 - fit all data points (0 training loss) in regression
 - correctly classify all training examples in classification
- This requires (many) more parameters than training examples
 - Need wide and deep enough networks
 - Can result in overfitting
- Questions:
 - Which of all solutions give best generalization?
 - (How) can network design affect generalization?

Overparameterization - An example

- Assume fully connected network with
 - ullet input data $x_i \in \mathbb{R}^p$

31

33

- Imput uata $x_i \in \mathbb{R}^c$ n layers and $N \approx p^2$ samples
 same width throughout (except last layer, which can be neglected)

32

34

· What is the relation between number of weights and samples?

Overparameterization – An example

- · Assume fully connected network with

 - input data $x_i \in \mathbb{R}^p$ n layers and $N \approx p^2$ samples
 same width throughout (except last layer, which can be neglected)
- What is the relation between number of weights and samples?

- We have:
 - Number of parameters approximately: $(W_j)_{lk}$: p^2n and $(b_j)_l$: pn
 - Then $\frac{\#\text{weights}}{\#\text{samples}} \approx \frac{p^2 n}{p^2} = n$ more weights than samples

Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights • Generalization – Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

Generalization

- Most important for model to generalize well to unseen data
- General approach in training
 - Train a model that is too expressive for the underlying data
 - Overparameterization in deep learning
 - Use regularization to
 - find model of appropriate (lower) complexity
 - favor models with desired properties

Regularization

What regularization techniques in DL are you familiar with?

Regularization techniques

- Reduce number of parameters
 - Sparse weight tensors (e.g., convolutional layers)
 - Subsampling (gives fewer parameters deeper in network)
- Explicit regularization term in cost function, e.g., Tikhonov
- Data augmentation more samples, artificial often OK
- Early stopping stop algorithm before convergence
- Dropouts
- ...

Implicit vs explicit regularization

- Regularization can be explicit or implicit
- Explicit Introduce something with intent to regularize:
 - Add cost function to favor desirable properties
 - Design (adapt) network to have regularizing properties
- $\bullet \ \ Implicit-Use \ something \ with \ regularization \ as \ byproduct:$
 - $\bullet\,$ Use algorithm that finds favorable solution among many
 - Will look at implicit regularization via SGD

38

40

39

41

Generalization - Our focus

Will here discuss generalization via:

- Norm of parameters leads to implicit regularization via SGD
- Flatness of minima leads to implicit regularization via SGD

Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

Lipschitz continuity of ReLU networks

- Assume that all activation functions 1-Lipschitz continuous
- \bullet The neural network model $m(\cdot;\theta)$ is Lipschitz continuous in x ,

$$||m(x_1;\theta) - m(x_2;\theta)||_2 \le L||x_1 - x_2||_2$$

for fixed θ , e.g., the θ obtained after training

- This means output differences are bounded by input differences
- ullet A Lipschitz constant L is given by

$$L = ||W_n||_2 \cdot ||W_{n-1}||_2 \cdots ||W_1||_2$$

since activation functions are 1-Lipschitz continuous

ullet For residual layers each $\|W_j\|_2$ replaced by $(1+\|W_j\|_2)$

Desired Lipschitz constant

- Overparameterization gives many solutions that perfectly fit data
- Would you favor one with high or low Lipschitz constant L?

42

43

Small norm likely to generalize better

- Smaller Lipschitz constant probably generalizes better if perfect fit
- $\bullet\,\,$ "Similar inputs give similar outputs", recall

$$||m(x_1;\theta) - m(x_2;\theta)||_2 \le L||x_1 - x_2||_2$$

with a Lipschitz constant is given by

$$L = \|W_n\|_2 \cdot \|W_{n-1}\|_2 \cdots \|W_1\|_2$$

or with $\|W_j\|_2$ replaced by $(1+\|W_j\|_2)$ for residual layers

• Smaller weight norms give better generalization if perfect fit

Generalization - Norm of weights

- Fully connected residual layers, LeakyReLU
- Layers widths: 30x5,1,1 (888 params)
- Norm of weights (with perfect fit): 72

44

Generalization - Norm of weights

- Fully connected residual layers, LeakyReLU
- Layers widths: 30x5,1,1 (888 params)
- Norm of weights (with perfect fit): 540

• Norm of weights (with perfect fit): 540

Fully connected – residual layers, LeakyReLU
 Layers widths: 30x5,1,1 (888 params)

Generalization - Norm of weights

• Same as previous, new scaling

45

45

45

Generalization - Norm of weights

- Fully connected residual layers, LeakyReLU
- $\bullet \ \ \mathsf{Layers} \ \mathsf{widths} \colon \ 30 \!\!\times\! 5,\! 1,\! 1 \ \big(888 \ \mathsf{params}\big)$
- Norm of weights (with perfect fit): 595

• Large norm, but seemingly fair generalization

Generalization - Norm of weights

- Fully connected residual layers, LeakyReLU
- Layers widths: 30x5,1,1 (888 params)
- Norm of weights (with perfect fit): 595

• Same as previous, new scaling

45

Generalization - Norm of weights

- Fully connected residual layers, LeakyReLU
- Layers widths: 30x5,1,1 (888 params)

• Same as first, new scaling – overfits less than large norm solutions

Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
 Backpropagation
- Vanishing and exploding gradients

4

Flatness of minima

• Consider the following illustration of average loss:

- Depicts test loss as shifted training loss
- Motivation to that flat minima generalize better than sharp

Flatness of minima

• Consider the following illustration of average loss:

- Depicts test loss as shifted training loss
- Motivation to that flat minima generalize better than sharp
- Is there a limitation in considering the average loss only?

47

Generalization from loss landscape

• Training set $\{(x_i, y_i)\}_{i=1}^N$ and training problem:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i;\theta), y_i)$$

 \bullet Test set $\{(\hat{x}_i,\hat{y}_i)\}_{i=1}^{\hat{N}}$, θ generalizes well if test loss small

$$\sum_{i=1}^{\hat{N}} L(m(\hat{x}_i; \theta), \hat{y}_i)$$

ullet By overparameterization, we can for each (\hat{x}_i,\hat{y}_i) find $\hat{ heta}_i$ so that

$$L(m(\hat{x}_i; \theta), \hat{y}_i) = L(m(x_{j_i}; \theta + \hat{\theta}_i), y_{j_i})$$

for all θ given a (similar) (x_{j_i},y_{j_i}) pair in training set

- ullet Evaluate test loss by training loss at shifted points $heta+\hat{ heta}_i^{-1)}$
- ullet Test loss small if original individual loss small at all $heta+\hat{ heta}_i$
- Previous figure used same $\hat{\theta}_i = \hat{\theta}$ for all i

 $^{1)}$ Don't compute in practice, just thought experiment to connect generalization to training loss

48

49

Example

- Can flat (local) minima be different?
- Does one of the following minima generalize better?

49

Example

- Can flat (local) minima be different?
- Does one of the following minima generalize better?

• It depends on individual losses

Example

- Can flat (local) minima be different?
- Does one of the following minima generalize better?

• It depends on individual losses

49

Example

- Can flat (local) minima be different?
- Does one of the following minima generalize better?

• It depends on individual losses

Example

- Can flat (local) minima be different?
- Does one of the following minima generalize better?

• It depends on individual losses

4

Example

- Can flat (local) minima be different?
- Does one of the following minima generalize better?

• It depends on individual losses

Example

- Can flat (local) minima be different?
- Does one of the following minima generalize better?

- \bullet It depends on individual losses
- Let us evaluate test loss by shifting individual training losses

49

Example

- Can flat (local) minima be different?
- Does one of the following minima generalize better?

- It depends on individual losses
- Let us evaluate test loss by shifting individual training losses
- Do not only want flat minima, want individual losses flat at minima

Individually flat minima

- Both flat minima have $\nabla f(\theta) = 0$, but
 - One minima has large individual gradients $\|\nabla f_i(\theta)\|$
 - Other minima has small individual gradients $\|\nabla f_i(\theta)\|$
 - The latter (individually flat minima) seems to generalize better
- ullet Want individually flat minima (with small $\|
 abla f_i(heta) \|$)
 - This implies average flat minima
 - The reverse implication may not hold
 Overparameterized networks:
 - - The reverse implication may often hold at global minima Why? $f(\theta)=0$ and $\nabla f(\theta)=0$ implies $f_i(\theta)=0$ and $\nabla f_i(\theta)=0$

50

52

Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

Training algorithm

- Neural networks often trained using stochastic gradient descent
- · DNN weights are updated via gradients in training
- Gradient of cost is sum of gradients of summands (samples)
- · Gradient of each summand computed using backpropagation

51

53

Jacobians

 \bullet The Jacobian of a function $f:\mathbb{R}^n \to \mathbb{R}^m$ is given by

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

• The Jacobian of a function $f: \mathbb{R}^{p \times n} \to \mathbb{R}$ is given by

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_{11}} & \cdots & \frac{\partial f}{\partial x_{1n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial f}{\partial x_{p1}} & \cdots & \frac{\partial f}{\partial x_{pn}} \end{bmatrix} \in \mathbb{R}^{p \times n}$$

ullet The Jacobian of a function $f:\mathbb{R}^{p imes n} o \mathbb{R}^m$ is at layer j given by

$$\left[\frac{\partial f}{\partial x} \right]_{:,j,:} = \begin{bmatrix} \frac{\partial f_1}{\partial x_{j_1}} & \cdots & \frac{\partial f_1}{\partial x_{j_n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_{j_1}} & \cdots & \frac{\partial f_m}{\partial x_{j_n}} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

the full Jacobian is a 3D tensor in $\mathbb{R}^{m\times p\times n}$

• Backpropagation must be performed per sample

• Based on chain-rule in differentiation

 \bullet Fully connected layers (W full, if not, set elements in W to 0)

Backpropagation

• Backpropagation is reverse mode automatic differentiation

- Activation functions $\sigma_j(v) = (\sigma_j(v_1), \dots, \sigma_j(v_p))$ element-wise (overloading of σ_j notation)
- Weights W_j are matrices, samples x_i and responses y_i are vectors
- No residual connections

Our derivation assumes:

Jacobian vs gradient

ullet The Jacobian of a function $f:\mathbb{R}^n o \mathbb{R}$ is given by

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

ullet The gradient of a function $f:\mathbb{R}^n o \mathbb{R}$ is given by

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

i.e., transpose of Jacobian for $f:\mathbb{R}^n \to \mathbb{R}$

• Chain rule holds for Jacobians:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial x}$$

Jacobian vs gradient - Example

- \bullet Consider differentiable $f:\mathbb{R}^m \to \mathbb{R}$ and $M \in \mathbb{R}^{m \times n}$
- Compute Jacobian of $g = (f \circ M)$ using chain rule:

 - Rewrite as g(x)=f(z) where z=Mx• Compute Jacobian by partial Jacobians $\frac{\partial f}{\partial z}$ and $\frac{\partial z}{\partial x}$:

$$\frac{\partial g}{\partial x} = \frac{\partial g}{\partial z} \frac{\partial z}{\partial x} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial x} = \nabla f(z)^T M = \nabla f(Mx)^T M \in \mathbb{R}^{1 \times n}$$

• Know gradient of $(f\circ M)(x)$ satisfies

$$\nabla (f \circ M)(x) = M^T \nabla f(Mx) \in \mathbb{R}^n$$

which is transpose of Jacobian

56

Backpropagation - Introduce states

• Compute gradient/Jacobian of

$$L(m(x_i;\theta),y_i)$$

w.r.t. $\theta = \{(W_j, b_j)\}_{j=1}^n$, where

$$m(x_i;\theta) = W_n \sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x_i+b_1)+b_2)\cdots)+b_{n-1})+b_n$$

• Rewrite as function with states z_i

$$L(z_{n+1},y_i)$$
 where
$$z_{j+1}=\sigma_j(W_jz_j+b_j) \text{ for } j\in\{1,\dots,n\}$$
 and
$$z_1=x_i$$

where $\sigma_n(u) \equiv u$

57

Graphical representation

Per sample loss function

$$L(z_{n+1},y_i)$$
 where
$$z_{j+1}=\sigma_j(W_jz_j+b_j) \text{ for } j\in\{1,\dots,n\}$$
 and
$$z_1=x_i$$

where $\sigma_n(u) \equiv u$

• Graphical representation

58

Backpropagation - Chain rule

ullet Jacobian of L w.r.t. W_j and b_j can be computed as

$$\begin{split} \frac{\partial L}{\partial W_j} &= \frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial W_j} \\ \frac{\partial L}{\partial b_j} &= \frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial b_j} \end{split}$$

where we mean derivative w.r.t. first argument in ${\cal L}$

• Backpropagation evaluates partial Jacobians as follows

$$\begin{split} \frac{\partial L}{\partial W_j} &= \left(\left(\frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \right) \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \right) \frac{\partial z_{j+1}}{\partial W_j} \\ \frac{\partial L}{\partial b_j} &= \left(\left(\frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \right) \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \right) \frac{\partial z_{j+1}}{\partial b_j} \end{split}$$

59

Backpropagation - Forward and backward pass

- Jacobian of $L(z_{n+1}, y_i)$ w.r.t. z_{n+1} (transpose of gradient)
- Computing Jacobian of $L(z_{n+1},y_i)$ requires z_{n+1} \Rightarrow forward pass: $z_1 = x_i$, $z_{j+1} = \sigma_j(W_j z_j + b_j)$
- Backward pass, store δ_j :

$$\frac{\partial L}{\partial z_{j+1}} = \left(\underbrace{\left(\underbrace{\frac{\partial L}{\partial z_{n+1}}}_{\delta_{n+1}^T} \underbrace{\frac{\partial z_{n+1}}{\partial z_n}} \right) \cdots \underbrace{\frac{\partial z_{j+2}}{\partial z_{j+1}}}_{\delta_{n}^T} \right)}_{\delta_{j+1}^T}$$

Compute

$$\begin{split} \frac{\partial L}{\partial W_j} &= \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial W_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial W_j} \\ \frac{\partial L}{\partial b_j} &= \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial b_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial b_j} \end{split}$$

60

Dimensions

- Let $z_j \in \mathbb{R}^{n_j}$, consequently $W_j \in \mathbb{R}^{n_{j+1} \times n_j}$, $b_j \in \mathbb{R}^{n_{j+1}}$
- Dimensions

$$\frac{\partial L}{\partial W_j} = \left(\underbrace{\left(\underbrace{\frac{\partial L}{\partial z_{n+1}}}_{1 \times n_{n+1}} \underbrace{\frac{\partial z_{n+1}}{\partial z_n}}_{1 \times n_n}\right) \cdots \underbrace{\frac{\partial z_{j+2}}{\partial z_{j+1}}}_{n_{j+2} \times n_{j+1}} \right)}_{1 \times n_j} \underbrace{\frac{\partial z_{j+1}}{\partial W_j}}_{n_{j+1} \times n_{j+1} \times n_j}$$

 $\frac{\partial L}{\partial b_i} = \underbrace{\left(\left(\underbrace{\frac{\partial L}{\partial z_{n+1}}} \frac{\partial z_{n+1}}{\partial z_n} \right) \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \right)}_{n_{j+1} \times n_{j+1}} \underbrace{\frac{\partial z_{j+1}}{\partial b_j}}_{n_{j+1} \times n_{j+1}}$

- Vector matrix multiplies except for in last step
- Multiplication with tensor $\frac{\partial z_{j+1}}{\partial W_i}$ can be simplified
- Backpropagation variables $\delta_j \in \mathbb{R}^{n_j}$ are vectors (not matrices)

Partial Jacobian $\frac{\partial z_{j+1}}{\partial z_j}$

- Recall relation $z_{j+1} = \sigma_j(W_j z_j + b_j)$ and let $v_j = W_j z_j + b_j$
- Chain rule gives

$$\begin{split} \frac{\partial z_{j+1}}{\partial z_j} &= \frac{\partial z_{j+1}}{\partial v_j} \frac{\partial v_j}{\partial z_j} = \mathbf{diag}(\sigma_j'(v_j)) \frac{\partial v_j}{\partial z_j} \\ &= \mathbf{diag}(\sigma_j'(W_j z_j + b_j)) W_j \end{split}$$

where, with abuse of notation (notation overloading)

$$\sigma'_j(u) = \begin{bmatrix} \sigma'_j(u_1) \\ \vdots \\ \sigma'_j(u_{n_{j+1}}) \end{bmatrix}$$

• Reason: $\sigma_j(u) = [\sigma_j(u_1), \dots, \sigma_j(u_{n_{j+1}})]^T$ with $\sigma_j: \mathbb{R}^{n_{j+1}} \to \mathbb{R}^{n_{j+1}}$, gives

$$\frac{d\sigma_j}{du} = \begin{bmatrix} \sigma_j'(u_1) & & \\ & \ddots & \\ & & \sigma_j'(u_{n_{j+1}}) \end{bmatrix} = \mathbf{diag}(\sigma_j'(u))$$

Partial Jacobian $\delta_i^T = \frac{\partial L}{\partial z_i}$

ullet For any vector $\delta_{j+1} \in \mathbb{R}^{n_{j+1} imes 1}$, we have

$$\begin{split} \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial z_j} &= \delta_{j+1}^T \operatorname{\mathbf{diag}}(\sigma_j'(W_j z_j + b_j)) W_j \\ &= (W_j^T (\delta_{j+1}^T \operatorname{\mathbf{diag}}(\sigma_j'(W_j z_j + b_j)))^T)^T \\ &= (W_i^T (\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j)))^T \end{split}$$

where \odot is element-wise (Hadamard) product ullet We have defined $\delta^T_{n+1}=rac{\partial L}{\partial z_{n+1}}$, then

$$\boldsymbol{\delta}_n^T = \frac{\partial L}{\partial z_n} = \boldsymbol{\delta}_{n+1}^T \frac{\partial z_{n+1}}{\partial z_n} = (\underbrace{W_n^T(\delta_{n+1} \odot \sigma_n'(W_n z_n + b_n))}_{\delta_n})^T$$

$$\delta_j^T = \frac{\partial L}{\partial z_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial z_j} = (\underbrace{W_j^T (\delta_{j+1} \odot \sigma_j' (W_j z_j + b_j))}_{\delta_j})^T$$

63

Information needed to compute $\frac{\partial L}{\partial z_i}$

- To compute first Jacobian $\frac{\partial L}{\partial z_n}$, we need $z_n \Rightarrow$ forward pass
- Computing

$$\frac{\partial L}{\partial z_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial z_j} = (W_j^T (\delta_{j+1} \odot \sigma_j' (W_j z_j + b_j)))^T = \delta_j^T$$

is done using a backward pass

$$\delta_i = W_i^T(\delta_{i+1} \odot \sigma_i'(W_i z_i + b_i))$$

ullet All z_j (or $v_j=W_jz_j+b_j$) need to be stored for backward pass

Partial Jacobian $\frac{\partial L}{\partial W_{\perp}}$

· Computed by

$$\frac{\partial L}{\partial W_j} = \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial W_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial W_j}$$

where $z_{j+1}=\sigma_j(v_j)$ and $v_j=W_jz_j+b_j$ • Recall $\frac{\partial z_{j+1}}{\partial W_l}$ is 3D tensor, compute Jacobian w.r.t. row l $(W_j)_l$

$$\delta_{j+1}^T \frac{\partial z_{j+1}}{\partial (W_j)_l} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial v_j} \frac{\partial v_j}{\partial (W_j)_l} = \delta_{j+1}^T \operatorname{\mathbf{diag}}(\sigma_j'(v_j)) \begin{bmatrix} 0 \\ \vdots \\ z_j^T \\ \vdots \\ 0 \end{bmatrix}$$

$$= (\delta_{j+1} \odot \sigma'_j(W_j z_j + b_j))^T \begin{bmatrix} 0 \\ \vdots \\ z_j^T \\ \vdots \\ 0 \end{bmatrix} = (\delta_{j+1} \odot \sigma'_j(W_j z_j + b_j))_l z_j^T$$
65

Partial Jacobian $\frac{\partial L}{\partial W_i}$ cont'd

• Stack Jacobians w.r.t. rows to get full Jacobians

$$\begin{split} \frac{\partial L}{\partial W_j} &= \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial W_j} = \begin{bmatrix} \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial (W_j)_1} \\ \vdots \\ \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial (W_j)_{n_{j+1}}} \end{bmatrix} = \begin{bmatrix} (\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))_1 z_j^T \\ \vdots \\ (\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))_{n_{j+1}} z_j^T \end{bmatrix} \\ &= (\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))_{j} z_j^T \end{split}$$

for all $j \in \{1, \dots, n-1\}$

- \bullet Dimension of result is $n_{j+1}\times n_j,$ which matches W_j
- ullet This is used to update W_i weights in algorithm

66

Partial Jacobian $\frac{\partial L}{\partial b_i}$

- ullet Recall $z_{j+1}=\sigma_j(v_j)$ where $v_j=W_jz_j+b_j$

$$\begin{split} \frac{\partial L}{\partial b_j} &= \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial v_j} \frac{\partial v_j}{\partial b_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial v_j} \frac{\partial v_j}{\partial b_j} = \delta_{j+1}^T \operatorname{\mathbf{diag}}(\sigma_j'(v_j)) \\ &= (\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))^T \end{split}$$

Backpropagation summarized

1. Forward pass: Compute and store z_j (or $v_j = W_j z_j + b_j$):

$$z_{i+1} = \sigma_i(W_i z_i + b_i)$$

where $z_1 = x_i$ and $\sigma_n = \operatorname{Id}$

2. Backward pass:

$$\delta_j = W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))$$

with $\delta_{n+1} = \frac{\partial L}{\partial z_{n+1}}$

3. Weight update Jacobians (used in SGD)

$$\begin{split} \frac{\partial L}{\partial W_j} &= (\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j)) z_j^T \\ \frac{\partial L}{\partial b_j} &= (\delta_{j+1} \odot \sigma_j'(W_j x_j + b_j))^T \end{split}$$

68

Backpropagation - Residual networks

1. Forward pass: Compute and store z_i (or $v_i = W_i z_i + b_i$):

$$z_{j+1} = \sigma_j(W_j z_j + b_j) + z_j$$

where $z_1 = x_i$ and $\sigma_n = \operatorname{Id}$

2. Backward pass:

$$\delta_j = W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j)) + \delta_{j+1}$$

with $\delta_{n+1} = \frac{\partial L}{\partial z_{n+1}}$

3. Weight update Jacobians (used in SGD)

$$\begin{split} \frac{\partial L}{\partial W_j} &= (\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j)) z_j^T \\ \frac{\partial L}{\partial b_j} &= (\delta_{j+1} \odot \sigma_j'(W_j x_j + b_j))^T \end{split}$$

Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights • Generalization - Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

70

Vanishing and exploding gradient problem

- · For some activation functions, gradients can vanish
- For other activation functions, gradients can explode

