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Outline

® Convex analysis
e Composite optimization and duality

® Solving composite optimization problems — Algorithms



Convex Analysis



Convex sets

® A set C is convex if for every z,y € C and 0 € [0,1]:
bxr+(1—-0)yeC

® “Every line segment that connect any two points in C'is in C"

Nonconvex Convex

Nonconvex Nonconvex

® Will assume that all sets are nonempty and closed



Separating hyperplane theorem

® Suppose that R, S C R" are two non-intersecting convex sets
® Then there exists hyperplane with .S and R in opposite halves

T

{z:s'z=r}

Counter-example
Example R nonconvex

® Mathematical formulation: There exists s # 0 and r such that

st <r forallz € R

sTa>r forallz e S

® The hyperplane {x : sT2 = r} is called separating hyperplane



A strictly separating hyperplane theorem

® Suppose that R, S C R"™ are non-intersecting closed and convex
sets and that one of them is compact (closed and bounded