Vanishing gradient example: Sigmoid

- Assume $||W_j|| \le 1$ for all j and $||\delta_{n+1}|| \le C$
- Maximal derivative of sigmoid (σ) is 0.25

$$\begin{split} \left\| \frac{\partial L}{\partial z_j} \right\| &= \|\delta_j\| = \|W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))\| \le 0.25 \|\delta_{j+1}\| \\ &\le 0.25^{n-j+1} \|\delta_{n+1}\| \le 0.25^{n-j+1} C \end{split}$$

- $\bullet\,$ Hence, as n grows, gradients can become very small for small i
- \bullet In general, vanishing gradient if $\sigma'<1$ everywhere
- Similar reasoning: exploding gradient if $\sigma'>1$ everywhere
- Hence, need $\sigma' = 1$ in important regions

72

Vanishing gradients - Residual networks

• Residual networks with forward pass

$$z_{j+1} = \sigma_j(W_j z_j + b_j) + z_j$$

and backward pass

$$\delta_j = W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j)) + \delta_{j+1}$$

 \bullet Gradients do not vanish in passes despite small σ gain

Examples of activation functions

Activation functions that (partly) avoid vanishing gradients

73

75

Exploding gradient – Example

- ullet Assume L-Lipschitz activation (ReLU, Tanh etc have L=1)
 - Forward pass estimation:

$$\begin{split} \|z_{j+1}\|_2 &= \|\sigma_j(W_jz_j+b_j)\|_2 \leq L\|W_jz_j+b_j\|_2 \leq L(\|W_jz_j\|_2+\|b_j\|_2) \\ &\leq L\|W_j\|_2\|z_j\|_2 + L\|b_j\|_2 \end{split}$$

Backward pass estimation:

$$\begin{split} \|\delta_j\|_2 &= \|W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))\|_2 \\ &\leq \|W_j^T\|_2 \|\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j)\|_2 \\ &\leq L \|W_j\|_2 \|\delta_{j+1}\|_2 \end{split}$$

- ullet If $L \leq 1$, $\|W_j\|_2 \leq 1$ and $\|b_j\|_2$ small, gradients do not explode
- $\bullet \ \ {\rm ReLU} \ \ "average" \ \ L=0.5 \ \ {\rm reduces} \ \ "average \ {\rm estimate}"$
- Tanh reduces "average estimates" more since
 - ullet σ_j -outputs are constrained to (-1,1)
 - "average Lipschitz constant" is smaller

Exploding gradient - Residual network

- $\bullet \ \ {\sf Assume} \ L\text{-Lipschitz activation (ReLU, Tanh have} \ L=1) \\$
 - Forward pass estimation:

$$||z_{j+1}||_2 = ||\sigma_j(W_jz_j + b_j)||_2 + ||z_j||_2 \le (1 + L||W_j||_2)||z_j||_2 + L||b_j||_2$$

Backward pass estimation:

$$\begin{split} \|\delta_j\|_2 &= \|W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))\|_2 + \delta_{j+1} \\ &\leq (1 + L\|W_j\|_2)\|\delta_{j+1}\|_2 \end{split}$$

- Larger estimates than for non-residual networks
- \bullet Activations with $L \leq 1$ to avoid exploding and vanishing gradients:
 - $\alpha \times \text{ReLU}$ with $\alpha \in (0,1)$
 - $\alpha \times \text{Tanh with } \alpha \in (0,1)$

76

Outline

Algorithms and Convergence

Pontus Giselsson

Algorithm overview

- Convergence and convergence rates
- Proving convergence rates

1

2

4

What is an algorithm?

• We are interested in algorithms that solve composite problems

$$\min_{x} \inf f(x) + g(x)$$

- An algorithm:
 - ullet generates a sequence $(x_k)_{k\in\mathbb{N}}$ that hopefully converges to solution
 - often creates next point in sequence according to

$$x_{k+1} = A_k x_k$$

where

- \mathcal{A}_k is a mapping that gives the next point from the current $\mathcal{A}_k = \mathrm{prox}_{\gamma_k g} (I \gamma_k \nabla f)$ for proximal gradient method

Deterministic and stochastic algorithms

• We have deterministic algorithms

$$x_{k+1} = A_k x_k$$

that given initial x_0 will give the same sequence $(x_k)_{k\in\mathbb{N}}$

• We will also see stochastic algorithms that iterate

$$x_{k+1} = A_k(\xi_k)x_k$$

where ξ_k is a random variable that also decides the mapping

- ullet $(x_k)_{k\in\mathbb{N}}$ is a stochastic process, i.e., collection of random variables
- when running the algorithm, we evaluate ξ_k and get a realization
- ullet different realization $(x_k)_{k\in\mathbb{N}}$ every time even if started at same x_0
- Stochastic algorithms useful although problem is deterministic

3

Second-order methods

Optimization algorithm overview

- Algorithms can roughly be divided into the following classes: Second-order methods
 - Quasi second-order methods
 - First-order methods
 - · Stochastic and coordinate-wise first-order methods
- The first three are typically deterministic and the last stochastic
- Cost of computing one iteration decreases down the list

- Solves problems using second-order (Hessian) information
- Requires smooth (twice continuously differentiable) functions
- ullet Example: Newton's method to minimize smooth function f:

$$x_{k+1} = x_k - \gamma_k (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

- · Constraints can be incorporated via barrier functions:
 - Use sequence of smooth constraint barrier functions
 - Make barriers increasingly well approximate constraint set For each barrier, solve smooth problem using Newton's method
 - Resulting scheme called interior point method
- (Can be applied to directly solve primal-dual optimality condition)
- Computational backbone: solving linear systems $O(n^3)$
- Often restricted to small to medium scale problems
- We will cover Newton's method

6

Quasi second-order methods

- · Estimates second-order information from first-order
- Solves problems using estimated second-order information
- Requires smooth (twice continuously differentiable) functions
- ullet Quasi-Newton method for smooth f

$$x_{k+1} = x_k - \gamma_k B_k \nabla f(x_k)$$

where B_k is:

- estimate of Hessian inverse (not Hessian to avoid inverse)
- · cheaply computed from gradient information
- ullet Computational backbone: forming B_k and matrix multiplication
- · Limited memory versions exist with cheaper iterations
- Can solve large-scale smooth problems
- Will briefly look into most common method (BFGS)

First-order methods

- Solves problems using first-order (sub-gradient) information
- Computational primitives: (sub)gradients and proximal operators
- Use gradient if function differentiable, prox if nondifferentiable
- Examples for solving $\underset{\sim}{\operatorname{minimize}} f(x) + g(x)$
 - $\bullet \ \, \hbox{Proximal gradient method (requires smooth} \,\, f \,\, \hbox{since gradient used)}$

$$x_{k+1} = \operatorname{prox}_{\gamma g}(x_k - \gamma \nabla f(x_k))$$

• Douglas-Rachford splitting (no smoothness requirement)

$$z_{k+1} = \frac{1}{2}z_k + \frac{1}{2}(2\text{prox}_{\gamma g} - I)(2\text{prox}_{\gamma f} - I)z_k$$

and $x_k = \mathrm{prox}_{\gamma f}(z_k)$ converges to solution

- · Iteration often cheaper than second-order if function split wisely
- Can solve large-scale problems
- · Will look at proximal gradient method and accelerated version

8

Stochastic and coordinate-wise first-order methods

- Sometimes first-order methods computationally too expensive
- Stochastic gradient methods:
 - Use stochastic approximation of gradient
 - · For finite sum problems, cheaply computed approximation exists
- Coordinate-wise updates:
 - Update only one (or block of) coordinates in every iteration:

 - via direct minimizationvia proximal gradient step
 - Can update coordinates in cyclic fashion
 - Stronger convergence results if random selection of block
 - ullet Efficient if cost of updating one coordinate is 1/n of full update
- Can solve huge scale problems
- Will cover randomized coordinate and stochastic methods

Outline

· Algorithm overview

9

11

- Convergence and convergence rates
- Proving convergence rates

10

Types of convergence

- Let x^{\star} be solution to composite problem and $p^{\star} = f(x^{\star}) + g(x^{\star})$
- We will see convergence of different quantities in different settings
- ullet For deterministic algorithms that generate $(x_k)_{k\in\mathbb{N}}$, we will see
 - Sequence convergence: $x_k \to x^*$
 - Function value convergence: $f(x_k) + g(x_k) \rightarrow p^*$
 - If g=0, gradient norm convergence: $\|\nabla f(x_k)\|_2 \to 0$
- Convergence is stronger as we go up the list
- First two common in convex setting, last in nonconvex

Convergence for stochastic algorithms

- Stochastic algorithms described by stochastic process $(x_k)_{k\in\mathbb{N}}$
- · When algorithm is run, we get realization of stochastic process
- We analyze stochastic process and will see summability, e.g., of:

 - Expected distance to solution: $\sum_{k=0}^{\infty} \mathbb{E}[\|x_k x^*\|_2] < \infty$ Expected function value: $\sum_{k=0}^{\infty} \mathbb{E}[f(x_k) + g(x_k) p^*] < \infty$ If g=0, expected gradient norm: $\sum_{k=0}^{\infty} \mathbb{E}[\|\nabla f(x_k)\|_2^2] < \infty$
- \bullet Sometimes arrive at weaker conclusion, when g=0, that, e.g.,:
 - Expected smallest function value: $\mathbb{E}[\min_{l \in \{0, \dots, k\}} f(x_l) p^{\star}] \to 0$ • Expected smallest gradient norm: $\mathbb{E}[\min_{l \in \{0,...,k\}} \|\nabla f(x_l)\|_2] \to 0$
- · Says what happens with expected value of different quantities

12

Algorithm realizations – Summable case

• Will conclude that sequence of expected values containing, e.g.,:

$$\mathbb{E}[\|x_k - x^\star\|_2] \quad \text{or} \quad \mathbb{E}[f(x_k) + g(x_k) - p^\star] \quad \text{or} \quad \mathbb{E}[\|\nabla f(x_k)\|_2]$$

is summable, where all quantities are nonnegative

- What happens with the actual algorithm realizations?
- We can make conclusions by the following result: If
 - $(Z_k)_{k\in\mathbb{N}}$ is a stochastic process with $Z_k\geq 0$ • the sequence $\{\mathbb{E}[Z_k]\}_{k\in\mathbb{N}}$ is summable: $\sum_{k=0}^\infty \mathbb{E}[Z_k] < \infty$

then almost sure convergence to 0:

$$P(\lim_{k\to\infty} Z_k = 0) = 1$$

i.e., convergence to 0 with probability 1

Algorithm realizations – Convergent case

• Will conclude that sequence of expected values containing, e.g.,:

$$\mathbb{E}[\min_{l \in \{0,...,k\}} f(x_l) - p^*]$$
 or $\mathbb{E}[\min_{l \in \{0,...,k\}} \|\nabla f(x_l)\|_2]$

converges to 0, where all quantities are nonnegative

- What happens with the actual algorithm realizations?
- · We can make conclusions by the following result: If
 - $(Z_k)_{k\in\mathbb{N}}$ is a stochastic process with $Z_k\geq 0$
- ullet the expected value $\mathbb{E}[Z_k] o 0$ as $k o \infty$

then convergence to 0 in probability; for all $\epsilon>0$

$$\lim_{k \to \infty} P(Z_k > \epsilon) = 0$$

which is weaker than almost sure convergence to 0

Convergence rates

- We have only talked about convergence, not convergence rate
- Rates indicate how fast (in iterations) algorithm reaches solution
- · Typically divided into:
 - Sublinear rates
 - · Linear rates (also called geometric rates)
 - Quadratic rates (or more generally superlinear rates)
- Sublinear rates slowest, quadratic rates fastest
- · Linear rates further divided into Q-linear and R-linear
- · Quadratic rates further divided into Q-quadratic and R-quadratic

Linear rates

• A Q-linear rate with factor $\rho \in [0,1)$ can be:

$$f(x_{k+1}) + g(x_{k+1}) - p^* \le \rho(f(x_k) + g(x_k) - p^*)$$
$$\mathbb{E}[\|x_{k+1} - x^*\|_2] \le \rho \mathbb{E}[\|x_k - x^*\|_2]$$

• An R-linear rate with factor $\rho \in [0,1)$ and some C>0 can be:

$$||x_k - x^\star||_2 \le \rho^k C$$

this is implied by Q-linear rate and has exponential decrease

- Linear rate is superlinear if $\rho = \rho_k$ and $\rho_k \to 0$ as $k \to \infty$
- Examples:
 - (Accelerated) proximal gradient with strongly convex cost
 - Randomized coordinate descent with strongly convex cost
 - BFGS has local superlinear with strongly convex cost

· but SGD with strongly convex cost gives sublinear rate

16

Linear rates - Comparison

• Different rates in log-lin plot

• Called linear rate since linear in log-lin plot

Quadratic rates

• Q-quadratic rate with factor $\rho \in [0,1)$ can be:

$$f(x_{k+1}) + g(x_{k+1}) - p^* \le \rho (f(x_k) + g(x_k) - p^*)^2$$
$$\|x_{k+1} - x^*\|_2 \le \rho \|x - x^*\|_2^2$$

• R-quadratic rate with factor $\rho \in [0,1)$ and some C>0 can be:

$$||x_k - x^\star||_2 \le \rho^{2^k} C$$

• Quadratic (ρ^{2^k}) vs linear (ρ^k) rate with factor $\rho = 0.9$:

• Example: Locally for Newton's method with strongly convex cost

Quadratic rates - Comparison

• Different rates in log-lin scale

• Quadratic convergence is superlinear

Sublinear rates

- · A rate is sublinear if it is slower than linear
- · A sublinear rate can, for instance, be of the form

$$f(x_k) + g(x_k) - p^* \le \frac{C}{\psi(k)}$$
$$\|x_{k+1} - x_k\|_2^2 \le \frac{C}{\psi(k)}$$
$$\min_{k=0,\dots,k} \mathbb{E}[\|\nabla f(x_l)\|_2^2] \le \frac{C}{\psi(k)}$$

where C>0 and ψ decides how fast it decreases, e.g.,

- $\begin{array}{l} \bullet \ \psi(k) = \log k \colon \text{Stochastic gradient descent} \ \gamma_k = c/k \\ \bullet \ \psi(k) = \sqrt{k} \colon \text{Stochastic gradient descent: optimal} \ \gamma_k \\ \bullet \ \psi(k) = k \colon \text{Proximal gradient, coordinate proximal gradient} \\ \bullet \ \psi(k) = k^2 \colon \text{Accelerated proximal gradient method} \\ \end{array}$

with improved rate further down the list

- We say that the rate is $O(\frac{1}{\psi(k)})$ for the different ψ
- $\bullet\,$ To be sublinear ψ has slower than exponential growth

20

Sublinear rates - Comparison

• Different rates on log-lin scale

• Many iterations may be needed for high accuracy

Rate vs iteration cost

- · Consider these classes of algorithms
 - Second-order methods
 - · Quasi second-order methods
 - First-order methods
 - Stochastic and coordinate-wise first-order methods
- ullet Rate deteriorates and iterations increase as we go down the list ψ
- \bullet Iteration cost increases as we go up the list \Uparrow
- Performance is roughly (# iterations)×(iteration cost)
- This gives a tradeoff when selecting algorithm
- Rough advise for problem size: small (↑) medium (↑↓) large (↓)

22

Outline

- Algorithm overview
- Convergence and convergence rates
- Proving convergence rates

Proving convergence rates

- To prove a convergence rate typically requires
 - Using inequalities that describe problem class
 Using algorithm definition equalities (or inclusions)
 - Combine these to a form so that convergence can be concluded
- Linear and quadratic rates proofs conceptually straightforward
- Sublinear rates implicit via a Lyapunov inequality

23

17

19

Proving linear or quadratic rates

• If we suspect linear or quadratic convergence for $V_k \geq 0$:

$$V_{k+1} \le \rho V_k^p$$

where $\rho \in [0,1)$ and p=1 or p=2 and V_k can, e.g., be

$$V_k = \|x_k - x^*\|_2$$
 or $V_k = f(x_k) + g(x_k) - p^*$ or $V_k = \|\nabla f(x_k)\|_2$

- ullet Can prove by starting with V_{k+1} (or V_{k+1}^2) and continue using
 - function class inequalities
 - algorithm equalities
 - · propeties of norms

Sublinear convergence - Lyapunov inequality

- ullet Assume we want to show sublinear convergence of some $R_k \geq 0$
- This typically requires finding a Lyapunov inequality:

$$V_{k+1} \le V_k + W_k - R_k$$

where

- $(V_k)_{k\in\mathbb{N}}$, $(W_k)_{k\in\mathbb{N}}$, and $(R_k)_{k\in\mathbb{N}}$ are nonnegative real numbers $(W_k)_{k\in\mathbb{N}}$ is summable, i.e., $\overline{W}:=\sum_{k=0}^{\infty}W_k<\infty$
- · Such a Lyapunov inequality can be found by using
 - · function class inequalities
 - algorithm equalities
 - · propeties of norms

25

27

26

Lyapunov inequality consequences

• From the Lyapunov inequality:

$$V_{k+1} \le V_k + W_k - R_k$$

we can conclude that

- ullet V_k is nonincreasing if all $W_k=0$
- V_k converges as $k \to \infty$ (will not prove)
- \bullet Recursively applying the inequality for $l \in \{k, \dots, 0\}$ gives

$$V_{k+1} \leq V_0 + \sum_{l=0}^k W_l - \sum_{l=0}^k R_l \leq V_0 + \overline{W} - \sum_{l=0}^k R_l$$

where \overline{W} is infinite sum of W_k , this implies

$$\sum_{l=0}^{k} R_l \le V_0 - V_{k+1} + \sum_{l=0}^{k} W_l \le V_0 + \sum_{l=0}^{k} W_l \le V_0 + \overline{W}$$

- conclude that $R_k \to 0$ as $k \to \infty$ since $R_k \ge 0$
- derive sublinear rates of convergence for R_k towards 0

Concluding sublinear convergence

· Lyapunov inequality consequence restated

$$\sum_{l=0}^{k} R_l \le V_0 + \sum_{l=0}^{k} W_l \le V_0 + \overline{W}$$

- We can derive sublinear convergence for

 - Best $R_k\colon (k+1)\min_{l\in\{0,\dots,k\}}R_l\leq \sum_{l=0}^kR_l$ Last R_k (if R_k decreasing): $(k+1)R_k\leq \sum_{l=0}^kR_l$ Average $R_k\colon \bar{R}_k=\frac{1}{k+1}\sum_{l=0}^kR_l$
- ullet Let \hat{R}_k be any of these quantities, and we have

$$\hat{R}_k \le \frac{\sum_{l=0}^k R_l}{k+1} \le \frac{V_0 + \overline{W}}{k+1}$$

which shows a O(1/k) sublinear converger

28

Deriving other than O(1/k) **convergence (1/3)**

• Other rates can be derived from a modified Lyapunov inequality:

$$V_{k+1} \le V_k + W_k - \lambda_k R_k$$

with $\lambda_k > 0$ when we are interested in convergence of R_k , then

$$\sum_{l=0}^{k} \lambda_l R_l \le V_0 + \sum_{l=0}^{k} W_l \le V_0 + \overline{W}$$

• We have $R_k \to 0$ as $k \to \infty$ if, e.g., $\sum_{l=0}^{\infty} \lambda_l = \infty$

Deriving other than O(1/k) convergence (2/3)

- $\begin{array}{l} \bullet \ \ \text{Restating the consequence:} \ \sum_{l=0}^k \lambda_l R_l \leq V_0 + \overline{W} \\ \bullet \ \ \text{We can derive sublinear convergence for} \\ \bullet \ \ \text{Best} \ R_k \colon \min_{l \in \{0, \dots, k\}} R_l \sum_{l=0}^k \lambda_l \leq \sum_{l=0}^k \lambda_l R_l \\ \bullet \ \ \text{Last} \ R_k \ \ (\text{if} \ R_k \ \ \text{decreasing}) \colon R_k \sum_{l=0}^k \lambda_l \sum_{l=0}^k \lambda_l \sum_{l=0}^k \lambda_l R_l \\ \bullet \ \ \text{Weighted average} \ R_k \colon \ \bar{R}_k = \frac{1}{\sum_{l=0}^k \lambda_l} \sum_{l=0}^k \lambda_l R_l \\ \end{array}$

- ullet Let \hat{R}_k be any of these quantities, and we have

$$\hat{R}_k \le \frac{\sum_{l=0}^k R_l}{\sum_{l=0}^k \lambda_l} \le \frac{V_0 + \overline{W}}{\sum_{l=0}^k \lambda_l}$$

29

Deriving other than O(1/k) **convergence (3/3)**

• How to get a rate out of:

$$\hat{R}_k \le \frac{V_0 + \overline{W}}{\sum_{l=0}^k \lambda_l}$$

• Assume $\psi(k) \leq \sum_{l=0}^k \lambda_l$, then $\psi(k)$ decides rate:

$$\hat{R}_k \le \frac{\sum_{l=0}^k R_l}{\sum_{l=0}^k \lambda_l} \le \frac{V_0 + \overline{W}}{\psi(k)}$$

which gives a $O(\frac{1}{\psi(k)})$ rate

- If $\lambda_k=c$ is constant: $\psi(k)=c(k+1)$ and we have O(1/k) rate If λ_k is decreasing: slower rate than O(1/k)
- ullet If λ_k is increasing: faster rate than O(1/k)

Estimating ψ via integrals

• Assume that $\lambda_k = \phi(k)$, then $\psi(k) \leq \sum_{l=0}^k \phi(l)$ and

$$\hat{R}_k \leq \frac{\sum_{l=0}^k R_l}{\sum_{l=0}^k \phi(l)} \leq \frac{V_0 + \overline{W}}{\psi(k)}$$

- ullet To estimate ψ , we use the integral inequalities
 - \bullet for decreasing nonnegative ϕ

$$\int_{t=0}^{k} \phi(t)dt + \phi(k) \le \sum_{l=0}^{k} \phi(l) \le \int_{t=0}^{k} \phi(t)dt + \phi(0)$$

• for increasing nonnegative ϕ :

$$\int_{t=0}^{k} \phi(t)dt + \phi(0) \le \sum_{l=0}^{k} \phi(l) \le \int_{t=0}^{k} \phi(t)dt + \phi(k)$$

• Remove $\phi(k), \phi(0) \geq 0$ from the lower bounds and use estimate:

$$\psi(k) = \int_{t=0}^k \phi(t) dt \le \sum_{l=0}^k \phi(l)$$

32

Sublinear rate examples

• For Lyapunov inequality $V_{k+1} \leq V_k + W_k - \lambda_k R_k$, we get:

$$\hat{R}_k \leq \frac{V_0 + \overline{W}}{\psi(k)} \qquad \text{where} \qquad \lambda_k = \phi(k) \text{ and } \psi(k) = \int_{t=0}^k \phi(t) dt$$

 \bullet Let us quantify the rate ψ in a few examples:

Two examples that are slower than
$$O(1/k)$$
:

• $\lambda_k = \phi(k) = c/(k+1)$ gives slow $O(\frac{1}{\log k})$ rate:

$$\psi(k) = \int_{t=0}^k \frac{c}{t+1} dt = c[\log(t+1)]_{t=0}^k = c\log(k+1)$$

• $\lambda_k=\phi(k)=c/(k+1)^\alpha$ for $\alpha\in(0,1)$, gives faster $O(\frac{1}{k^{1-\alpha}})$ rate:

$$\psi(k) = \int_{t=0}^{k} \frac{c}{(t+1)^{\alpha}} dt = c \left[\frac{(t+1)^{1-\alpha}}{(1-\alpha)} \right]_{t=0}^{k} = \frac{c}{1-\alpha} ((k+1)^{1-\alpha} - 1)$$

 $\bullet \ \ \, \text{An example that is faster than} \ \, O(1/k) \\ \bullet \ \ \, \lambda_k = \phi(k) = c(k+1) \ \, \text{gives} \ \, O(\frac{1}{k^2}) \ \, \text{rate:}$

$$\psi(k) = \int_{t=0}^{k} c(t+1)dt = c\left[\frac{1}{2}(t+1)^{2}\right]_{t=0}^{k} = \frac{c}{2}((k+1)^{2} - 1)$$

Stochastic setting and law of total expectation

• In the stochastic setting, we analyze the stochastic process

$$x_{k+1} = A_k(\xi_k)x_k$$

• We will look for inequalities of the form

$$\mathbb{E}[V_{k+1}|x_k] \le \mathbb{E}[V_k|x_k] + \mathbb{E}[W_k|x_k] - \lambda_k \mathbb{E}[R_k|x_k]$$

to see what happens in one step given x_k (but not given ξ_k)

• We use law of total expectation $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$ to get

$$\mathbb{E}[V_{k+1}] \le \mathbb{E}[V_k] + \mathbb{E}[W_k] - \lambda_k \mathbb{E}[R_k]$$

which is a Lyapunov inequality

ullet We can draw rate conclusions, as we did before, now for $\mathbb{E}[R_k]$

• For realizations we can say:

• If $\mathbb{E}[R_k]$ is summable, then $R_k o 0$ almost surely

• If $\mathbb{E}[R_k] \to 0$, then $R_k \to 0$ in probability

34

Rates in stochastic setting

• Lyapunov inequality $\mathbb{E}[V_{k+1}] \leq \mathbb{E}[V_k] + \mathbb{E}[W_k] - \lambda_k \mathbb{E}[R_k]$ implies:

$$\sum_{l=0}^k \lambda_l \mathbb{E}[R_l] \leq V_0 + \sum_{l=0}^\infty \mathbb{E}[W_l] \leq V_0 + \bar{W}$$

• Same procedure as before gives sublinear rates for

• Best $\mathbb{E}[R_k]$: $\min_{l \in \{0, \dots, k\}} \mathbb{E}[R_l] \sum_{l=0}^k \lambda_l \le \sum_{l=0}^k \lambda_l \mathbb{E}[R_l]$ • Last $\mathbb{E}[R_k]$ (if $\mathbb{E}[R_k]$ decreasing): $\mathbb{E}[R_k] \sum_{l=0}^k \lambda_l \le \sum_{l=0}^k \lambda_l \mathbb{E}[R_l]$ • Weighted average: $\mathbb{E}[\bar{R}_k] = \frac{1}{\sum_{l=0}^k \lambda_l} \sum_{l=0}^k \lambda_l \mathbb{E}[R_l]$ • Jensen's inequality for concave \min_l in best residual reads

$$\mathbb{E}[\min_{l \in \{0,\dots,k\}} R_l] \le \min_{l \in \{0,\dots,k\}} \mathbb{E}[R_l]$$

ullet Let \hat{R}_k be any of the above quantities, and we have

$$\mathbb{E}[\hat{R}_k] \le \frac{V_0 + \bar{W}}{\sum_{l=0}^k \lambda_l}$$

Outline

Proximal Gradient Method

Pontus Giselsson

- · A fundamental inequality
- Nonconvex setting
- Convex setting
- Strongly convex setting
- Backtracking
- · Stopping conditions
- · Accelerated gradient method
- Scaling

1

3

5

Proximal gradient method

• We consider composite optimization problems of the form

$$\min_{x} \inf f(x) + g(x)$$

• The proximal gradient method is

$$\begin{split} x_{k+1} &= \operatorname*{argmin}_y \left(f(x_k) + \nabla f(x_k)^T (y - x_k) + \frac{1}{2\gamma_k} \|y - x_k\|_2^2 + g(y) \right) \\ &= \operatorname*{argmin}_y \left(g(y) + \frac{1}{2\gamma_k} \|y - (x_k - \gamma_k \nabla f(x_k))\|_2^2 \right) \\ &= \operatorname*{prox}_{\gamma_k g} (x_k - \gamma_k \nabla f(x_k)) \end{split}$$

Proximal gradient - Optimality condition

• Proximal gradient iteration is:

$$\begin{aligned} x_{k+1} &= \operatorname{prox}_{\gamma_k g}(x_k - \gamma_k \nabla f(x_k)) \\ &= \underset{y}{\operatorname{argmin}} (g(y) + \underbrace{\frac{1}{2\gamma_k} \|y - (x_k - \gamma_k \nabla f(x_k))\|_2^2}_{h(y)}) \end{aligned}$$

where x_{k+1} is unique due to strong convexity of h

• Fermat's rule gives, since g convex, optimality condition:

$$\begin{aligned} 0 &\in \partial g(x_{k+1}) + \partial h(x_{k+1}) \\ &= \partial g(x_{k+1}) + \gamma_k^{-1} (x_{k+1} - (x_k - \gamma_k \nabla f(x_k))) \end{aligned}$$

since h differentiable

• A consequence is that $\partial g(x_{k+1})$ is nonempty

4

2

Proximal gradient method - Convergence rates

- We will analyze proximal gradient method in different settings:
 - Nonconvex
 - ullet O(1/k) convergence for squared residual
 - Convex
 - ullet O(1/k) convergence for function values
 - Strongly convex
 - · Linear convergence in distance to solution
- First two rates based on a fundamental inequality for the method

Assumptions for fundamental inequality

- (i) $f:\mathbb{R}^n o \mathbb{R}$ is continuously differentiable (not necessarily convex)
- (ii) For every x_k and x_{k+1} there exists $\beta_k \in [\eta, \eta^{-1}]$, $\eta \in (0, 1]$:

$$f(x_{k+1}) \le f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} ||x_k - x_{k+1}||_2^2$$

where β_k is a sort of local Lipschitz constant

- (iii) $g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is closed convex
- (iv) A minimizer x^{\star} exists and $p^{\star} = f(x^{\star}) + g(x^{\star})$ is optimal value
- (v) Proximal gradient method parameters $\gamma_k > 0$
- Assumption (ii) satisfied with $\beta_k \geq \beta$ if f is β -smooth
- · Assumptions will be strengthened later

6

8

A fundamental inequality

For all $z \in \mathbb{R}^n$, the proximal gradient method satisfies

$$\begin{split} f(x_{k+1}) + g(x_{k+1}) &\leq f(x_k) + \nabla f(x_k)^T (z - x_k) - \frac{\gamma_k^{-1} - \beta_k}{2} \|x_{k+1} - x_k\|_2^2 \\ &+ g(z) + \frac{1}{2\gamma_k} (\|x_k - z\|_2^2 - \|x_{k+1} - z\|_2^2) \end{split}$$
 where $x_{k+1} = \text{prox}_{\gamma_k g}(x_k - \gamma_k \nabla f(x_k))$

A fundamental inequality – Proof (1/2)

- (a) Upper bound assumption on f, i.e., Assumption (ii) (b) Prox optimality condition: There exists $s_{k+1}\in\partial g(x_{k+1})$

$$0 = s_{k+1} + \gamma_k^{-1}(x_{k+1} - (x_k - \gamma_k \nabla f(x_k)))$$

(c) Subgradient definition: $\forall z, g(z) \geq g(x_{k+1}) + s_{k+1}^T(z - x_{k+1})$

$$\begin{split} f(x_{k+1}) + g(x_{k+1}) \\ &\stackrel{(a)}{\leq} f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} \|x_{k+1} - x_k\|_2^2 + g(x_{k+1}) \\ &\stackrel{(c)}{\leq} f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} \|x_{k+1} - x_k\|_2^2 + g(z) \\ &- s_{k+1}^T (z - x_{k+1}) \\ &\stackrel{(b)}{=} f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} \|x_{k+1} - x_k\|_2^2 + g(z) \\ &+ \gamma_k^{-1} (x_{k+1} - (x_k - \gamma_k \nabla f(x_k)))^T (z - x_{k+1}) \\ &= f(x_k) + \nabla f(x_k)^T (z - x_k) + \frac{\beta_k}{2} \|x_{k+1} - x_k\|_2^2 + g(z) \\ &+ \gamma_k^{-1} (x_{k+1} - x_k)^T (z - x_{k+1}) \end{split}$$

A fundamental inequality - Proof (2/2)

• The proof continues by using the equality

$$(x_{k+1} - x_k)^T (z - x_{k+1})$$

$$= \frac{1}{2} (\|x_k - z\|_2^2 - \|x_{k+1} - z\|_2^2 - \|x_{k+1} - x_k\|_2^2)$$

· Applying to previous inequality gives

$$\begin{split} f(x_{k+1}) + g(x_{k+1}) \\ & \leq f(x_k) + \nabla f(x_k)^T (z - x_k) + \frac{\beta_k}{2} \|x_{k+1} - x_k\|_2^2 + g(z) \\ & + \gamma_k^{-1} (x_{k+1} - x_k)^T (z - x_{k+1}) \\ & = f(x_k) + \nabla f(x_k)^T (z - x_k) + \frac{\beta_k}{2} \|x_{k+1} - x_k\|_2^2 + g(z) \\ & + \frac{1}{2\gamma_k} (\|x_k - z\|_2^2 - \|x_{k+1} - z\|_2^2 - \|x_k - x_{k+1}\|_2^2) \end{split}$$

which after rearrangement gives the fundamental inequality

Outline

- A fundamental inequality
- Nonconvex setting
- Convex setting
- Strongly convex setting
- Backtracking
- · Stopping conditions
- · Accelerated gradient method
- Scaling

10

Nonconvex setting

• We will analyze the proximal gradient method

$$x_{k+1} = \text{prox}_{\gamma_k g}(x_k - \gamma_k \nabla f(x_k))$$

in a nonconvex setting for solving

minimize
$$f(x) + g(x)$$

- Will show sublinear O(1/k) convergence
- Analysis based on A fundamental inequality

Nonconvex setting - Assumptions

- (i) $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable (not necessarily convex)
- (ii) For every x_k and x_{k+1} there exists $\beta_k \in [\eta, \eta^{-1}]$, $\eta \in (0, 1]$:

$$f(x_{k+1}) \le f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} ||x_k - x_{k+1}||_2^2$$

where β_k is a sort of local Lipschitz constant

- (iii) $g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is closed convex
- $(iv)\,$ A minimizer x^\star exists and $p^\star = f(x^\star) + g(x^\star)$ is optimal value
- (v) Algorithm parameters $\gamma_k \in [\epsilon, \frac{2}{\beta_k} \epsilon]$, where $\epsilon > 0$
- Differs from assumptions for fundamental inequality only in (v)
- Assumption (ii) satisfied with $\beta_k \geq \beta$ if f is β -smooth

11

13

9

Nonconvex setting – Analysis

• Use fundamental inequality

$$f(x_{k+1}) + g(x_{k+1}) \le f(x_k) + \nabla f(x_k)^T (z - x_k) - \frac{\gamma_k^{-1} - \beta_k}{2} ||x_{k+1} - x_k||_2^2 + g(z) + \frac{1}{2\gamma_k} (||x_k - z||_2^2 - ||x_{k+1} - z||_2^2)$$

• Set $z = x_k$ to get

$$f(x_{k+1}) + g(x_{k+1}) \le f(x_k) + g(x_k) - (\gamma_k^{-1} - \frac{\beta_k}{2}) ||x_{k+1} - x_k||_2^2$$

Step-size requirements

- ullet Step-sizes γ_k should be restricted for inequality to be useful: $f(x_{k+1}) + g(x_{k+1}) \le f(x_k) + g(x_k) - (\gamma_k^{-1} - \frac{\beta_k}{2}) ||x_{k+1} - x_k||_2^2$
- $\begin{array}{l} \bullet \ \ \text{Requirements} \ \beta_k \in [\eta, \eta^{-1}] \ \text{and} \ \gamma_k \in [\epsilon, \frac{2}{\beta_k} \epsilon] : \\ \bullet \ \ \text{upper bound} \ \gamma_k \leq \frac{2}{\beta_k} \epsilon \ \text{can be written as} \\ \end{array}$

$$\gamma_k \leq \frac{2}{\beta_k + 2\delta_k} \qquad \text{where} \qquad \delta_k = \frac{\beta_k \epsilon}{2\left(\frac{2}{\beta_k} - \epsilon\right)} \geq \frac{\beta_k^2 \epsilon}{4} \geq \frac{\eta^2 \epsilon}{4} > 0$$

since upper bound $\beta_k \le \eta^{-1}$ gives $\frac{2}{\beta_k} - \epsilon \ge 2\eta - \epsilon > 0$ and $\epsilon > 0$

• Inverting upper step-size bound and letting $\delta:=\frac{\eta^2\epsilon}{4}\leq \delta_k$:

$$\gamma_k^{-1} \geq \tfrac{\beta_k + 2\delta_k}{2} \geq \tfrac{\beta_k}{2} + \delta \qquad \Rightarrow \qquad \gamma_k^{-1} - \tfrac{\beta_k}{2} \geq \delta > 0$$

• This implies, by subtracting p^\star from both sides to have $V_k \geq 0$,

$$\underbrace{f(x_{k+1}) + g(x_{k+1}) - p^{\star}}_{V_{k-1}} \leq \underbrace{f(x_k) + g(x_k) - p^{\star}}_{V_k} - \underbrace{\delta ||x_{k+1} - x_k||_2^2}_{R_k}$$

where bounds on γ_k imply that all R_k are nonnegative

14

12

Lyapunov inequality consequences

• Restating Lyapunov inequality

$$\underbrace{f(x_{k+1}) + g(x_{k+1}) - p^{\star}}_{V_{k+1}} \leq \underbrace{f(x_k) + g(x_k) - p^{\star}}_{V_k} - \underbrace{\delta \|x_{k+1} - x_k\|_2^2}_{R_k}$$

- Consequences:
 - Function value is decreasing sequence (may not converge to p^*)
 - Fixed-point residual converges to 0 as $k \to \infty$:

$$||x_{k+1} - x_k||_2 = ||\text{prox}_{\gamma_k q}(x_k - \gamma_k \nabla f(x_k)) - x_k||_2 \to 0$$

• Best fixed-point residual norm square converges as O(1/k):

$$\min_{i \in \{0, \dots, k\}} \|x_{i+1} - x_i\|_2^2 \le \frac{f(x_0) + g(x_0) - p^*}{\delta(k+1)}$$

Lyapunov inequality consequences – g = 0

• For g=0, then $x_{k+1}=x_k-\gamma_k\nabla f(x_k)$ and

$$||x_{k+1} - x_k||_2 = \gamma_k ||\nabla f(x_k)||_2$$
 and $R_k = \delta \gamma_k^2 ||\nabla f(x_k)||_2^2$

- Lyapunov inequality consequences in this setting:
 - Gradient converges to 0 (since $\gamma_k \geq \epsilon$): $\|\nabla f(x_k)\|_2 \to 0$ Smallest gradient norm square converges as:

$$\min_{i \in \{0, \dots, k\}} \|\nabla f(x_i)\|_2^2 \le \frac{f(x_0) - p^*}{\delta \sum_{i=0}^k \gamma_i^2}$$

• If, in addition, f is β -smooth and $\gamma_k = \frac{1}{\beta}$

$$\min_{i \in \{0, \dots, k\}} \|\nabla f(x_i)\|_2^2 \le \frac{2\beta(f(x_0) - p^*)}{k+1}$$

since then $\beta_k=\beta$ and $\gamma_k^{-1}-\frac{\beta_k}{2}=\frac{\beta}{2}=\delta>0$

• So, will approach local maximum, minimum, or saddle-point

16

Fixed-point residual convergence - Implication

$$\partial g(x_{k+1}) + \nabla f(x_k) \ni \gamma_k^{-1}(x_k - x_{k+1}) \to 0$$

$$\partial g(x_{k+1}) + \nabla f(x_{k+1}) \ni \underbrace{\gamma_k^{-1}(x_k - x_{k+1}) + \nabla f(x_{k+1}) - \nabla f(x_k)}_{u_k} \to 0$$

where $u_k o 0$ is concluded by continuity of ∇f

Outline

- A fundamental inequality
- Nonconvex setting
- Convex setting
- Strongly convex setting
- Backtracking
- · Stopping conditions
- · Accelerated gradient method
- Scaling

17

19

18

Convex setting

• We will analyze the proximal gradient method

$$x_{k+1} = \text{prox}_{\gamma_k g}(x_k - \gamma_k \nabla f(x_k))$$

in the convex setting for solving

minimize
$$f(x) + g(x)$$

- Will show sublinear O(1/k) convergence for function values
- Analysis based on A fundamental inequality

Convex setting - Assumptions

- (i) $f:\mathbb{R}^n o \mathbb{R}$ is continuously differentiable and convex
- (ii) For every x_k and x_{k+1} there exists $\beta_k \in [\eta, \eta^{-1}], \eta \in (0, 1]$:

$$f(x_{k+1}) \le f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} ||x_k - x_{k+1}||_2^2$$

where β_k is a sort of local Lipschitz constant

- $(iii) \ g: \mathbb{R}^n o \mathbb{R} \cup \{\infty\} \ \text{is closed convex}$
- (iv) A minimizer x^{\star} exists and $p^{\star} = f(x^{\star}) + g(x^{\star})$ is optimal value
- (v) Algorithm parameters $\gamma_k \in [\epsilon, \frac{2}{\beta_k} \epsilon]$, where $\epsilon > 0$
- · Assumptions as for fundamental inequality plus
 - convexity of f
 - ullet restricted step-size parameters γ_k (as in nonconvex setting)
- Assumption (ii) satisfied with $\beta_k \geq \beta$ if f is β -smooth

20

Convex setting - Analysis

 \bullet Use fundamental inequality with $z=x^{\star},$ where x^{\star} is solution

$$\begin{split} f(x_{k+1}) + g(x_{k+1}) &\leq f(x_k) + \nabla f(x_k)^T (x^\star - x_k) \\ &\qquad - \frac{\gamma_k^{-1} - \beta_k}{2} \|x_{k+1} - x_k\|_2^2 + g(x^\star) \\ &\qquad + \frac{1}{2\gamma_k} (\|x_k - x^\star\|_2^2 - \|x_{k+1} - x^\star\|_2^2) \end{split}$$

ullet and convexity of f

$$f(x^*) \ge f(x_k) + \nabla f(x_k)^T (x^* - x_k)$$

• This gives

• Consequences:

$$f(x_{k+1}) + g(x_{k+1}) \le f(x^*) - \frac{\gamma_k^{-1} - \beta_k}{2} ||x_{k+1} - x_k||_2^2 + g(x^*) + \frac{1}{2\gamma_k} (||x_k - x^*||_2^2 - ||x_{k+1} - x^*||_2^2)$$

which, by multiplying by $2\gamma_k$ and using $p^\star = f(x^\star) + g(x^\star)$, gives

Short step-sizes

 $\underbrace{ \frac{\|x_{k+1} - x^{\star}\|_{2}^{2}}{V_{k+1}}}_{V_{k+1}} \leq \underbrace{ \frac{\|x_{k} - x^{\star}\|_{2}^{2}}{V_{k}}}_{-2\gamma_{k}} \underbrace{ \left(f(x_{k+1}) + g(x_{k+1}) - p^{\star}\right)}_{R_{k}}$

 $f(x_{k+1}) + g(x_{k+1}) - p^* \le \frac{\|x_0 - x^*\|_2^2}{2\sum_{i=0}^k \gamma_i}$

 $f(x_{k+1}) + g(x_{k+1}) - p^* \le \frac{\beta ||x_0 - x^*||_2^2}{2(k+1)}$

• For step-sizes $\gamma_k \in [\epsilon, \frac{1}{\beta_k}]$, the Lyapunov inequality implies:

where we have used $W_k = 0$ (which is OK since $W_k \leq 0$) • Nonconvex analysis says function value decreases in every iteration

• Distance to solution $\|x_k - x^\star\|_2$ converges as $k \to \infty$ • Function value decreases to optimal function value as:

if f is β -smooth and $\gamma_k=\frac{1}{\beta}$, then converges as O(1/k):

$$\begin{aligned} \|x_{k+1} - x^{\star}\|_{2}^{2} &\leq \|x_{k} - x^{\star}\|_{2}^{2} + (\beta_{k}\gamma_{k} - 1)\|x_{k+1} - x_{k}\|_{2}^{2} \\ &- 2\gamma_{k}(f(x_{k+1}) + g(x_{k+1}) - p^{\star}) \end{aligned}$$

Lyapunov inequality - Convex setting

· The last inequality on previous slide is Lyapunov inequality

$$\underbrace{\frac{\|x_{k+1} - x^*\|_2^2}{V_{k+1}}} \le \underbrace{\frac{\|x_k - x^*\|_2^2}{V_k} + \underbrace{(\beta_k \gamma_k - 1)\|x_{k+1} - x_k\|_2^2}_{W_k} - 2\gamma_k \underbrace{(f(x_{k+1}) + g(x_{k+1}) - p^*)}_{R_k}$$

- Will divide analysis two cases: Short and long step-sizes

 - Step-sizes $\gamma_k \in [\epsilon, \frac{1}{\beta_k}]$: gives $\beta_k \gamma_k \leq 1$ and $W_k \leq 0$ Step-sizes $\gamma_k \in [\frac{1}{\beta_k}, \frac{2}{\beta_k} \epsilon]$: gives $\beta_k \gamma_k \geq 1$ and $W_k \geq 0$ since W_k contribute differently

Long step-sizes

• For step-sizes $\gamma_k \in [\frac{1}{\beta_k}, \frac{2}{\beta_k} - \epsilon]$, the Lyapunov inequality is:

$$\frac{\|x_{k+1} - x^*\|_2^2}{V_{k+1}} \le \underbrace{\|x_k - x^*\|_2^2}_{V_k} + \underbrace{(\beta_k \gamma_k - 1) \|x_{k+1} - x_k\|_2^2}_{W_k} - 2\gamma_k \underbrace{(f(x_{k+1}) + g(x_{k+1}) - p^*)}_{R_k}$$

- ullet From nonconvex analysis can conclude that W_k is summable
 - We showed for $\gamma_k \in [\epsilon, \frac{2}{\beta_k} \epsilon]$, $(\|x_{k+1} x_k\|_2^2)_{k \in \mathbb{N}}$ is summable
 - Since $\beta_k \gamma_k$ bounded, also $(W_k)_{k \in \mathbb{N}}$ is summable
 - Let us define $\overline{W} = \sum_{k=0}^{\infty} W_k$
- Consequences:
 - Distance to solution $\|x_k x^\star\|_2$ converges as $k \to \infty$
 - Function value decreases to optimal function value as:

$$f(x_{k+1}) + g(x_{k+1}) - p^* \le \frac{\|x_0 - x^*\|_2^2 + \overline{W}}{2\sum_{i=0}^k \gamma_i}$$

for $\beta\text{-smooth }f$ with $\gamma_k=\frac{1}{\beta}\text{, denominator replaced by }\frac{2(k+1)}{\beta}$

24

• By prox-grad optimality condition and $||x_{k+1} - x_k||_2 \to 0$:

$$\partial g(x_{k+1}) + \nabla f(x_k) \ni \gamma_k^{-1}(x_k - x_{k+1}) \to 0$$

as
$$k \to \infty$$
 (since $\gamma_k \ge \epsilon$, i.e., $0 < \gamma_k^{-1} \le \epsilon^{-1}$) or equivalently

$$\partial g(x_{k+1}) + \nabla f(x_{k+1}) \ni \underbrace{\gamma_k^{-1}(x_k - x_{k+1}) + \nabla f(x_{k+1}) - \nabla f(x_k)}_{u_k} \rightarrow 0$$

Critical point definition for nonconvex f satisfied in the limit

Outline

- A fundamental inequality
- Nonconvex setting
- Convex setting
- Strongly convex setting
- Backtracking
- Stopping conditions
- · Accelerated gradient method
- Scaling

Strongly convex setting

• We will analyze the proximal gradient method

$$x_{k+1} = \text{prox}_{\gamma_k g}(x_k - \gamma_k \nabla f(x_k))$$

in a strongly convex setting for solving

minimize
$$f(x) + g(x)$$

- Will show linear convergence for distance to solution $||x_k x^*||_2$
- Two ways to show linear convergence, we can:
 - (i) Base analysis on A fundamental inequality
 - (ii) Start by $\|x_{k+1} x^\star\|_2^2$ and expand (which is what we will do)

25

26

Strongly convex setting - Assumptions

- (i) $f:\mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and σ -strongly convex
- (ii) f is β -smooth
- (iii) $g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is closed convex
- (iv) A minimizer x^{\star} exists and $p^{\star} = f(x^{\star}) + g(x^{\star})$ is optimal value
- (v) Algorithm parameters $\gamma_k \in [\epsilon, \frac{2}{\beta} \epsilon]$, where $\epsilon > 0$
- Assumptions as for fundamental inequality plus
 - σ-strong convexity of f
 - β -smoothness of f instead of upper bound for x_{k+1} and x_k
 - ullet restricted step-size parameters γ_k (as in (non)convex setting)
- But will not use fundamental inequality in analysis

27

29

Strongly convex setting - Analysis

Use that

- (a) $x^* = \text{prox}_{\gamma q}(x^* \gamma \nabla f(x^*))$ for all $\gamma > 0$
- (b) the proximal operator is nonexpansive
- (c) gradients of β -smooth σ -strongly convex functions f satisfy

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge \frac{1}{\beta + \sigma} \|\nabla f(x) - \nabla f(y)\|_2^2 + \frac{\sigma \beta}{\beta + \sigma} \|x - y\|_2^2$$

to get

$$\begin{aligned} & \frac{(a)}{\|x_{k+1} - x^*\|_2^2} \\ & \stackrel{(a)}{=} \| \operatorname{prox}_{\gamma_k g}(x_k - \gamma_k \nabla f(x_k)) - \operatorname{prox}_{\gamma_k g}(x^* - \gamma_k \nabla f(x^*)) \|_2^2 \\ & \stackrel{(b)}{\leq} \| (x_k - \gamma_k \nabla f(x_k)) - (x^* - \gamma_k \nabla f(x^*)) \|_2^2 \\ & = \|x_k - x^*\|_2^2 - 2\gamma_k (\nabla f(x_k) - \nabla f(x^*))^T (x_k - x^*) \\ & + \gamma_k^2 \| \nabla f(x_k) - \nabla f(x^*) \|_2^2 \\ & \stackrel{(c)}{\leq} \|x_k - x^*\|_2^2 - \frac{2\gamma_k}{\beta + \sigma} (\|\nabla f(x_k) - \nabla f(x^*)\|_2^2 + \sigma \beta \|x_k - x^*\|_2^2) \\ & + \gamma_k^2 \| \nabla f(x_k) - \nabla f(x^*) \|_2^2 \\ & = (1 - \frac{2\gamma_k \sigma \beta}{\beta + \sigma}) \|x_k - x^*\|_2^2 - \gamma_k (\frac{2}{\beta + \sigma} - \gamma_k) \|\nabla f(x_k) - \nabla f(x^*)\|_2^2 \end{aligned}$$

Lyapunov inequality - Strongly convex setting

• Lyapunov inequality from previous slide is

$$||x_{k+1} - x^*||_2^2 \le (1 - \frac{2\gamma_k \sigma \beta}{\beta + \sigma}) ||x_k - x^*||_2^2 - \underbrace{\gamma_k (\frac{2}{\beta + \sigma} - \gamma_k) ||\nabla f(x_k) - \nabla f(x^*)||_2^2}_{W_k}$$

- Will divide analysis into two cases: Short and long step-sizes
 - Step-sizes $\gamma_k \in [\epsilon, \frac{2}{\beta + \sigma}]$: gives $W_k \geq 0$
 - Step-sizes $\gamma_k \in [\frac{2}{\beta+\sigma}, \frac{2}{\beta} \epsilon]$: gives $W_k \leq 0$

Short step-sizes

· Lyapunov inequality

$$\begin{aligned} \|x_{k+1} - x^{\star}\|_{2}^{2} &\leq (1 - \frac{2\gamma_{k}\sigma\beta}{\beta + \sigma})\|x_{k} - x^{\star}\|_{2}^{2} \\ &- \underbrace{\gamma_{k}(\frac{2}{\beta + \sigma} - \gamma_{k})\|\nabla f(x_{k}) - \nabla f(x^{\star})\|_{2}^{2}}_{W_{k}} \end{aligned}$$

for $\gamma_k \in [\epsilon, \frac{2}{\beta + \sigma}]$ implies $W_k \ge 0$

 \bullet Strong monotonicity with modulus σ of ∇f implies

$$\|\nabla f(x_k) - \nabla f(x^*)\|_2 \ge \sigma \|x_k - x^*\|_2$$

• So we have linear convergence since

$$\begin{split} \|x_{k+1} - x^\star\|_2^2 &\leq (1 - \frac{2\gamma_k\sigma\beta}{\beta + \sigma} - \sigma^2\gamma_k(\frac{2}{\beta + \sigma} - \gamma_k))\|x_k - x^\star\|_2^2 \\ &= (1 - \frac{2\gamma_k\sigma(\beta + \sigma)}{\beta + \sigma} + \sigma^2\gamma_k^2)\|x_k - x^\star\|_2^2 \\ &= (1 - \sigma\gamma_k)^2\|x_k - x^\star\|_2^2 \end{split}$$

where $(1-\sigma\gamma_k)^2\in[0,1)$ for full range of γ_k

30

Long step-sizes

· Lyapunov inequality

$$||x_{k+1} - x^*||_2^2 \le (1 - \frac{2\gamma_k \sigma \beta}{\beta + \sigma}) ||x_k - x^*||_2^2 - \underbrace{\gamma_k (\frac{2}{\beta + \sigma} - \gamma_k) ||\nabla f(x_k) - \nabla f(x^*)||_2^2}_{W_k}$$

for $\gamma_k \in [\frac{2}{\beta+\sigma},\frac{2}{\beta}-\epsilon]$ implies $W_k \leq 0$

• That f is β -smooth implies ∇f is β -Lipschitz continuous:

$$\|\nabla f(x_k) - \nabla f(x^*)\|_2 \le \beta \|x_k - x^*\|_2$$

• So we have linear convergence since

$$\begin{split} \|x_{k+1} - x^{\star}\|_{2}^{2} &\leq (1 - \frac{2\gamma_{k}\sigma\beta}{\beta + \sigma} - \beta^{2}\gamma_{k}(\frac{2}{\beta + \sigma} - \gamma_{k}))\|x_{k} - x^{\star}\|_{2}^{2} \\ &= (1 - \frac{2\gamma_{k}\beta(\sigma + \beta)}{\beta + \sigma} + \beta^{2}\gamma_{k}^{2})\|x_{k} - x^{\star}\|_{2}^{2} \\ &= (1 - \beta\gamma_{k})^{2}\|x_{k} - x^{\star}\|_{2}^{2} \end{split}$$

where $(1 - \beta \gamma_k)^2 \in [0, 1)$ for full range of γ_k

Unified rate

• By removing the square and checking sign, we have

• for step-sizes $\gamma_k \in [\epsilon, \frac{2}{\beta + \sigma}]$:

$$||x_{k+1} - x^*||_2 \le (1 - \sigma \gamma_k) ||x_k - x^*||_2$$

• for step-sizes $\gamma_k \in \left[\frac{2}{\beta+\sigma}, \frac{2}{\beta} - \epsilon\right]$:

$$||x_{k+1} - x^*||_2 \le (\beta \gamma_k - 1)||x_k - x^*||_2$$

• The linear convergence result can be summarized as

$$||x_{k+1} - x^*||_2 \le \max(1 - \sigma \gamma_k, \beta \gamma_k - 1)||x_k - x^*||_2$$

32

Optimal step-size

ullet For fixed-step-sizes $\gamma_k=\gamma$, the rate result is

$$||x_{k+1} - x^{\star}||_2 \le \underbrace{\max(1 - \sigma \gamma, \beta \gamma - 1)}_{\rho} ||x_k - x^{\star}||_2$$

- Optimal γ that gives smallest contraction is $\gamma = \frac{2}{\beta + \sigma}$:
 - $(1-\sigma\gamma)$ decreasing in γ , optimal at upper bound $\gamma=\frac{2}{\beta+\sigma}$ $(\beta\gamma-1)$ increasing in γ , optimal at lower bound $\gamma=\frac{2}{\beta+\sigma}$

 - Bounds coincide at $\gamma=\frac{2}{\beta+\sigma}$ to give rate factor $\rho=\frac{\beta-\sigma}{\beta+\sigma}$

Outline

- A fundamental inequality
- Nonconvex setting
- Convex setting
- Strongly convex setting
- Backtracking
- · Stopping conditions
- Accelerated gradient method
- Scaling

33

35

37

Choose β_k and γ_k

 \bullet In nonconvex and convex analysis, we assume β_k known such that

$$f(x_{k+1}) \le f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} ||x_k - x_{k+1}||_2^2$$

for consecutive iterates \boldsymbol{x}_k and \boldsymbol{x}_{k+1}

- $\bullet\,$ This is an assumption on the function f
- We call it descent condition (DC)
- If f is β -smooth, then $\beta_k = \beta$ is valid choice since

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||x - y||_2^2$$

for all x,y, then we can select $\gamma_k \in [\epsilon, \frac{2}{\beta} - \epsilon]$

Choose β_k and γ_k – Backtracking

- Backtracking: choose $\kappa>1$, $\beta_{k,0}\in[\eta,\eta^{-1}]$, let $l_k=0$, and loop
 - 1. choose $\gamma_k \in [\epsilon, \frac{2}{\beta_{k,l_k}} \epsilon]$
 - 2. compute $x_{k+1} = \operatorname*{prox}_{\gamma_k g}(x_k \gamma_k \nabla f(x_k))$ 3. if descent condition (DC) satisfied

 $\mathsf{set}\ k \leftarrow k+1$ // increment algorithm counter // store final backtrack counter // store final β variable set $\bar{l}_k \leftarrow l_k$ set $\beta_k \leftarrow \beta_{k,l_k}$ break backtrack loop

set $\beta_{k,l_k+1} \leftarrow \kappa \beta_{k,l_k}$ // increase backtrack parameter set $l_k \leftarrow l_k+1$ // increment backtrack counter

- Larger eta_{k,l_k} gives smaller upper bound for step-size γ_k
- Forwardtracking on β_{k,l_k} , backtracking for γ_k upper bound

When to use backtracking

- f is β -smooth but constant β unknown:
 - $\begin{array}{l} \bullet \ \ \text{initialize} \ \beta_{k,0} = \beta_{k-1,\bar{l}_k-1} \ \ \text{to previously used value} \\ \bullet \ \ \text{then} \ \ (\beta_k)_{k \in \mathbb{N}} \ \ \text{nondecreasing} \\ \bullet \ \ \text{finally} \ \ \beta_k \geq \beta \ \ \text{(if needed), then} \\ \end{array}$

 - - step-size bound $\gamma_k \in [\epsilon, \frac{2}{\beta_{k,I_k}} \epsilon]$ makes (DC) hold directly
 so will have constant β_k after finite number of algoritm iterations
- ∇f locally Lipschitz and sequence bounded (as in convex case): • initialize $\beta_{k,0} = \bar{\beta}$, for some pre-chosen $\bar{\beta} > 0$
 - \bullet reset to same value $\bar{\beta}$ in every algorithm iteration
 - will find a local Lipschitz constant

Outline

- · A fundamental inequality
- Nonconvex setting
- Convex setting
- Strongly convex setting
- Backtracking
- Stopping conditions
- Accelerated gradient method
- Scaling

When to stop algorithm?

- Consider minimize f(x) + g(x)
- Apply proximal gradient method $x_{k+1} = \mathrm{prox}_{\gamma_k g}(x_k \gamma_k \nabla f(x_k))$
- · Algorithm sequence satisfies

$$\partial g(x_{k+1}) + \nabla f(x_{k+1}) \ni \underbrace{\gamma_k^{-1}(x_k - x_{k+1}) + \nabla f(x_{k+1}) - \nabla f(x_k)}_{u_k} \to 0$$

is $||u_k||_2$ small a good measure of being close to fixed-point?

When to stop algorithm - Scaled problem

Let a>0 and solve equivalent problem $\min a f(x) + a g(x)$:

- Denote algorithm parameter $\gamma_{a,k} = \frac{\gamma_k}{a}$
- Algorithm satisfies:

$$x_{k+1} = \operatorname{prox}_{\gamma_{a,k}ag}(x_k - \gamma_{a,k}\nabla af(x_k)) = \operatorname{prox}_{\gamma_k g}(x_k - \gamma_k \nabla f(x_k))$$

i.e., the same algorithm as before

• However, $u_{a,k}$ in this setting satisfies

$$\begin{split} u_{a,k} &= \gamma_{a,k}^{-1}(x_k - x_{k+1}) + \nabla a f(x_{k+1}) - \nabla a f(x_k) \\ &= a(\gamma_k^{-1}(x_k - x_{k+1}) + \nabla f(x_{k+1}) - \nabla f(x_k)) \\ &= a_{k+1} \end{split}$$

i.e., same algorithm but different optimality measure

• Optimality measure should be scaling invariant

40

34

36

Scaling invariant stopping condition

ullet For eta-smooth f, use scaled condition $\frac{1}{eta}u_k$

$$\frac{1}{\beta}u_k := \frac{1}{\beta}(\gamma_k^{-1}(x_k - x_{k+1}) + \nabla f(x_{k+1}) - \nabla f(x_k))$$

that we have seen before

- Let us scale problem by a to get $\min a f(x) + a g(x)$, then
 - smoothness constant $\beta_a = a\beta$ scaled by $a \Rightarrow$ use $\gamma_{a,k} = \frac{\gamma_k}{a}$
 - optimality measure $\frac{1}{\beta_a}u_{a,k}=\frac{1}{a\beta}au_k=\frac{1}{\beta}u_k$ remains the same so it is scaling invariant
- Problem considered solved to optimality if, say, $\frac{1}{\beta}\|u_k\|_2 \leq 10^{-6}$
- \bullet Often lower accuracy $10^{-3}\ \mathrm{to}\ 10^{-4}$ is enough

Example - SVM

- · Classification problem from SVM lecture, SVM with

 - polynomial features of degree 2 • regularization parameter $\lambda=0.00001$

Example - Optimality measure

- $\bullet \ \ \mathsf{Plots} \ \beta^{-1}\|u_k\|_2 = \beta^{-1}\|\gamma_k^{-1}(x_k x_{k+1}) + \nabla f(x_{k+1}) \nabla f(x_k)\|_2$
- ullet Shows $eta^{-1}\|u_k\|_2$ up to 20'000 iterations
- Quite many iterations needed to converge

43

41

Example - SVM higher degree polynomial

- · Classification problem from SVM lecture, SVM with

 - polynomial features of degree 6 • regularization parameter $\lambda=0.00001$

44

42

Example - Optimality measure

- Plots $\beta^{-1} \|u_k\|_2 = \beta^{-1} \|\gamma_k^{-1}(x_k x_{k+1}) + \nabla f(x_{k+1}) \nabla f(x_k)\|_2$
- \bullet Shows $\beta^{-1}\|u_k\|_2$ up to 200'000 iterations (10x more than before)
- Many iterations needed for high accuracy

Outline

- · A fundamental inequality
- Nonconvex setting
- Convex setting
- Strongly convex setting
- Backtracking
- Stopping conditions
- Accelerated gradient method
- Scaling

Accelerated proximal gradient method

• Consider convex composite problem

$$\min_{x} \inf f(x) + g(x)$$

where

- $f:\mathbb{R}^n \to \mathbb{R}$ is $\beta\text{-smooth}$ and convex
- $g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is closed and convex
- Proximal gradient descent

$$x_{k+1} = \operatorname{prox}_{\gamma g}(x_k - \gamma \nabla f(x_k))$$

achieves O(1/k) convergence rate in function value

• Accelerated proximal gradient method

$$y_k = x_k + \theta_k(x_k - x_{k-1})$$
$$x_{k+1} = \text{prox}_{\gamma_q}(y_k - \gamma \nabla f(y_k))$$

(with specific θ_k) achieves faster $O(1/k^2)$ convergence rate

Accelerated proximal gradient method - Parameters

· Accelerated proximal gradient method

$$y_k = x_k + \theta_k(x_k - x_{k-1})$$
$$x_{k+1} = \text{prox}_{\gamma g}(y_k - \gamma \nabla f(y_k))$$

- Step-sizes are restricted $\gamma \in (0, \frac{1}{\beta}]$
- The θ_k parameters can be chosen either as

$$\theta_k = \frac{k-1}{k+1}$$

or
$$\theta_k = \frac{t_{k-1}-1}{t_k}$$
 where

$$t_k = \frac{1+\sqrt{1+4t_{k-1}^2}}{2}$$

these choices are very similar

Algorithm behavior in nonconvex setting not well understood

48

Not a descent method

- Descent method means function value is decreasing every iteration
- We know that proximal gradient method is a descent method
- However, accelerated proximal gradient method is not

Accelerated gradient method - Example

- · Accelerated vs nominal proximal gradient method
- ullet Problem from SVM lecture, polynomial deg 6 and $\lambda=0.0215$

49

50

Accelerated gradient method - Example

- Accelerated vs nominal proximal gradient method
- \bullet Problem from SVM lecture, polynomial deg 6 and $\lambda=0.0215$

Outline

- A fundamental inequality
- Nonconvex setting
- Convex setting
- Strongly convex setting
- Backtracking
- Stopping conditions
- Accelerated gradient method
- Scaling

51

Scaled proximal gradient method

Proximal gradient method:

$$x_{k+1} = \underset{y}{\operatorname{argmin}} \left(\underbrace{f(x_k) + \nabla f(x_k)^T (y - x) + \frac{1}{2\gamma_k} \|y - x_k\|_2^2}_{\hat{f}_{x_k}(y)} + g(y) \right)$$

approximates function f(y) around x_k by $\hat{f}_{x_k}(y)$

- The better the approximation, the faster the convergence
- By scaling: we mean to use an approximation of the form

$$\hat{f}_{x_k}(y) = f(x_k) + \nabla f(x_k)^T (y - x_k) + \frac{1}{2\gamma_k} ||y - x_k||_H^2$$

where $H \in \mathbb{R}^{n \times n}$ is a positive definite matrix and $\|x\|_H^2 = x^T H x$

Gradient descent - Example

 \bullet Gradient descent on $\beta\text{-smooth}$ quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Step-size $\gamma = \frac{1}{\beta}$ and norm $\|\cdot\|_2$ in model

52

50

Gradient descent - Example

 \bullet Gradient descent on $\beta\text{-smooth}$ quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

 \bullet Step-size $\gamma = \frac{1}{\beta}$ and norm $\|\cdot\|_2$ in model

Gradient descent – Example

ullet Gradient descent on eta-smooth quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Step-size $\gamma = \frac{1}{\beta}$ and norm $\|\cdot\|_2$ in model

Gradient descent - Example

 \bullet Gradient descent on $\beta\text{-smooth}$ quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

 \bullet Step-size $\gamma = \frac{1}{\beta}$ and norm $\|\cdot\|_2$ in model

Gradient descent - Example

 \bullet Gradient descent on $\beta\text{-smooth}$ quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

 \bullet Step-size $\gamma = \frac{1}{\beta}$ and norm $\|\cdot\|_2$ in model

Gradient descent - Example

ullet Gradient descent on eta-smooth quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

 \bullet Step-size $\gamma = \frac{1}{\beta}$ and norm $\|\cdot\|_2$ in model

Scaled gradient descent - Example

ullet Gradient descent on eta-smooth quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

ullet Scaling $H=\mathbf{diag}(
abla^2f)$, γ is inverse smoothness w.r.t. $\|\cdot\|_H$

53

Scaled gradient descent - Example

ullet Gradient descent on eta-smooth quadratic problem

$$\underset{x}{\text{minimize}} \quad \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

 $\bullet \; \mbox{Scaling} \; H = \mbox{diag}(\nabla^2 f) , \; \gamma \; \mbox{is inverse smoothness w.r.t.} \; \| \cdot \|_H$

Scaled gradient descent - Example

 \bullet Gradient descent on $\beta\text{-smooth}$ quadratic problem

$$\underset{x}{\text{minimize}} \quad \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

 $\bullet \; \mbox{Scaling} \; H = \mbox{diag}(\nabla^2 f) \mbox{, } \gamma \; \mbox{is inverse smoothness w.r.t. } \| \cdot \|_H$

Scaled gradient descent - Example

ullet Gradient descent on eta-smooth quadratic problem

$$\underset{x}{\text{minimize}} \quad \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Scaling $H = \mathbf{diag}(\nabla^2 f)$, γ is inverse smoothness w.r.t. $\|\cdot\|_H$

Scaled gradient descent – Example

ullet Gradient descent on eta-smooth quadratic problem

$$\underset{x}{\text{minimize}} \quad \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Scaling $H = \mathbf{diag}(\nabla^2 f)$, γ is inverse smoothness w.r.t. $\|\cdot\|_H$

Scaled gradient descent - Example

ullet Gradient descent on eta-smooth quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

 $\bullet \; \mbox{Scaling} \; H = \mbox{diag}(\nabla^2 f), \; \gamma \; \mbox{is inverse smoothness w.r.t.} \; \| \cdot \|_H$

54

Smoothness w.r.t. $\|\cdot\|_H$

What is $\|\cdot\|_H$?

- Requirement: $H \in \mathbb{R}^{n \times n}$ is symmetric positive definite $(H \succ 0)$
- The norm $\|x\|_H^2 := x^T H x$, for H = I, we get $\|x\|_I^2 = \|x\|_2^2$

• Function $f: \mathbb{R}^n \to \mathbb{R}$ is β -smooth if for all $x, y \in \mathbb{R}^n$:

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||x - y||_2^2$$

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) - \frac{\beta}{2} ||x - y||_2^2$$

• We say f β_H -smoothness w.r.t. scaled norm $\|\cdot\|_H$ if

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\beta_H}{2} ||x - y||_H^2$$

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) - \frac{\beta_H}{2} ||x - y||_H^2$$

for all $x, y \in \mathbb{R}^n$

• If f is smooth (w.r.t. $\|\cdot\|_2$) it is also smooth w.r.t. $\|\cdot\|_H$

55

Example - A quadratic

- Let $f(x) = \frac{1}{2}x^T H x = \frac{1}{2}\|x\|_H^2$ with $H \succ 0$
- f is 1-smooth w.r.t $\|\cdot\|_H$ (with equality):

$$\begin{split} f(x) + \nabla f(x)^T (y-x) + & \frac{1}{2} \|x-y\|_H^2 \\ &= \frac{1}{2} x^T H x + (Hx)^T (y-x) + \frac{1}{2} \|x-y\|_H^2 \\ &= \frac{1}{2} x^T H x + (Hx)^T (y-x) + \frac{1}{2} (\|x\|_H^2 - 2(Hx)^T y + \|y\|_H^2) \\ &= \frac{1}{2} \|y\|_H^2 = f(y) \end{split}$$

which holds also if adding linear term $\boldsymbol{q}^T\boldsymbol{x}$ to \boldsymbol{f}

• f is $\lambda_{\max}(H)$ -smooth (w.r.t. $\|\cdot\|_2$), continue equality:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} ||x - y||_{H}^{2}$$

$$\leq f(x) + \nabla f(x)^{T} (y - x) + \frac{\lambda_{\max}(H)}{2} ||x - y||_{2}^{2}$$

much more conservative estimate of function!

56

Scaled proximal gradient for quadratics

- Let $f(x) = \frac{1}{2}x^T H x$ with $H \succ 0$, which is 1-smooth w.r.t. $\|\cdot\|_H$
- Approximation with scaled norm $\|\cdot\|_H$ and $\gamma_k=1$ satisfies $\forall x_k$:

$$\hat{f}_{x_k}(y) = f(x_k) + \nabla f(x_k)^T (y - x_k) + \frac{1}{2} ||x_k - y||_H^2 = f(y)$$

since f is 1-smooth w.r.t. $\|\cdot\|_H$ with equality

• An iteration then reduces to solving problem itself:

$$x_{k+1} = \underset{y}{\operatorname{argmin}}(\hat{f}_{x_k}(y) + g(y)) = \underset{y}{\operatorname{argmin}}(f(y) + g(y))$$

• Model very accurate, but very expensive iterations

57

Scaled proximal gradient method reformulation

• Proximal gradient method with scaled norm $\|\cdot\|_H$:

$$\begin{aligned} x_{k+1} &= \underset{y}{\operatorname{argmin}} \left(f(x_k) + \nabla f(x_k)^T (y - x) + \frac{1}{2\gamma_k} \|y - x_k\|_H^2 + g(y) \right) \\ &= \underset{y}{\operatorname{argmin}} \left(g(y) + \frac{1}{2\gamma_k} \|y - (x_k - \gamma_k H^{-1} \nabla f(x_k))\|_H^2 \right) \\ &=: \operatorname{prox}_{\gamma_k g}^H (x_k - \gamma_k H^{-1} \nabla f(x_k)) \end{aligned}$$

where $\boldsymbol{H}=\boldsymbol{I}$ gives nominal method

- Computational difference per iteration:
 - 1. Need to invert H^{-1} (or solve $Hd_k = \nabla f(x_k)$)
 - 2. Need to compute prox with new metric

$$\operatorname{prox}_{\gamma_k g}^H(z) := \operatorname*{argmin}_x(g(x) + \tfrac{1}{2\gamma_k} \|x - z\|_H^2)$$

that may be very costly

Computational cost

- $\bullet\,$ Assume that H is dense or general sparse
 - $\bullet \ \ H^{-1}$ dense: cubic complexity (vs maybe quadratic for gradient)
 - H^{-1} sparse: lower than cubic complexity $\operatorname{prox}_{\gamma_k g}^H$: difficult optimization problem
- ullet Assume that H is diagonal
 - H^{-1} : invert diagonal elements linear complexity $\operatorname{prox}_{\gamma_k q}^H$: often as cheap as nominal prox (e.g., for
 - $_{q}$: often as cheap as nominal prox (e.g., for separable g)
 - this gives individual step-sizes for each coordinate
- ullet Assume that H is block-diagonal with small blocks
 - ullet H^{-1} : invert individual blocks also cheap
 - $\bullet \ \operatorname{prox}_{\gamma_k g}^H \colon$ often quite cheap (e.g., for block-separable g)
- ullet If H=I, method is nominal method

Convergence

- ullet We get similar results as in the nominal H=I case
- ullet We assume eta_H smoothness w.r.t. $\|\cdot\|_H$
- We can replace all $\|\cdot\|_2$ with $\|\cdot\|_H$ and ∇f with $H^{-1}\nabla f$:
 - Nonconvex setting with $\gamma_k = \frac{1}{\beta_H}$

$$\min_{l \in \{0, \dots, k\}} \|\nabla f(x_l)\|_{H^{-1}}^2 \le \frac{2\beta_H(f(x_0) + g(x_0) - p^*)}{k+1}$$

• Convex setting with $\gamma_k = \frac{1}{\beta_R}$

$$f(x_k) + g(x_k) - p^* \le \frac{\beta_H \|x_0 - x^*\|_H^2}{2(k+1)}$$

• Strongly convex setting with f σ_H -strongly convex w.r.t. $\|\cdot\|_H$

$$||x_{k+1} - x^*||_H \le \max(\beta_H \gamma - 1, 1 - \sigma_H \gamma)||x_k - x^*||_H$$

60

Example - Logistic regression

• Logistic regression with $\theta = (w, b)$:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} \log(1 + e^{w^{T}\phi(x_{i}) + b}) - y_{i}(w^{T}\phi(x_{i}) + b) + \frac{\lambda}{2} ||w||_{2}^{2}$$

on the following data set (from logistic regression lecture)

- ullet Polynomial features of degree 6, Tikhonov regularization $\lambda=0.01$
- Number of decision variables: 28

Algorithms

Compare the following algorithms, all with backtracking:

- 1. Gradient method
- 2. Gradient method with fixed diagonal scaling
- 3. Gradient method with fixed full scaling

Fixed scalings

ullet Logistic regression gradient and Hessian satisfy with $L=[X,\mathbf{1}]$

$$\nabla f(\theta) = L^{T}(\sigma(L\theta) - Y) + \lambda I_{w}\theta \quad \nabla^{2} f(\theta) = L^{T} \sigma'(L\theta) L + \lambda I_{w}$$

where σ is the (vector-version of) sigmoid, and $I_w(w,b)=(w,0)$

- The sigmoid function σ is 0.25-Lipschitz continuous
- · Gradient method with fixed full scaling (3.) uses

$$H = 0.25L^TL + \lambda I_w$$

• Gradient method with fixed diagonal scaling (2.) uses

$$H = \mathbf{diag}(0.25L^TL + \lambda I_w)$$

62

64

63

Example - Numerics

- \bullet Logistic regression polynomial features of degree 6, $\lambda=0.01$
- Standard gradient method with backtracking (GM)

Example - Numerics

- \bullet Logistic regression polynomial features of degree 6, $\lambda=0.01$
- Gradient method with diagonal scaling (GM DS)

64

Example - Numerics

- \bullet Logistic regression polynomial features of degree 6, $\lambda=0.01$
- Gradient method with full matrix scaling (GM FS)

Comments

- Smaller number of iterations with better scaling
- Performance is roughly (iteration cost)×(number of iterations)
 - We have only compared number of iterations
 - Iteration cost for (GM) and (GM DS) are the same
 - Iteration cost for (GM FS) higher
 Need to quantify iteration cost to assess which is best
- ullet In general, can be difficult to find H that performs better

Outline

Stochastic Gradient Descent

Qualitative Convergence Behavior

Pontus Giselsson

• Stochastic gradient descent

- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Notation

- Optimization (decision) variable notation:
 - Optimization literature: x,y,z
 - Statistics literature: β
 - \bullet Machine learning literature: θ, w, b
- ullet Data and labels in statistics and machine learning are x,y
- Training problems in supervised learning

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

optimizes over decision variable θ for fixed data $\{(x_i,y_i)\}_{i=1}^N$

• Optimization problem in standard optimization notation

$$\underset{-}{\operatorname{minimize}}\,f(x)$$

optimizes over decision variable \boldsymbol{x}

• Will use optimization notation when algorithms not applied in ML

3

1

Gradient method

• Gradient method is applied problems of the form

$$\mathop{\mathrm{minimize}}_x f(x)$$

where f is differentiable and gradient method is

$$x_{k+1} = x_k - \gamma_k \nabla f(x_k)$$

where $\gamma_k > 0$ is a step-size

- $\bullet \ f$ not differentiable in DL with ReLU but still say gradient method
- For large problems, gradient can be expensive to compute
 ⇒ replace by unbiased stochastic approximation of gradient

4

Unbiased stochastic gradient approximation

- Stochastic gradient estimator:
 - ullet notation: $\widehat{
 abla}f(x)$
 - outputs random vector in \mathbb{R}^n for each $x \in \mathbb{R}^n$
- Stochastic gradient *realization*:
 - notation: $\widetilde{\nabla} f(x) : \mathbb{R}^n \to \mathbb{R}^n$
 - ullet outputs, $orall x \in \mathbb{R}^n$, vector in \mathbb{R}^n drawn from distribution of $\widehat{\nabla} f(x)$
- An unbiased stochastic gradient estimator $\widehat{\nabla} f$ satisfies $\forall x \in \mathbb{R}^n$:

$$\mathbb{E}\widehat{\nabla}f(x) = \nabla f(x)$$

• If x is random vector in \mathbb{R}^n , unbiased estimator satisfies

$$\mathbb{E}[\widehat{\nabla}f(x)|x] = \nabla f(x)$$

(both are random vectors in \mathbb{R}^n)

Stochastic gradient descent (SGD)

ullet The following iteration generates $(x_k)_{k\in\mathbb{N}}$ of random variables:

$$x_{k+1} = x_k - \gamma_k \widehat{\nabla} f(x_k)$$

since $\widehat{\nabla} f$ outputs random vectors in \mathbb{R}^n

• Stochastic gradient descent finds a *realization* of this sequence:

$$x_{k+1} = x_k - \gamma_k \widetilde{\nabla} f(x_k)$$

where $(x_k)_{k\in\mathbb{N}}$ here is a realization with values in \mathbb{R}^n

- \bullet Sloppy in notation for when x_k is $\textit{random variable}\ \textit{vs realization}$
- \bullet Can be efficient if evaluating $\widetilde{\nabla} f$ much cheaper than ∇f

Stochastic gradients - Finite sum problems

• Consider finite sum problems of the form

$$\underset{x}{\text{minimize}} \underbrace{\frac{1}{N} \left(\sum_{i=1}^{N} f_i(x) \right)}_{f(x)}$$

where $\frac{1}{N}$ is for convenience and gives average loss

- $\bullet\,$ Training problems of this form, where sum over training data
- $\bullet\,$ Stochastic gradient: select f_i at random and take gradient step

Single function stochastic gradient

- \bullet Let I be a $\{1,\dots,N\}\mbox{-valued}$ random variable
- ullet Let, as before, $\widehat{\nabla} f$ denote the stochastic gradient estimator
- ullet Realization: let i be drawn from probability distribution of I

$$\widetilde{\nabla} f(x) = \nabla f_i(x)$$

where we will use uniform probability distribution

$$p_i = p(I = i) = \frac{1}{N}$$

• Stochastic gradient is unbiased:

$$\mathbb{E}[\widehat{\nabla}f(x)] = \sum_{i=1}^{N} p_i \nabla f_i(x) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x) = \nabla f(x)$$

8

6

97

Mini-batch stochastic gradient

- ullet Let ${\cal B}$ be set of K-sample mini-batches to choose from:
 - ullet Example: 2-sample mini-batches and N=4:

$$\mathcal{B} = \{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$$

- Number of mini batches $\binom{N}{K}$, each item in $\binom{N-1}{K-1}$ batches
- Let $\mathbb B$ be $\mathcal B$ -valued random variable
- ullet Let, as before, $\widehat{
 abla}f$ denote stochastic gradient estimator
- \bullet Realization: let B be drawn from probability distribution of $\mathbb B$

$$\widetilde{\nabla} f(x) = \frac{1}{K} \sum_{i \in B} \nabla f_i(x)$$

where we will use uniform probability distribution

$$p_B = p(\mathbb{B} = B) = \frac{1}{\binom{N}{k}}$$

• Stochastic gradient is unbiased:

$$\mathbb{E}\widehat{\nabla}f(x) = \frac{1}{\binom{N}{K}}\sum_{B\in\mathcal{B}}\frac{1}{K}\sum_{i\in B}\nabla f_i(x) = \frac{\binom{N-1}{K-1}}{\binom{N}{K}K}\sum_{i=1}^N\nabla f_i(x) = \frac{1}{N}\sum_{i=1}^N\nabla f_i(x) = \nabla f(x)$$

ç

Stochastic gradient descent for finite sum problems

- The algorithm, choose $x_0 \in \mathbb{R}^n$ and iterate:
 - 1. Sample a mini-batch $B_k \in \mathcal{B}$ of K indices uniformly
 - 2. Update

$$x_{k+1} = x_k - \frac{\gamma_k}{K} \sum_{j \in B_k} \nabla f_j(x_k)$$

- ullet Can have $\mathcal{B} = \{\{1\}, \dots, \{N\}\}$ and sample only one function
- Gives realization of underlying stochastic process

10

12

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Qualitative convergence behavior

- Consider single-function batch setting
- Assume that the individual gradients satisfy

$$(\nabla f_i(x))^T (\nabla f_j(x)) \ge \mu$$

for all i,j and for some $\mu \in \mathbb{R}$ (i.e., can be positive or negative)

$$\begin{array}{cccc}
\nabla f_3(x) & & \nabla f_2(x) \\
\nabla f_2(x) & & \nabla f_2(x)
\end{array}$$

$$\mu = 0.5 & \mu = -0.77 & \nabla f_1(x)$$

Will larger or smaller μ likely give better SGD convergence? Why?

11

Minibatch setting

Qualitative convergence behavior

- Consider single-function batch setting
- Assume that the individual gradients satisfy

$$(\nabla f_i(x))^T (\nabla f_i(x)) \ge \mu$$

for all i,j and for some $\mu \in \mathbb{R}$ (i.e., can be positive or negative)

Will larger or smaller μ likely give better SGD convergence? Why?

 \bullet Larger μ gives more similar to full gradient and faster convergence

- ullet Larger minibatch gives larger μ and faster convergence
- Comes at the cost of higher per iteration count
- Limiting minibatch case is the gradient method
- Tradeoff in how large minibatches to use to optimize convergence
- Other reasons exist that favor small batches (later)

13

SGD - Example

- $\bullet \ \mathsf{Let} \ c_1 + c_2 + c_3 = 0$
- Solve minimize_x $(\frac{1}{2}(\|x-c_1\|_2^2 + \|x-c_2\|_2^2 + \|x-c_3\|_2^2)) = \frac{3}{2}\|x\|_2^2 + c$
- \bullet How will trajectory look for SGD with $\gamma_k=1/3?$

Levelsets of summands Levelset of

SGD - Example

- Let $c_1 + c_2 + c_3 = 0$
- Solve minimize_x $(\frac{1}{2}(\|x-c_1\|_2^2 + \|x-c_2\|_2^2 + \|x-c_3\|_2^2)) = \frac{3}{2}\|x\|_2^2 + c$
- \bullet How will trajectory look for SGD with $\gamma_k=1/3?$

Levelsets of summands

Levelset of sum

14

SGD - Example

- Let $c_1 + c_2 + c_3 = 0$
- \bullet Solve $\mathrm{minimize}_x(\frac{1}{2}(\|x-c_1\|_2^2+\|x-c_2\|_2^2+\|x-c_3\|_2^2))=\frac{3}{2}\|x\|_2^2+c$
- \bullet How will trajectory look for SGD with $\gamma_k=1/3?$

- Fast convergence outside "triangle" where gradients similar, slow inside
- Constant step SGD converges to noise ball

14

15

SGD - Example

- Let $c_1 + c_2 + c_3 = 0$
- \bullet Solve $\mathrm{minimize}_x(\frac{1}{2}(\|x-c_1\|_2^2+\|x-c_2\|_2^2+\|x-c_3\|_2^2))=\frac{3}{2}\|x\|_2^2+c$
- ullet How will trajectory look for SGD with $\gamma_k=1/3$?

- Constant step GD converges (in this case straight to) solution (right)
- \bullet Difference is noise in stochastic gradient that can be measured by μ

- 1

SGD - Example zoomed out

- Same example but zoomed out
- \bullet Solve $\mathrm{minimize}_x(\frac{1}{2}(\|x-c_1\|_2^2+\|x-c_2\|_2^2+\|x-c_3\|_2^2))=\frac{3}{2}\|x\|_2^2+c$
- ullet How will trajectory look with $\gamma_k=1/3$ from more global view?

Levelset of sum

SGD - Example zoomed out

- Same example but zoomed out
- \bullet Solve $\mathrm{minimize}_x(\frac{1}{2}(\|x-c_1\|_2^2+\|x-c_2\|_2^2+\|x-c_3\|_2^2))=\frac{3}{2}\|x\|_2^2+c$
- \bullet How will trajectory look with $\gamma_k=1/3$ from more global view?

Levelsets of summands

Levelset of sum

ullet Far form solution $abla f_i$ more similar to abla f, larger $\mu \Rightarrow$ faster convergence

15

Qualitative convergence behavior

- Often fast convergence far from solution, slow close to solution
- $\bullet\,$ Fixed-step size converges to noise ball in general
- Need diminishing step-size to converge to solution in general

Drawback of diminishing step-size

- Diminishing step-size typically gives slow convergence
- Often better convergence with constant step (if it works)
- Is there a setting in which constant step-size works?

16

17

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Fixed step-size SGD does not converge to solution

ullet We can at most hope for finding point $ar{x}$ such that

$$\nabla f(\bar{x}) = 0$$

• Let $x_k = \bar{x}$, and assume $\nabla f_i(x_k) \neq 0$, then

$$x_{k+1} = x_k - \gamma_k \nabla f_i(x_k) \neq x_k$$

i.e., moves away from solution \bar{x}

ullet Only hope with fixed step-size if all $abla f_i(\bar{x})=0$, since for $x_k=\bar{x}$

$$x_{k+1} = x_k - \gamma_k \nabla f_i(x_k) = x_k$$

independent on γ_k and algorithm stays at solution

How does norm of individual gradients affect local convergence?

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83, \ \nabla f_2(0) = -0.83$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83, \, \nabla f_2(0) = -0.83$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83, \ \nabla f_2(0) = -0.83$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83, \ \nabla f_2(0) = -0.83$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

Example - Large gradients at solution

- ullet Individal gradients at solution 0: $abla f_1(0)=0.83$, $abla f_2(0)=-0.83$
- ullet SGD with $\gamma=0.07$ and cyclic update order:

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83, \, \nabla f_2(0) = -0.83$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83, \ \nabla f_2(0) = -0.83$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

20

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83, \ \nabla f_2(0) = -0.83$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

• Will not converge to solution with constant step-size

Example – Small gradients at solution

- \bullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

20

Example - Small gradients at solution

- \bullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02, \, \nabla f_2(0) = -0.02$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- \bullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02, \, \nabla f_2(0) = -0.02$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- \bullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02, \, \nabla f_2(0) = -0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- \bullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- \bullet Shift f_1 and f_2 "outwards" to get new problem
- ullet Individal gradients at solution 0: $abla f_1(0) = 0.02$, $abla f_2(0) = -0.02$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- \bullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02, \, \nabla f_2(0) = -0.02$
- $\bullet~{\rm SGD}$ with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- \bullet Shift f_1 and f_2 "outwards" to get new problem
- ullet Individal gradients at solution 0: $abla f_1(0)=0.02$, $abla f_2(0)=-0.02$
- $\bullet~$ SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02, \, \nabla f_2(0) = -0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

· Much faster to reach small loss

21

23

25

Convergence and individual gradient norm

Local convergence of stochastic gradient descent is:

- slow if individual functions do not agree on minima
 - individual norms "large" at and around minima
- faster if individual functions do agree on minima
 - individual norms "small" at and around minima

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes

21

22

• SGD convergence

Over- vs under-parameterized models

- Model overparameterized if:

 - in regression, zero loss is possible
 in classification, correct classification with margin possible
 - logistic loss gives close to 0 loss
 hinge loss gives 0 loss
- Model underparameterized if the above does not hold

Overparameterization - LS example

- Data $A \in \mathbb{R}^{N \times n}$, $b \in \mathbb{R}^N$, and $x \in \mathbb{R}^n$
- Consider least squares problem

$$\underset{x}{\operatorname{minimize}}\underbrace{\frac{1}{2}\|Ax-b\|_2^2}_{f(x)} = \sum_{i=1}^{N}\underbrace{\frac{1}{2}(a_ix-b_i)^2}_{f_i(x)}$$

where $a_i \in \mathbb{R}^{1 \times n}$ are rows in A and problem is

- ullet overparameterized if n>N (infinitely many 0-loss solutions)
- underparameterized if $n \leq N$ (unique solution if A full rank)

Convergence - LS example

- \bullet Random problem data: $A \in \mathbb{R}^{200 \times 100}$, $b \in \mathbb{R}^{200}$ from Gaussian
- Underparameterized setting and unique solution
- Local convergence of SGD quite slow:

Convergence - LS example

- Random problem data: $A \in \mathbb{R}^{200 \times 100}$, $b \in \mathbb{R}^{200}$ from Gaussian
- Underparameterized setting and unique solution
- Norms of $\nabla f_i(x^\star) = \frac{1}{2}(a_ix^\star b_i)$ quite large:

Convergence - LS example

- \bullet Random problem data: $A \in \mathbb{R}^{200 \times 1000}$, $b \in \mathbb{R}^{200}$ from Gaussian
- Overparameterized, many 0-loss solutions, larger problem
- Convergence of SGD much faster:

Convergence - LS example

- Random problem data: $A \in \mathbb{R}^{200 \times 1000}$, $b \in \mathbb{R}^{200}$ from Gaussian
- Overparameterized, many 0-loss solutions, larger problem
- Individual norms $\nabla f_i(x^*) = \frac{1}{2}(a_i x^* b_i) = 0$:

26

27

26

Convergence - DL example

- Classification problem: logistic loss
- Network: Residual, ReLU, 3x5,2,1 widths (5 layers)
- Underparameterized:

Convergence – DL example

- Classification problem: logistic loss
- Network: Residual, ReLU, 15x25,2,1 widths (17 layers)
- Overparameterized:

27

Convergence – DL example

- Classification problem: logistic loss
- Network: Residual, ReLU, 3x5,2,1 vs 15x25,2,1
- Convergence of "best gradient" (final loss: 0.17 vs 0.00018):

2

Convergence - DL example

- Classification problem: logistic loss
- Network: Residual, ReLU, 3x5,2,1 vs 15x25,2,1
- Final norm of individual gradients (final loss: 0.17 vs 0.00018):

27

Overparameterized networks and convergence

- Overparameterized models seems to give faster SGD convergence
- Reason: individual gradients agree better!

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- \bullet Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

29

Step-length

• The step-length in constant step SGD is given by

$$||x_{k+1} - x_k||_2 = \gamma ||\nabla f_i(x_k)||_2$$

i.e., proportional to individual gradient norm

• The step-length in constant step GD is given by

$$||x_{k+1} - x_k||_2 = \gamma ||\nabla f(x_k)||_2$$

i.e., proportional to full (average) gradient norm

Flatness of minima

• Is SGD or GD more likely to escape the sharp minima?

30

31

32

31

Flatness of minima

• Is SGD or GD more likely to escape the sharp minima?

• Impossible to say only from average training loss

Example

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

32

Example

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

 \bullet GD will stay in both minima $(\nabla f(x_k) = 0 \Rightarrow x_{k+1} = x_k)$

Example

- Flat (local) minima can be different
- \bullet Is SGD or GD more likely to escape right/left minima?

- ullet GD will stay in both minima $ig(
 abla f(x_k) = 0 \Rightarrow x_{k+1} = x_k ig)$
- \bullet SGD will stay in right minima ($\nabla f_i(x_k) = 0 \Rightarrow x_{k+1} = x_k$)
- SGD may escape left minima $(\|\nabla f_i(x_k)\|_2 \neq 0 \Rightarrow x_{k+1} \neq x_k)$

3

Example

- Flat (local) minima can be different
- \bullet Is SGD or GD more likely to escape right/left minima?

- ullet GD will stay in both minima $ig(
 abla f(x_k) = 0 \Rightarrow x_{k+1} = x_k ig)$
- \bullet SGD will stay in right minima $(\nabla f_i(x_k) = 0 \Rightarrow x_{k+1} = x_k)$
- \bullet SGD may escape left minima ($\|\nabla f_i(x_k)\|_2 \neq 0 \Rightarrow x_{k+1} \neq x_k$)
- $\bullet~x_k=0.8$ and $\gamma=0.5$

Example

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

- ullet GD will stay in both minima $ig(
 abla f(x_k) = 0 \Rightarrow x_{k+1} = x_k ig)$
- ullet SGD will stay in right minima $ig(
 abla f_i(x_k) = 0 \Rightarrow x_{k+1} = x_k ig)$
- \bullet SGD may escape left minima ($\|\nabla f_i(x_k)\|_2 \neq 0 \Rightarrow x_{k+1} \neq x_k$)
- ullet $x_k=0.8$ and $\gamma=0.5$, i=4 and $\nabla f_i(x_k)=-2.77$

32

Example

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

- GD will stay in both minima $(\nabla f(x_k) = 0 \Rightarrow x_{k+1} = x_k)$
- SGD will stay in right minima ($\nabla f_i(x_k) = 0 \Rightarrow x_{k+1} = x_k$)
- SGD may escape left minima $(\|\nabla f_i(x_k)\|_2 \neq 0 \Rightarrow x_{k+1} \neq x_k)$
- ullet $x_k=0.8$ and $\gamma=0.5$, i=4 and $\nabla f_i(x_k)=-2.77$, $x_{k+1}=2.18$

34

Mini-batch vs single-batch

- Is escape property effected by mini-batch size?
- · How large mini-batch size is best for escaping?

33

Mini-batch setting

• Use mini-batches of size 2:

Mini-batch setting

• Use mini-batches of size 2:

34

Mini-batch setting

• Use mini-batches of size 2:

- Larger mini-batch \Rightarrow smaller gradients \Rightarrow worse at escaping
- Single-batch better at escaping

Connection to generalization

 \bullet Argued that individually flat minima generalize better, i.e.,

all $\|\nabla f_i(x)\|_2$ small in region around minima

- SGD more likely to escape if individual gradients not small
- Smaller batch size increases chances of escaping "bad" minima

Have also argued for:

- Good convergence properties towards individually flat minima In summary:
- Single-batch SGD well suited for overparameterized training

35

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Step-sizes

- Diminising step-sizes are needed for convergence in general
- Common static step-size rules
 - ullet redude step-size every K epochs:

$$\gamma_k = \frac{\gamma_0}{1 + \lceil k/K \rceil} \qquad \qquad \gamma_k = \frac{\gamma}{1 + \sqrt{}}$$

where $\lceil k/K \rceil$ increases by 1 every K epochs

• Convergence analysis under smoothness or convexity requires

$$\sum_{k=0}^{\infty} \gamma_k = \infty$$
 and $\sum_{k=0}^{\infty} \gamma_k^2 < \infty$

which is satisfied by first but not second above
• Refined analysis gives requirements

$$\sum_{k=0}^{\infty} \gamma_k = \infty$$
 and $\frac{\sum_{k=0}^{\infty} \gamma_k}{\sum_{k=0}^{\infty} \gamma_k^2} = 1$

which is satisfied by all the above

37

Large gradients

- Fixed step-size rules does not take gradient size into account
- Gradients can be very large:

• Step-size rule

$$\gamma_k = \frac{\gamma_0}{\alpha \|\widetilde{\nabla} f(x_k)\|_2 + 1}$$

with $\gamma_0, \alpha > 0$ gives

- small steps if $\|\widetilde{\nabla} f(x_k)\|_2$ large
- approximately γ_0 steps if $\|\widetilde{\nabla} f(x_k)\|_2$ small

38

40

Combined step-size rule

• Combination the two previous rules

$$\gamma_k = \frac{\gamma_0}{(1 + \psi(\lceil k/K \rceil))(\alpha \|\widetilde{\nabla} f(x_k)\|_2 + 1)}$$

where, e.g., $\psi(x) = \frac{1}{x}$ or $\psi(x) = \frac{1}{\sqrt{x}}$ (as before)

- Properties
 - $\|\widetilde{\nabla} f(x_k)\|_2$ large: small step-sizes
 - $\|\widetilde{\nabla} f(x_k)\|_2$ small: diminshing step-sizes according to $\frac{\gamma_0}{1+\psi(\lceil k/K \rceil)}$

39

Step-size rules and convergence

- Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)
- Step-size parameters: $\psi(x)=0.5\sqrt{x}$, K=50, $\alpha=\gamma_0=0.1$
- Iteration data:

# epoch	step-size	batch norm	full norm
0	$4.8\cdot 10^{-8}$	$2.1 \cdot 10^{7}$	$6.8 \cdot 10^5$
10	$1.4\cdot 10^{-5}$	$7.2 \cdot 10^4$	$1.4\cdot 10^4$
50	0.097	0.31	1.4
100	0.016	0.28	3.2
200	0.012	$6.8\cdot10^{-5}$	0.72
300	0.01	0.33	11.8
500	0.008	0	0.529
700	0.007	$1.2\cdot 10^{-6}$	0.0008
1000	0.006	$3.1\cdot 10^{-6}$	0.0003

- Large initial gradients dampened
- Diminishing step-size gives local convergence

Step-size rules and convergence

- Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)
- Step-size parameters: $\psi(x)=0.5\sqrt{x}$, K=50, $\alpha=0$, $\gamma_0=0.1$
- Iteration data:

# epoch	step-size	batch norm	full norm
1	0.1	$1.2 \cdot 10^{6}$	$6.8 \cdot 10^{5}$
2	-	NaN	NaN
50	-	NaN	NaN
100	-	NaN	NaN
200	-	NaN	NaN
300	-	NaN	NaN
500	-	NaN	NaN
700	-	NaN	NaN
1000	-	NaN	NaN

- No adaptation to large gradients Gradient explodes
- Diminishing step-size does of course not help

40

Step-size rules and convergence

- Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)
- Step-size parameters: $\psi \equiv 0$, $\alpha = \gamma_0 = 0.1$
- Iteration data:

# epoch	step-size	batch norm	full norm
0	$1.4 \cdot 10^{-7}$	$7.0 \cdot 10^{6}$	$4.7 \cdot 10^5$
10	0.004	257	39.4
50	0.10	$6.2 \cdot 10^{-10}$	4.1
100	0.087	1.5	1.3
200	0.089	1.2	0.26
300	0.1	$2.0 \cdot 10^{-12}$	1.3
500	0.1	$5.1\cdot 10^{-12}$	0.198
700	0.1	$2.4 \cdot 10^{-13}$	0.16
1000	0.087	1.5	0.013

- Large initial gradients dampened
- ullet Larger final full norm than first choice since not diminishing γ_k

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

41

Convergence analysis

- Need some inequality that function satisfies to analyze SGD
- · Convexity inequality not applicable in deep learning
- Smoothness inequality not applicable in deep learning in general • ReLU networks are not differentiable and therefore not smooth
 - ullet Tanh networks with smooth loss are cont. diff. \Rightarrow locally smooth
- We have seen that training problem is piece-wise polynomial if
 - L2 loss and piece-wise linear activation functions
 - hinge loss and piece-wise linear activation functions

but does not provide an inequality for proving convergence

Error bound

• In absence of convexity, an error bound is useful in analysis:

$$\delta(f(x) - f(x^*)) \le \|\nabla f(x)\|_2^2$$

that holds locally around solution x^\star with $\delta>0$

- Gradient in error bound can be replaced by

 - $\begin{tabular}{ll} \bullet & {\it sub-gradient for convex nondifferentiable } f \\ \bullet & {\it limiting sub-gradient for nonconvex nondifferentiable } f \\ \end{tabular}$

42

Kurdyka-Lojasiewicz

- Error bound is instance of the Kurdyka-Lojasiewicz (KL) property
- KL property has exponent $\alpha \in [0,1)$, $\alpha = \frac{1}{2}$ gives error bound
- Examples of KL functions:
 - Continuous (on closed domain) semialgebraic functions are KL:

graph
$$f = \bigcup_{i=1}^{r} \left(\bigcap_{j=1}^{q} \{x : h_{ij}(x) = 0\} \cap_{l=1}^{p} \{x : g_{il}(x) < 0\} \right)$$

- graph is union of intersection, where h_{ij} and g_{il} polynomials Continuous piece-wise polynomials (some DL training problems)
- Strongly convex functions
- Often difficult to decide KL-exponent
- Result: descent methods on KL functions converge

 - sublinearly if $\alpha\in(\frac{1}{2},1)$ linearly if $\alpha\in(0,\frac{1}{2}]$ (the error bound regime)

Strongly convex functions satisfy error bound

- $s + \sigma x \in \partial f(x)$ with $s \in \partial g(x)$ for convex $g = f \frac{\sigma}{2} \|\cdot\|_2^2$
- Therefore

$$\begin{split} \|s + \sigma x\|_2^2 &= \|s\|_2^2 + 2\sigma s^T x + \sigma^2 \|x\|_2^2 \\ &\geq \|s\|_2^2 + 2\sigma s^T x^\star + 2\sigma(g(x) - g(x^\star)) + \sigma^2 \|x\|_2^2 \\ &= \|s\|_2^2 + 2\sigma s^T x^\star + \sigma \|x^\star\|_2^2 + 2\sigma(f(x) - f(x^\star)) \\ &= \|s + \sigma x^\star\|_2^2 + 2\sigma(f(x) - f(x^\star)) \\ &\geq 2\sigma(f(x) - f(x^\star)) \end{split}$$

where we used

- subgradient definition $g(x^*) \geq g(x) + s^T(x^* x)$ in first inequality
- nonnegativity of norms in the second inequality

45

Implications of error bound

• Restating error bound for differentiable case

$$\delta(f(x) - f(x^*)) \le \|\nabla f(x)\|_2^2$$

- \bullet Assume it holds for all x in some ball X around solution x^\star
- ullet What can you say about local minima and saddle-points in X?

Implications of error bound

Restating error bound for differentiable case

$$\delta(f(x) - f(x^*)) \le \|\nabla f(x)\|_2^2$$

- \bullet Assume it holds for all x in some ball X around solution x^\star
- ullet What can you say about local minima and saddle-points in X?
- There are none! Proof by contradiction:
 - Assume local minima or saddle-point \bar{x}
 - Then $\nabla f(\bar{x}) = 0 \Rightarrow f(\bar{x}) = f(x^\star)$ and \bar{x} is global minima

46

Convergence analysis – Smoothness and error bound

- Convergence analysis of gradient method
- β -smoothness and error bound assumptions $(f^* = f(x^*))$:

$$\begin{split} f(x_{k+1}) - f^{\star} &\leq f(x_k) - f^{\star} + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta}{2} \|x_k - x_{k+1}\|_2^2 \\ &= f(x_k) - f^{\star} - \gamma_k \|\nabla f(x_k)\|_2^2 + \frac{\beta \gamma_k^2}{2} \|\nabla f(x_k)\|_2^2 \\ &= f(x_k) - f^{\star} - \gamma_k (1 - \frac{\beta \gamma_k}{2}) \|\nabla f(x_k)\|_2^2 \\ &\leq (1 - \gamma_k \delta(1 - \frac{\beta \gamma_k}{2})) (f(x_k) - f^{\star}) \end{split}$$

- β-smoothness of f is used in first inequality
- gradient update $x_{k+1} = x_k \gamma_k \nabla f(x_k)$ in first equality
- error bound is used in the final inequality
- Linear convergence in function values if $\gamma_k \in [\epsilon, \frac{2}{\beta} \epsilon]$, $\epsilon > 0$

Semi-smoothness

- Typical DL training problems are not smooth
 - · E.g.: overparameterized ReLU networks with smooth loss
- But semi-smooth¹ in neighborhood around random initialization²:

$$f(x) \le f(y) + \nabla f(y)^T (x - y) + c||x - y||_2 \sqrt{f(y)} + \frac{\beta}{2} ||x - y||_2^2$$

for some constants c and β

- \bullet Holds locally for large enough c,β if cont. piece-wise polynomial
- Constants and neighborhood quantified in [1]²
- c = 0 gives smoothness
- ullet c small gives close to smoothness but allows nondifferentiable

48

46

Convergence - Error bound and semi-smoothness

- Convergence analysis of gradient descent method
- Assumptions: (c,β) -semi-smooth, δ -error bound, $f^\star=0$ (w.l.o.g.)
- Parameters $c \leq \frac{\sqrt{\delta}\gamma\beta}{2}$ and $\gamma \in (0, \frac{1}{\beta})$:

$$f(x_{k+1})$$

$$\leq f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + c \|x_{k+1} - x_k\| \sqrt{f(x_k)} + \frac{\beta}{2} \|x_{k+1} - x_k\|_2^2$$

$$= f(x_k) - \gamma \|\nabla f(x_k)\|_2^2 + c\gamma \|\nabla f(x_k)\| \sqrt{f(x_k)} + \frac{\beta\gamma^2}{2} \|\nabla f(x_k)\|_2^2$$

$$\leq f(x_k) - \gamma \|\nabla f(x_k)\|_2^2 + \frac{c\gamma}{\sqrt{\delta}} \|\nabla f(x_k)\|^2 + \frac{\beta\gamma^2}{2} \|\nabla f(x_k)\|_2^2$$

$$\leq f(x_k) - \gamma \|\nabla f(x_k)\|_2^2 + \beta\gamma^2 \|\nabla f(x_k)\|^2$$

$$\leq f(x_k) - \gamma (1 - \beta\gamma) \|\nabla f(x_k)\|_2^2$$

$$\leq (1 - c\gamma(1 - \beta\gamma)) f(x_k)$$

which shows linear convergence to 0 loss

- $\bullet\,$ Need the nonsmooth part of upper bound c to be small enough
- · Can analyze SGD in similar manner

Convergence in deep learning

- · Setting: ReLU network, fully connected, smooth loss
- ullet c is small enough when model overparameterized enough $[1]^1$
- Linear convergence (with high prob.) for random initialization [1]
- In practice:
 - β will be big relies on small enough ($\leq \frac{1}{\beta}$) constant step-size need to find "correct" step-size by diminishing rule

 - · need to control steps to not depart from linear convergence region
 - · hopefully achieved by previous step-size rule

50

 $[\]frac{1}{2}$ Semismoothness definition not a standard semismoothness definition $\frac{2}{2}$ [1] A Convergence Theory for Deep Learning via Over-Parameterization. Z. Allen-Zhu et al

 $^{^{1}\,}$ [1] A Convergence Theory for Deep Learning via Over-Parameterization. Z. Allen-Zhu et al.

Stochastic Gradient Descent

Implicit Regularization

Pontus Giselsson

• Variable metric methods

• Convergence to projection point

• Convergence to sharp or flat minima

2

Gradient method interpretation

• Gradient method minimizes quadratic approximation of function

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left(f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2\gamma_k} ||x - x_k||_2^2 \right)$$
$$= \underset{x}{\operatorname{argmin}} \left(\frac{1}{2\gamma_k} ||x - (x_k - \gamma_k \nabla f(x_k))||_2^2 \right)$$
$$= x_k - \gamma_k \nabla f(x_k)$$

• Graphical illustration of one step

3

1

Gradient method interpretation

• Gradient method minimizes quadratic approximation of function

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left(f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2\gamma_k} \|x - x_k\|_2^2 \right)$$
$$= \underset{x}{\operatorname{argmin}} \left(\frac{1}{2\gamma_k} \|x - (x_k - \gamma_k \nabla f(x_k))\|_2^2 \right)$$
$$= x_k - \gamma_k \nabla f(x_k)$$

• Graphical illustration of one step

3

Scaled gradient method

• Quadratic approximation same in all directions due to $\|\cdot\|_2^2$

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left(f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2\gamma_k} ||x - x_k||_2^2 \right)$$

• Scaled gradient method minimizes scaled quadratic approximation

$$\begin{aligned} x_{k+1} &= \operatorname*{argmin}_{x} \left(f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2\gamma_k} \|x - x_k\|_H^2 \right) \\ &= \operatorname*{argmin}_{x} \left(\frac{1}{2\gamma_k} \|x - (x_k - \gamma_k H^{-1} \nabla f(x_k))\|_H^2 \right) \\ &= x_k - \gamma_k H^{-1} \nabla f(x_k) \end{aligned}$$

where H is a positive definite matrix and $\|x\|_H^2 = x^T H x$

- ullet Nominal gradient method obtained by H=I
- $\bullet \ \ \mathsf{Better} \ \mathsf{quadratic} \ \mathsf{approximation} \ (\mathsf{good} \ \mathit{H}) \Rightarrow \mathsf{faster} \ \mathsf{convergence}$

Gradient descent – Example

• (Unscaled) Gradient descent on convex quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Graphical illustration:

Gradient descent - Example

• (Unscaled) Gradient descent on convex quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Graphical illustration:

Gradient descent – Example

• (Unscaled) Gradient descent on convex quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Graphical illustration:

Gradient descent - Example

• (Unscaled) Gradient descent on convex quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Graphical illustration:

Gradient descent - Example

• (Unscaled) Gradient descent on convex quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Graphical illustration:

Gradient descent - Example

• (Unscaled) Gradient descent on convex quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Graphical illustration:

Scaled gradient descent - Example

• Scaled gradient descent on convex quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Scaling $H = \mathbf{diag}(\nabla^2 f) := P$:

5

Scaled gradient descent - Example

• Scaled gradient descent on convex quadratic problem

$$\underset{x}{\text{minimize}} \quad \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Scaling $H = \mathbf{diag}(\nabla^2 f) := P$:

Scaled gradient descent - Example

• Scaled gradient descent on convex quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Scaling $H = \mathbf{diag}(\nabla^2 f) := P$:

Scaled gradient descent - Example

Scaled gradient descent on convex quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Scaling $H = \mathbf{diag}(\nabla^2 f) := P$:

Scaled gradient descent – Example

Scaled gradient descent on convex quadratic problem

$$\underset{x}{\text{minimize}} \quad \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Scaling $H = \mathbf{diag}(\nabla^2 f) := P$:

Scaled gradient descent - Example

• Scaled gradient descent on convex quadratic problem

$$\underset{x}{\text{minimize}} \ \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Scaling $H = \mathbf{diag}(\nabla^2 f) := P$:

How to select metric H?

- ullet A priori: Use a fixed H thoughout iterations
 - can be difficult to find a good performing ${\cal H}$ does not adapt to local geometry
- ullet Adaptively: Iteration-dependent H_k that adapts to local geometry

6

Adaptive metric methods

- ullet Algorithms with full H_k :
 - (Regularized) Newton methods
 - Quasi-Newton methods
- Algorithms with diagonal H_k (in stochastic setting):
 - Adagrad
 - RMSProp
 - Adam
 - Adamax/Adadelta

SGD variations with adaptive diagonal scaling

- Diagonal scaling gives one step-size (learning rate) per variable
- SGD type methods with diagonal $H_k = \mathbf{diag}(h_{1,k}, \dots, h_{N,k})$:

$$x_{k+1} = x_k - \gamma_k H_k^{-1} \widehat{\nabla} f(x_k)$$

- \bullet the inverse is $H_k^{-1} = \mathbf{diag}(\frac{1}{h_{1.k}}, \dots, \frac{1}{h_{N,k}})$
- $\widehat{
 abla} f(x_k)$ is a stochastic gradient approximation
- ullet Methods called variable metric methods since H_k defines a metric
- Introduced to improve convergence compared to SGD
- Can have worse generalization properties?

8

10

9

Metrics – RMSprop and Adam

• Estimate coordinate-wise variance:

$$\hat{v}_k = b_v \hat{v}_{k-1} + (1 - b_v) (\widetilde{\nabla} f(x_{k-1}))^2$$

where $\hat{v}_0 = 0$, $b_v \in (0,1)$

- ullet Metric H_k is chosen (approximately) as standard deviation:
 - RMSprop: biased estimate $H_k = \mathbf{diag}(\sqrt{\hat{v}_k} + \epsilon)$
 - Adam: unbiased estimate $H_k = \mathbf{diag}(\sqrt{rac{\hat{v}_k}{1-b_v^k}} + \epsilon)$
- Intuition:
 - Reduce step size for high variance coordinates
 - Increase step size for low variance coordinates
- Alternative intuition:
 - · Reduce step size for "steep" coordinate directions
 - Increase step size for "flat" coordinate directions

Filtered stochastic gradients

- · Adam also filters stochastic gradients for smoother updates
- Let $\hat{m}_0 = 0$ and $b_m \in (0,1)$, and update

$$\hat{m}_k = b_m \hat{m}_{k-1} + (1 - b_m) \widetilde{\nabla} f(x_{k-1})$$

- Adam uses unbiased estimate: $\frac{\hat{m}_k}{1-b^k}$
- Fixed step-size without filtered gradient

Levelsets of summands

Filtered stochastic gradients

- Adam also filters stochastic gradients for smoother updates
- Let $\hat{m}_0 = 0$ and $b_m \in (0,1)$, and update

$$\hat{m}_k = b_m \hat{m}_{k-1} + (1 - b_m) \widetilde{\nabla} f(x_{k-1})$$

- Adam uses unbiased estimate: $\frac{\hat{m}_k}{1-b^k}$
- Fixed step-size with filtered gradient

Levelsets of summands

Adam – Summary

- Initialize $\hat{m}_0 = \hat{v}_0 = 0$, $b_m, b_v \in (0,1)$, and select $\gamma > 0$
 - 1. $g_k = \widetilde{\nabla} f(x_{k-1})$ (stochastic gradient)
 - 2. $\hat{m}_k = b_m \hat{m}_{k-1} + (1 b_m) g_k$ 3. $\hat{v}_k = b_v \hat{v}_{k-1} + (1 b_v) g_k^2$ 4. $m_k = \hat{m}_k / (1 b_m^k)$

 - 5. $v_k = \hat{v}_k/(1-b_v^k)$
 - 6. $x_{k+1} = x_k \gamma m_k . / (\sqrt{v_k} + \epsilon \mathbf{1})$
- Suggested choices: $b_m=0.9$, $b_v=0.999$, $\epsilon=10^{-8}$, $\gamma=0.001$
- More succinctly

$$x_{k+1} = x_k - \gamma H_k^{-1} m_k$$

where metric $H_k = \mathbf{diag}(\sqrt{v_{k,1}} + \epsilon, \dots, \sqrt{v_{k,n}} + \epsilon)$

12

Adam vs SGD

- Adam designed to converge faster than SGD by adaptive scaling
- Often observed to give worse generalization than SGD
- Two possible reasons for worse generalization:
 - Convergence to larger norm solutions?
 - Convergence to sharper minima?

Outline

- Variable metric methods
- Convergence to projection point
- Convergence to sharp or flat minima

13

14

Generalization in neural networks

ullet Recall: Lipschitz constant L of neural network

$$L = ||W_n||_2 \cdot ||W_{n-1}||_2 \cdots ||W_1||_2$$

or with $\|W_j\|_2$ replaced by $(1+\|W_j\|_2)$ for residual layers

- ullet Can use $\|\theta\|_2$ where $\theta=\{(W_i,b_i)\}_{i=1}^n$ as proxy
- Overparameterized networks
 - · Infinitely many solutions exist
 - Want a solution with small $\|\theta\|_2$ for good generalization

Explicit vs implicit regularization

 \bullet Tikhonov adds $\|\cdot\|_2^2$ norm penalty for better generalization

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i) + \frac{\lambda}{2} \|\theta\|_2^2$$

which gives a smaller $\boldsymbol{\theta}$ and is a form of explicit regularization

ullet Deep learning has no explicit regularization \Rightarrow training problem:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

with many 0-loss solutions in overparameterized setting

• Implicit regularization if algorithm finds small norm solution

15

17

16

(S)GD limit points

- Assume overparameterized convex least squares problem
- Gradient descent converges to projection point of initial point
- If SGD converges, it converges to same projection point

Least squares

• Consider least squares problem of the form

$$\min_{x} \min_{x} \frac{1}{2} ||Ax - b||_{2}^{2}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, m < n, and $\exists \bar{x}$ such that $A\bar{x} = b$

- Problem is overparameterized and has many solutions
- ullet Since m < n, solution set is

$$X := \{x : Ax = b\}$$

which is (at least) n-m-dimensional affine set

18

Gradient method convergence to projection point

• Will show that scaled gradient method

$$x_{k+1} = x_k - \gamma_k H^{-1} \nabla f(x_k)$$

converges to $\|\cdot\|_H$ -norm projection onto solution set from x_0

• Means that scaled gradient method converges to solution of

$$\begin{array}{ll}
\text{minimize}_x & \|x - x_0\|_H^2 \\
\text{subject to} & Ax = b
\end{array}$$

where H decides metric in which to measure distance from x_{0}

 $\bullet \ \ \mbox{If } x_0=0,$ we get minimum $\|\cdot\|_H\mbox{-norm}$ solution in $\{x:Ax=b\}$

Characterizing projection point

• The unique projection point $\hat{x} = \operatorname*{argmin}_{x \in X} (\|x - x_0\|_H^2)$ if and only if

$$H\hat{x} - Hx_0 \in \mathcal{R}(A^T)$$
 and $A\hat{x} = b$

where $\mathcal{R}(A^T)$ is the range space of A^T

• The range space is $\mathcal{R}(A^T) = \{v \in \mathbb{R}^n : v = A^T \lambda \text{ and } \lambda \in \mathbb{R}^m\}$

19

Convergence to projection point

• The scaled gradient method can be written as

$$Hx_{k+1} = Hx_k - \gamma_k A^T (Ax_k - b),$$

if all $\gamma_k>\epsilon>0$ are small enough, it converges to a solution $\bar x$:

$$x_k \to \bar{x} \qquad \text{and} \qquad A\bar{x} = b$$

• Letting $\lambda_k = -\sum_{l=0}^k \gamma_l (Ax_l - b) \in \mathbb{R}^m$ and unfolding iteration:

$$Hx_{k+1} - Hx_0 = -\sum_{l=0}^{k} \gamma_l A^T (Ax_l - b) = A^T \lambda_k \in \mathcal{R}(A^T)$$

ullet In the limit $x_k o ar x$, we get

$$H\bar{x} - Hx_0 \in \mathcal{R}(A^T)$$

which with $A\bar{\boldsymbol{x}}=\boldsymbol{b}$ gives optimality conditions for projection

• If $x_0 = 0$, the algorithm converges to $\operatorname{argmin}(\|x\|_H)$

21

Graphical interpretation

- What happens with scaled gradient method?
- Solution set X extends infinitely
 - \bullet sequence is perpendicular to X in scalar product $(Hx)^Ty$
 - algorithm converges to projection point $\operatorname{argmin}_{x \in X}(\|x x_0\|_H)$

22

SGD - Convergence to projection point

• Least squares problem on finite sum form

minimize
$$\frac{1}{2} ||Ax - b||_2^2 = \frac{1}{2} \sum_{i=1}^m (a_i^T x - b_i)^2$$

where $A = [a_1, \ldots, a_m]^T$

• Applying single-batch scaled SGD:

$$x_{k+1} = x_k - \gamma_k H^{-1} a_{i_k} (a_{i_k}^T x_k - b_{i_k})$$

• The iteration can be unfolded as

$$Hx_{k+1} - Hx_0 = -\sum_{l=0}^{k} a_{i_l} \gamma_l (a_{i_l}^T x_l - b_{i_l}) = A^T \begin{bmatrix} -\sum_{l=0}^{k} \chi_l \left(\gamma_l (a_1^T x_l - b_1) \right) \\ \vdots \\ -\sum_{l=0}^{k} \chi_l \left(\gamma_l (a_m^T x_l - b_m) \right) \end{bmatrix}$$

where $\underset{i_{l}=j}{\chi}(v)=v$ if $i_{l}=j$, else 0, so $Hx_{k+1}-Hx_{0}\in\mathcal{R}(A^{T})$

• Assume $x_k \to \bar{x}$ with $A\bar{x} = b \Rightarrow$ convergence to projection point

SGD vs Adam

This analysis hints towards that SGD gives smaller norm solutions and better generalization than variable metric Adam. Is this true?

24

How about deep learning?

- The analysis does not carry over to nonconvex DL settings
- However, often convergence to similar norm as initial point

How to select initial point?

- · For standard networks:
 - To avoid vanishing and exploding gradient, we want:

$$L\|W_j\|_2\approx 1 \qquad \text{and} \qquad \|b_j\|_2 \text{ small}$$

where L is average activation Lipschitz constant (L=0.5 for ReLU)

- Initialization for ReLU:
 - $(W_j)_{il} \sim \mathcal{N}(0, \frac{2}{\sqrt{m_j n_j}})$ gives average $\|W_j\|_2 = 2$
 - $(b_j)_i$ small or 0
- · For residual networks:
 - To avoid vanishing and exploding gradient, we want

$$L(1+\|W_j\|_2) pprox 1$$
 and $\|b_j\|_2$ small

where L is average activation Lipschitz constant

· Use smaller initilization than for standard networks

Initialization in next example

- ullet Set scaling of weights by σ
- For the residual layers (all square layers)
 - $(W_j)_{ij} \sim \mathcal{N}(0,1)$, normalize W_j , scale by σ
 - $(b_j)_i \sim \mathcal{N}(0,1)$, normalize b_j , scale by σ
- For the non-residual layers (non-square layers)
 - $(W_j)_{ij} \sim \mathcal{N}(0,1)$, normalize W_j , scale by $\max(1,\sigma)$ • $(b_j)_i \sim \mathcal{N}(0,1)$, normalize b_j , scale by $\max(1,\sigma)$
 - \bullet use $\max(1,\sigma)$ for gradient to not vanish in non-residual layers

Convergence from different initial point

- Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
- L_m is Lipschitz constant in x of final model $m(x;\theta)$
- ullet Initialization scaling σ : 0.01 Algorithm: SGD

Convergence from different initial point

- Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
- L_m is Lipschitz constant in x of final model $m(x;\theta)$
- ullet Initialization scaling σ : 0.1 Algorithm: SGD

Convergence from different initial point

- Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
- \bullet L_m is Lipschitz constant in x of final model $m(x;\theta)$
- ullet Initialization scaling σ : 1 Algorithm: SGD

28

28

Convergence from different initial point

- Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
- L_m is Lipschitz constant in x of final model $m(x;\theta)$
- Initialization scaling σ : 5 Algorithm: SGD

 \bullet L_m is Lipschitz constant in x of final model $m(x;\theta)$

Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Initialization scaling σ : 10 Algorithm: SGD

28

Convergence from different initial point

- Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
- \bullet L_m is Lipschitz constant in x of final model $m(x;\theta)$
- ullet Initialization scaling σ : 0.01 Algorithm: Adam

$$\|\theta_0\|_2 = 3.6$$
 $L_m = 9.3 \cdot 10^7$ $\|\theta_{\text{end}}\|_2 = 17.4$ $loss(\theta_{\text{end}}) = 0.12$

28

Convergence from different initial point

- Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
- \bullet L_m is Lipschitz constant in x of final model $m(x;\theta)$
- Initialization scaling σ : 0.1 Algorithm: Adam

2

Convergence from different initial point

- Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
- L_m is Lipschitz constant in x of final model $m(x;\theta)$
- \bullet Initialization scaling $\sigma{:}\ 1$ Algorithm: Adam

Convergence from different initial point

- Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
- \bullet L_m is Lipschitz constant in x of final model $m(x;\theta)$
- \bullet Initialization scaling $\sigma{:}$ 5 Algorithm: Adam

28

Convergence from different initial point

- Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
- L_m is Lipschitz constant in x of final model $m(x;\theta)$
- ullet Initialization scaling σ : 10 Algorithm: Adam

 $\|\theta_0\|_2 = 109.278$ $L_m = 3.8 \cdot 10^{16}$ $\|\theta_{\mathrm{end}}\|_2 = 109.282 \ \mathrm{loss}(\theta_{\mathrm{end}}) = 0$

Conclusions

- Choice of initial point is significant for generalization
- ullet Here, Adam gives models with larger Lipschitz constant L_m

	Adam				SGD		
scaling σ	$\ \theta_0\ _2$	$\ \theta_{\mathrm{end}}\ _2$	L_m	$\ \theta_0\ _2$	$\ \theta_{\mathrm{end}}\ _2$	L_m	
0.01	3.6	17.4	$9.3\cdot 10^7$	3.57	9.9	$8.4\cdot 10^4$	
0.1	3.9	16.2	$4.5\cdot 10^7$	3.8	10.4	$2.0\cdot 10^5$	
1	10.7	18.7	$4.3\cdot 10^7$	10.8	14.4	$2.4\cdot 10^5$	
5	54.61	54.61	$1.9\cdot 10^{12}$	54.2	49.5	$1.9\cdot 10^{12}$	
10	109.278	109.282	$3.8\cdot 10^{16}$	107.2	96.2	$1.6\cdot 10^{15}$	

28

29

Outline

- · Variable metric methods
- Convergence to projection point
- Convergence to sharp or flat minima

Convergence to sharp or flat minima

- Have argued flat minima generalize well, sharp minima poorly
- Is Adam or SGD most likely to converge to sharp minimum?

30

31

Variable metric methods - Interpretation

Variable metric methods

$$x_{k+1} = x_k - \gamma_k H_k^{-1} \nabla f(x_k) \tag{1}$$

can be interpreted as taking pure (stochastic) gradient step on

$$f_{H_k} = (f \circ H_k^{-1/2})(x)$$

 \bullet Why? Gradient method on f_{H_k} is

$$v_{k+1} = v_k - \gamma_k \nabla f_{H_k}(v_k) = v_k - \gamma_k H_k^{-1/2} f(H_k^{-1/2} v_k)$$

which after

- multiplication with $H^{-1/2}$
- ullet and change of variables according to $x_k = H_k^{-1/2} v_k$ gives (1)

Interpretation consequence

- $\bullet\,$ Variable metric methods choose H_k to make f_{H_k} well conditioned
- Consequences:
 - $\bullet\,$ Sharp minima in f become less sharp in f_{H_k}
- (Flat minima in f become less flat in f_{H_k})
- Adam maybe more likely to converge to sharp minima than SGD
- · This can be a reason for worse generalization in Adam than SGD

33

Adam vs SGD - Flat or sharp minima

- \bullet Data from previous classification example with $\sigma=10$
- \bullet Loss landscape around final point θ_{end} for SGD and Adam
- SGD and Adam reach 0 loss but Adam minimum much sharper
- $\bullet \;$ Same θ_1, θ_2 directions, same axes, $z_{\rm max} = 1000$

SGD

Adam

Adam vs SGD - Flat or sharp minima

- \bullet Data from previous classification example with $\sigma=10$
- \bullet Loss landscape around final point θ_{end} for SGD and Adam
- SGD and Adam reach 0 loss but Adam minimum much sharper
- \bullet Same θ_1,θ_2 directions, same axes, $z_{\rm max}=100000$

SGD

Adam

34

Adam vs SGD – Flat or sharp minima $\bullet\,$ Data from previous classification example with $\sigma=10$ \bullet Loss landscape around final point θ_{end} for SGD and Adam $\bullet\,$ SGD and Adam reach 0 loss but Adam minimum much sharper $\bullet \;$ Same θ_1,θ_2 directions, same axes, $z_{\rm max}=10^9$ SGD Adam

Outline

Recap

Pontus Giselsson

- · Convex analysis
- · Composite optimization and duality
- Solving composite optimization problems Algorithms

1

3

2

Convex Analysis

Convex sets

 $\bullet \ \ {\rm A \ set} \ C \ {\rm is \ convex} \ {\rm if \ for \ every} \ x,y \in C \ {\rm and} \ \theta \in [0,1] :$

$$\theta x + (1 - \theta)y \in C$$

ullet "Every line segment that connect any two points in C is in C"

· Will assume that all sets are nonempty and closed

4

Separating hyperplane theorem

- \bullet Suppose that $R,S\subseteq\mathbb{R}^n$ are two non-intersecting convex sets
- $\bullet\,$ Then there exists hyperplane with S and R in opposite halves

Example

R S Counter-example

R nonconvex

 \bullet Mathematical formulation: There exists $s \neq 0$ and r such that

$$s^T x \leq r \qquad \qquad \text{for all } x \in R$$

$$s^T x \geq r \qquad \qquad \text{for all } x \in S$$

 \bullet The hyperplane $\{x:s^Tx=r\}$ is called separating hyperplane

A strictly separating hyperplane theorem

- Suppose that $R,S\subseteq\mathbb{R}^n$ are non-intersecting closed and convex sets and that one of them is compact (closed and bounded)
- Then there exists hyperplane with strict separation

 $R = \{(x, y) : y \ge x^{-1}, x > 0\}$ $S = \{(x, y) : y \le 0\}$

 $\begin{array}{c} {\rm Counter\ example} \\ R,S\ {\rm not\ compact} \end{array}$

ullet Mathematical formulation: There exists $s \neq 0$ and r such that

$$\begin{split} s^T x < r & \text{ for all } x \in R \\ s^T x > r & \text{ for all } x \in S \end{split}$$

6

$\begin{cal}Consequence -S is intersection of halfspaces \end{cal}$

a closed convex set S is the intersection of all halfspaces that contain it

proof:

- \bullet let H be the intersection of all halfspaces containing S
- $\bullet \ \Rightarrow : \ \mathsf{obviously} \ x \in S \Rightarrow x \in H$
- \Leftarrow : assume $x \not\in S$, since S closed and convex and x compact (a point), there exists a strictly separating hyperplane, i.e., $x \not\in H$:

Supporting hyperplanes

Supporting hyperplanes touch set and have full set on one side:

- \bullet We call the halfspace that contains the set supporting halfspace
- ullet s is called normal vector to S at x
- \bullet Definition: Hyperplane $\{y: s^Ty = r\}$ supports S at $x \in \operatorname{bd} S$ if

$$s^Ty \leq r \text{ for all } y \in S \qquad \text{and} \qquad s^Tx = s$$

Supporting hyperplane theorem

Let S be a nonempty convex set and let $x \in bd(S)$. Then there exists a supporting hyperplane to ${\cal S}$ at x.

- Does not exist for all point on boundary for nonconvex sets
- Many supporting hyperplanes exist for points of nonsmoothness

9

11

Connection to duality and subgradients

Supporting hyperplanes are at the core of convex analysis:

- \bullet Subgradients define supporting hyperplanes to $\mathrm{epi} f$
- ullet Conjugate functions define supporting hyperplanes to ${
 m epi}f$
- Duality is based on subgradients, hence supporting hyperplanes:

 - Consider $\operatorname{minimize}_x(f(x)+g(x))$ and primal solution x^* Dual problem $\operatorname{minimize}_\mu(f^*(\mu)+g^*(-\mu))$ solution μ^* satisfies

$$\mu^* \in \partial f(x^*)$$
 $-\mu^* \in \partial g(x^*)$

i..e, dual problem finds subgradients at optimal point1

 $^{1} \text{When solving } \min_{x} (f(Lx) + g(x)) \text{ dual problem finds } \mu \text{ such that } L^{T}\mu \in \partial (f \circ L)(x) \text{ and } -L^{T}\mu \in \partial g(x).$

Convex functions

 \bullet Graph below line connecting any two pairs (x,f(x)) and (y,f(y))

nonconvex function

• Function $f \,:\, \mathbb{R}^n \to \overline{\mathbb{R}}$ is convex if for all $x,y \in \mathbb{R}^n$ and $\theta \in [0,1]$:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

(in extended valued arithmetics)

ullet A function f is concave if -f is convex

Epigraphs and convexity

- Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$
- \bullet Then f is convex if and only $\mathrm{epi} f$ is a convex set in $\mathbb{R}^n \times \mathbb{R}$

ullet f is called closed (lower semi-continuous) if $\mathrm{epi}f$ is closed set

12

First-order condition for convexity

ullet A differentiable function $f:\mathbb{R}^n o \mathbb{R}$ is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x,y \in \mathbb{R}^n$

- Function f has for all $x \in \mathbb{R}^n$ an affine minorizer that:
 - has slope s defined by ∇f
 - coincides with function f at x
 - $\bullet\,$ is supporting hyperplane to epigraph of f
 - \bullet defines normal $(\nabla f(x),-1)$ to epigraph of f

Subdifferentials and subgradients

ullet Subgradients s define affine minorizers to the function that:

- ullet coincide with f at x
- \bullet define normal vector (s,-1) to epigraph of f
- \bullet can be one of many affine minorizers at nondifferentiable points x
- Subdifferential of $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ at x is set of vectors s satisfying

$$f(y) \ge f(x) + s^T(y - x)$$
 for all $y \in \mathbb{R}^n$, (1)

- Notation:
 - subdifferential: $\partial f: \mathbb{R}^n \to 2^{\mathbb{R}^n}$ (power-set notation $2^{\mathbb{R}^n}$)
 - subdifferential at x: $\partial f(x) = \{s : (1) \text{ holds}\}$
 - ullet elements $s\in\partial f(x)$ are called *subgradients* of f at x

Subgradient existence - Nonconvex example

• Function can be differentiable at x but $\partial f(x) = \emptyset$

- x_1 : $\partial f(x_1) = \{0\}$, $\nabla f(x_1) = 0$ x_2 : $\partial f(x_2) = \emptyset$, $\nabla f(x_2) = 0$ x_3 : $\partial f(x_3) = \emptyset$, $\nabla f(x_3) = 0$

- Gradient is a local concept, subdifferential is a global property

Existence for extended-valued convex functions

- \bullet Let $f~:~\mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be convex, then:
 - 1. Subgradients exist for all x in relative interior of $\mathrm{dom} f$
 - 2. Subgradients sometimes exist for x on boundary of $\mathrm{dom}f$
- 3. No subgradient exists for x outside $\mathrm{dom} f$
- Examples for second case, boundary points of dom f:

ullet No subgradient (affine minorizer) exists for left function at x=1

15

Fermat's rule

Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$, then x minimizes f if and only if $0 \in \partial f(x)$

ullet Proof: x minimizes f if and only if

$$f(y) \geq f(x) + 0^T (y-x) \quad \text{for all } y \in \mathbb{R}^n$$

which by definition of subdifferential is equivalent to $0\in\partial f(x)$

• Example: several subgradients at solution, including 0

Example:

Fermat's rule - Nonconvex example

• $\partial f(x_1) = 0$ and $\nabla f(x_1) = 0$ (global minimum) • $\partial f(x_2) = \emptyset$ and $\nabla f(x_2) = 0$ (local minimum)

• Fermat's rule holds also for nonconvex functions

- ullet For nonconvex f, we can typically only hope to find local minima

17

Subdifferential calculus rules

- ullet Subdifferential of sum $\partial (f_1+f_2)$
- ullet Subdifferential of composition with matrix $\partial(g\circ L)$

Subdifferential of sum

If f_1, f_2 closed convex and relint $dom f_1 \cap relint dom f_2 \neq \emptyset$: $\partial(f_1 + f_2) = \partial f_1 + \partial f_2$

• One direction always holds: if $x \in \text{dom}\partial f_1 \cap \text{dom}\partial f_2$:

$$\partial (f_1 + f_2)(x) \supseteq \partial f_1(x) + \partial f_2(x)$$

Proof: let $s_i \in \partial f_i(x)$, add subdifferential definitions:

$$f_1(y) + f_2(y) \ge f_1(x) + f_2(x) + (s_1 + s_2)^T (y - x)$$

i.e. $s_1+s_2\in\partial(f_1+f_2)(x)$

ullet If f_1 and f_2 differentiable, we have (without convexity of f)

$$\nabla(f_1 + f_2) = \nabla f_1 + \nabla f_2$$

19

20

18

Subdifferential of composition

If f closed convex and relint $dom(f \circ L) \neq \emptyset$: $\partial (f \circ L)(x) = L^T \partial f(Lx)$

ullet One direction always holds: If $Lx\in \mathrm{dom} f$, then

$$\partial (f \circ L)(x) \supseteq L^T \partial f(Lx)$$

Proof: let $s \in \partial f(Lx)$, then by definition of subgradient of f:

$$(f\circ L)(y)\geq (f\circ L)(x)+s^T(Ly-Lx)=(f\circ L)(x)+(L^Ts)^T(y-x)$$
 i.e., $L^Ts\in\partial(f\circ L)(x)$

• If f differentiable, we have chain rule (without convexity of f)

$$\nabla (f \circ L)(x) = L^T \nabla f(Lx)$$

A sufficient optimality condition

Let $f: \mathbb{R}^m \to \overline{\mathbb{R}}$, $g: \mathbb{R}^n \to \overline{\mathbb{R}}$, and $L \in \mathbb{R}^{m \times n}$ then:

minimize
$$f(Lx) + g(x)$$
 (1)

is solved by every $x \in \mathbb{R}^n$ that satisfies

$$0 \in L^T \partial f(Lx) + \partial g(x) \tag{2}$$

• Subdifferential calculus inclusions say:

$$0 \in L^T \partial f(Lx) + \partial g(x) \subseteq \partial ((f \circ L)(x) + g(x))$$

which by Fermat's rule is equivalent to x solution to (1)

Note: (1) can have solution but no x exists that satisfies (2)

22

A necessary and sufficient optimality condition

Let $f: \mathbb{R}^m \to \overline{\mathbb{R}}, g: \mathbb{R}^n \to \overline{\mathbb{R}}, L \in \mathbb{R}^{m \times n}$ with f, g closed convex and assume relint $dom(f \circ L) \cap relint dom g \neq \emptyset$ then:

minimize
$$f(Lx) + g(x)$$
 (1)

is solved by $x \in \mathbb{R}^n$ if and only if x satisfies

$$0 \in L^T \partial f(Lx) + \partial g(x) \tag{2}$$

• Subdifferential calculus equality rules say:

$$0 \in L^T \partial f(Lx) + \partial g(x) = \partial ((f \circ L)(x) + g(x))$$

which by Fermat's rule is equivalent to x solution to (1)

• Algorithms search for x that satisfy $0 \in L^T \partial f(Lx) + \partial g(x)$

Evaluating subgradients of convex functions

· Obviously need to evaluate subdifferentials to solve

$$0 \in L^T \partial f(Lx) + \partial g(x)$$

- Explicit evaluation:
 - ullet If function is differentiable: abla f (unique)
 - If function is nondifferentiable: compute element in ∂f
- Implicit evaluation:
 - Proximal operator (specific element of subdifferential)

23

Proximal operator

Proximal operator of (convex) g defined as:

$$\operatorname{prox}_{\gamma g}(z) = \operatorname{argmin}(g(x) + \frac{1}{2\gamma} ||x - z||_2^2)$$

where $\gamma > 0$ is a parameter

- Evaluating prox requires solving optimization problem
- \bullet Objective is strongly convex \Rightarrow solution exists and is unique

Prox evaluates the subdifferential

 \bullet Fermat's rule on prox definition: $x = \mathrm{prox}_{\gamma g}(z)$ if and only if

$$0 \in \partial g(x) + \gamma^{-1}(x-z) \quad \Leftrightarrow \quad \gamma^{-1}(z-x) \in \partial g(x)$$

Hence, $\gamma^{-1}(z-x)$ is element in $\partial g(x)$

- A subgradient in $\partial g(x)$ where $x = \text{prox}_{\gamma q}(z)$ is computed
- ullet Often used in algorithms when g nonsmooth (no gradient exists)

25

27

Conjugate functions

 \bullet The conjugate function of $f:\mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is defined as

$$f^*(s) := \sup_{x \to 0} (s^T x - f(x))$$

• Implicit definition via optimization problem

Conjugate interpretation

• Conjugate $f^*(s)$ defines affine minorizer to f with slope s:

where $f^{\ast}(s)$ decides the constant offset to have support at x^{\ast}

- "Affine minorizor generator: Pick slope s, get offset for support" Why? Consider $f^*(s) = \sup_x \left(s^T x f(x) \right)$ with maximizer x^* :

$$f^*(s) = s^T x^* - f(x^*) \qquad \Leftrightarrow \qquad f^*(s) \ge s^T x - f(x) \text{ for all } x$$

$$\Leftrightarrow \qquad f(x) \ge s^T x - f^*(s) \text{ for all } x$$

 $\bullet \ \, \mathsf{Support} \,\, \mathsf{at} \,\, x^* \,\, \mathsf{since} \,\, f(x^*) = s^T x^* - f^*(s)$

28

26

Fenchel Young's equality

• Going back to conjugate interpretation:

- Fenchel's inequality: $f(x) \ge s^T x f^*(s)$ for all x, s
- Fenchel-Young's equality and equivalence:

$$f(x^*) = s^T x^* - f^*(s)$$
 holds if and only if $s \in \partial f(x^*)$

A subdifferential formula

Assume f closed convex, then $\partial f(x) = \operatorname{Argmax}_s(s^T x - f^*(s))$

• Since
$$f^{**}=f$$
, we have $f(x)=\sup_s(x^Ts-f^*(s))$ and
$$s^*\in \operatorname*{Argmax}_s(x^Ts-f^*(s)) \quad \Longleftrightarrow \quad f(x)=x^Ts^*-f^*(s^*)$$

· The last equivalence is Fenchel-Young

Subdifferential of conjugate - Inversion formula

Suppose f closed convex, then $s \in \partial f(x) \Longleftrightarrow x \in \partial f^*(s)$

- Consequence of Fenchel-Young
- ullet Another way to write the result is that for closed convex f:

$$\partial f^* = (\partial f)^{-1}$$

(Definition of inverse of set-valued $A: x \in A^{-1}u \iff u \in Ax$)

Strong convexity

- Let $\sigma > 0$
- A function f is σ -strongly convex if $f \frac{\sigma}{2} \| \cdot \|_2^2$ is convex
- Alternative equivalent definition of σ -strong convexity:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) - \frac{\sigma}{2}\theta(1 - \theta)||x - y||^2$$

holds for every $x,y\in\mathbb{R}^n$ and $\theta\in[0,1]$

- Strongly convex functions are strictly convex and convex
- Example: f 2-strongly convex since $f \|\cdot\|_2^2$ convex:

First-order condition for strong convexity

- ullet Let $f:\mathbb{R}^n o \mathbb{R}$ be differentiable
- f is σ -strongly convex with $\sigma>0$ if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\sigma}{2} ||x - y||_2^2$$

for all $x,y\in\mathbb{R}^n$

- Function f has for all $x \in \mathbb{R}^n$ a quadratic minorizer that:
 - ullet has curvature defined by σ
 - coincides with function f at x
 - defines normal $(\nabla f(x), -1)$ to epigraph of f

33

Smoothness

• A function is called β -smooth if its gradient is β -Lipschitz:

$$\|\nabla f(x) - \nabla f(y)\|_2 \le \beta \|x - y\|_2$$

for all $x,y\in\mathbb{R}^n$ (it is not necessarily convex)

• Alternative equivalent definition of β -smoothness

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y) - \frac{\beta}{2}\theta(1 - \theta)\|x - y\|^2$$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) + \frac{\beta}{2}\theta(1 - \theta)\|x - y\|^2$$

hold for every $x,y\in\mathbb{R}^n$ and $\theta\in[0,1]$

- Smoothness does not imply convexity
- Example:

34

First-order condition for smoothness

• f is β -smooth with $\beta \geq 0$ if and only if

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||x - y||_2^2$$

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) - \frac{\beta}{2} ||x - y||_2^2$$

for all $x, y \in \mathbb{R}^n$

- $\bullet\,$ Quadratic upper/lower bounds with curvatures defined by β
- ullet Quadratic bounds coincide with function f at x

35

First-order condition for smooth convex

• f is β -smooth with $\beta \geq 0$ and convex if and only if

$$f(y) \le f(x) + \nabla f(x)^{T} (y - x) + \frac{\beta}{2} ||x - y||_{2}^{2}$$

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x)$$

for all $x,y\in\mathbb{R}^n$

- Quadratic upper bound and affine lower bound
- ullet Bounds coincide with function f at x
- Quadratic upper bound is called descent lemma

36

Duality correspondance

Let $f:\mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$. Then the following are equivalent:

- (i) f is closed and σ -strongly convex
- (ii) ∂f is maximally monotone and $\sigma\text{-strongly}$ monotone
- (iii) ∇f^* is σ -cocoercive
- (iv) ∇f^* is maximally monotone and $\frac{1}{\sigma}$ -Lipschitz continuous
- (v) f^* is closed convex and satisfies descent lemma (is $\frac{1}{\sigma}$ -smooth)

where $\nabla f^*:\mathbb{R}^n o \mathbb{R}^n$ and $f^*:\mathbb{R}^n o \mathbb{R}$

Comments:

- \bullet Relation (i) \Leftrightarrow (v) most important for us
- $\bullet \; \operatorname{Since} \; f = f^{**} \; \operatorname{the} \; \operatorname{result} \; \operatorname{holds} \; \operatorname{with} \; f \; \operatorname{and} \; f^{*} \; \operatorname{interchanged}$
- Full proof available on course webpage

Composite Optimization

38

Composite optimization

We consider composite optimization problems of the form

$$minimize f(Lx) + g(x)$$

Optimality conditions and dual problem

- \bullet Assume f,g closed convex and that CQ holds
- Problem minimize_x(f(Lx) + g(x)) is solved by x iff $0 \in L^T \partial f(Lx) + \partial g(x)$

 $0 \in L^T \underbrace{\partial f(Lx)}_{"} + \partial g(x)$

where dual variable $\boldsymbol{\mu}$ has been defined

Primal dual necessary and sufficient optimality conditions:

 $\begin{cases} \mu \in \partial f(Lx) \\ -L^T \mu \in \partial g(x) \end{cases} \qquad \begin{cases} Lx \in \partial f^*(\mu) \\ -L^* \mu \in \partial g(x) \end{cases}$ $\begin{cases} \mu \in \partial f(Lx) \\ x \in \partial g^*(-L^T \mu) \end{cases} \qquad \begin{cases} Lx \in \partial f^*(\mu) \\ x \in \partial g^*(-L^T \mu) \end{cases}$

Dual optimality condition

$$0 \in \partial f^*(\mu) + \partial (g^* \circ -L^T)(\mu) \tag{1}$$

solves dual problem minimize_{μ} $f^*(\mu) + g^*(-L^T\mu)$

- If CQ-D holds, all dual problem solutions satisfy (1)
- Dual searches for μ such that $L^T\mu\in\partial f(x)$ and $-L^T\mu\in\partial g(x)$

Solving the primal via the dual

- Why solve dual? Sometimes easier to solve than primal
- Only interesting if primal solution can be recovered
- ullet Assume f,g closed convex and CQ
- Assume optimal dual μ known: $0 \in \partial f^*(\mu) + \partial (g^* \circ -L^T)(\mu)$
- ullet Optimal primal x must satisfy any and all primal-dual conditions:

$$\begin{cases} \mu \in \partial f(Lx) & \left\{ Lx \in \partial f^*(\mu) \\ -L^T \mu \in \partial g(x) \right\} & \left\{ Lx \in \partial f^*(\mu) \\ \mu \in \partial f(Lx) & \left\{ Lx \in \partial f^*(\mu) \\ x \in \partial g^*(-L^T \mu) \right\} \end{cases}$$

- ullet If one of these uniquely characterizes x, then must be solution:

 - $\begin{array}{l} \bullet \ \partial g^* \ \text{is differentiable at} \ -L^T \mu \ \text{for dual solution} \ \mu \\ \bullet \ \partial f^* \ \text{is differentiable at dual solution} \ \mu \ \text{and} \ L \ \text{invertible} \end{array}$

41

43

Algorithms

42

Proximal gradient method

- Consider minimize f(x) + g(x) where
 - f is β -smooth $f: \mathbb{R}^n \to \mathbb{R}$ (not necessarily convex)
 - a is closed convex
- Due to β -smoothness of f, we have

$$f(y) + g(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||y - x||_2^2 + g(y)$$

for all $x,y\in\mathbb{R}^n$, i.e., r.h.s. is majorizing function for fixed x

• Majorization minimization with majorizer if $\gamma_k \in [\epsilon, \beta^{-1}]$, $\epsilon > 0$:

$$\begin{split} x_{k+1} &= \operatorname*{argmin}_y \left(f(x_k) + \nabla f(x_k)^T (y-x) + \tfrac{1}{2\gamma_k} \|y-x_k\|_2^2 + g(y) \right) \\ &= \operatorname*{argmin}_y \left(g(y) + \tfrac{1}{2\gamma_k} \|y-(x_k-\gamma_k \nabla f(x_k))\|_2^2 \right) \\ &= \operatorname*{prox}_{\gamma_k g} (x_k - \gamma_k \nabla f(x_k)) \end{split}$$

gives proximal gradient method

Proximal gradient - Fixed-points

- Denote $T_{PG}^{\gamma} := \operatorname{prox}_{\gamma g}(I \gamma \nabla f)$, gives algorithm $x_{k+1} = T_{PG}^{\gamma} x_k$
- · Proximal gradient fixed-point set definition

$$\mathrm{fix}T_{\mathrm{PG}}^{\gamma} = \{x: x = T_{\mathrm{PG}}^{\gamma}x\} = \{x: x = \mathrm{prox}_{\gamma g}(x - \gamma \nabla f(x))\}$$

i.e., set of points for which $x_{k+1} = x_k$

Let
$$\gamma>0$$
. Then $\bar{x}\in \mathrm{fix}T_{\mathrm{PG}}^{\gamma}$ if and only if $0\in\partial g(\bar{x})+\nabla f(\bar{x}).$

- Consequence: fixed-point set same for all $\gamma>0$
- We call inclusion $0 \in \partial g(\bar{x}) + \nabla f(\bar{x})$ fixed-point characterization
 - For convex problems: global solutions
 - For nonconvex problems: critical points

44

Applying proximal gradient to primal problems

Problem minimize f(x) + g(x):

- Assumptions:
 - f β-smooth
 - g closed convex and prox friendly¹
 - $\gamma_k \in [\epsilon, \frac{2}{\beta} \epsilon]$
- Algorithm: $x_{k+1} = \text{prox}_{\gamma_k g}(x_k \gamma_k \nabla f(x_k))$

Problem minimize f(Lx) + g(x):

- Assumptions:
 - f β -smooth (implies $f \circ L$ $\beta \|L\|_2^2$ -smooth)
 - g closed convex and prox friendly
 - $\gamma_k \in [\epsilon, \frac{2}{\beta \|L\|_2^2} \epsilon]$
- Gradient $\nabla (f \circ L)(x) = L^T \nabla f(Lx)$
- Algorithm: $x_{k+1} = \text{prox}_{\gamma_k g}(x_k \gamma_k L^T \nabla f(Lx_k))$

 1 Prox friendly: proximal operator cheap to evaluate, e.g., g separable

Applying proximal gradient to dual problem

Dual problem minimize $f^*(\nu) + g^*(-L^T\nu)$:

- Assumptions:
 - ullet f closed convex and prox friendly
 - $g \ \sigma$ -strongly convex (which implies $g^* \circ -L^T \ \frac{\|L\|_2^2}{\sigma}$ -smooth)
 - $\gamma_k \in [\epsilon, \frac{\bar{2}\sigma}{\|L\|_2^2} \epsilon]$
- \bullet Gradient: $\nabla (g^* \circ L^T)(\nu) = -L \nabla g^*(-L^T \nu)$
- Prox (Moreau): $\operatorname{prox}_{\gamma_k f^*}(\nu) = \nu \gamma_k \operatorname{prox}_{\gamma_k^{-1} f}(\gamma_k^{-1} \nu)$
- · Algorithm:

$$\begin{split} \nu_{k+1} &= \operatorname{prox}_{\gamma_k f^*} (\nu_k - \gamma_k \nabla (g^* \circ - L^T)(\nu_k)) \\ &= (I - \gamma_k \operatorname{prox}_{\gamma_k^{-1} f} (\gamma_k^{-1} \circ I)) (\nu_k + \gamma_k L \nabla g^* (-L^T \nu_k)) \end{split}$$

- Problem must be convex to have dual!
- ullet Enough to know prox of f

46

What problems cannot be solved (efficiently)?

Problem minimize f(x) + g(x)

- Assumptions: f and q convex and nonsmooth
- No term differentiable, another method must be used:
 - Subgradient method
 - Douglas-Rachford splitting
 - Primal-dual methods

Problem minimize f(x) + g(Lx)

- Assumptions:
 - f smooth
 - \boldsymbol{g} nonsmooth convex
 - ullet L arbitrary structured matrix
- Can apply proximal gradient method, but

$$\operatorname{prox}_{\gamma_k(g \circ L)}(z) = \operatorname*{argmin}_{x} g(Lx) + \tfrac{1}{2\gamma} \|x - z\|_2^2)$$

often not "prox friendly", i.e., it is expensive to evaluate

Training problems

· Training problem format

$$\underset{\theta}{\text{minimize}} \underbrace{\sum_{i=1}^{N} L(m(x_i; \theta), y_i)} + \underbrace{\sum_{j=1}^{n} g_j(\theta_j)}_{o(\theta)}$$

where f is data misfit term and g is regularized

- Regularizers $(\theta = (w,b))$ Tikhonov $g(\theta) = \|w\|_2^2$ is prox-friendly
- Tiknonov $g(v) = \|w\|_2$ is pixer-reliarly
 Sparsity inducing 1-norm $g(\theta) = \|w\|_1$ is prox-friendly
 Data misfit terms (with $m(x;\theta) = \phi(x)^T\theta$ for convex problems)
 Least squares $L(u,y) = \|u-y\|_2^2$ smooth, hence f smooth
 Logistic $L(u,y) = \log(1+e^u) yu$ smooth, hence f smooth

 - $\bullet \; \; {\rm SVM} \; L(u,y) = \max(0,1-yu)$ not smooth, hence f not smooth
- Proximal gradient method
 - Least squares: can efficiently solve primal

 - Logistic regression: can solve primal
 SVM: add strongly convex regularization and solve dual
 Strongly convex regularization to have one conjugate smooth
 If bias term not regularized, only strongly convex in

 - If bias term not regularized, only strongly convex in w SVM with $\|\cdot\|_1$ -regularization not solvable with prox-grad

48

Dual training problem

• Convex training problem

$$\underset{\theta}{\text{minimize}} \underbrace{\sum_{i=1}^{N} L(\phi(x_i)^T \theta, y_i)} + \underbrace{\sum_{j=1}^{n} g_j(\theta_j)}_{g(\theta)}$$

has dual

$$\underset{\theta}{\operatorname{minimize}} \underbrace{\sum_{i=1}^{N} L^*(\mu_i)} + \underbrace{\sum_{j=1}^{n} g_j^*((-X^T\mu)_j)}_{g^*(-X^T\mu)}$$

where the conjugate of \boldsymbol{L} is w.r.t. first argument

• Dual has same structure as primal, finite-sum plus separable

49

Training problem structure

Primal training problem

$$\underset{\theta}{\text{minimize}} \underbrace{\sum_{i=1}^{N} L(m(x_i;\theta), y_i)} + \underbrace{\sum_{j=1}^{n} g_j(\theta_j)}_{g(\theta)}$$

Dual training problem

$$\underset{\theta}{\text{minimize}}\underbrace{\sum_{i=1}^{N}L^{*}(\mu_{i})} + \underbrace{\sum_{j=1}^{n}g_{j}^{*}((-X^{T}\mu)_{j})}_{g^{*}(-X^{T}\mu)}$$

• Common structure, finite sum plus separable:

cture, finite sum plus separable:
$$\min_{\theta} \sum_{i=1}^{N} f_i((X\theta)_i) + \sum_{j=1}^{n} \psi_j(\theta_j)$$

• Primal: $f_i=L(m(x_i;\cdot),y_i)$ (one summand per training example) • Dual: $f_i=g_j^*((-X^T\cdot)_j),\,\psi_j=L^*$

50

Exploiting structure

• Common structure, finite sum plus separable:

$$\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} f_i((X\theta)_i) + \sum_{j=1}^{n} \psi_j(\theta_j)$$

- Stochastic gradient descent exploits finite-sum structure:

 - $\begin{tabular}{ll} \bullet & {\sf Computes stochastic gradient of } smooth \ {\sf part} \ f \\ \bullet & {\sf Pick summand} \ f_i \ {\sf at random and perform gradient step} \\ \end{tabular}$
 - Primal formulations: Pick training example and compute gradient
 Deep learning: evaluted via backpropagation
- Coordinate gradient descent exploits separable structure:
 - Coordinate-wise updates if nonsmooth ϕ_j separable
 - Requires efficient coordinate-wise evaluations of ∇f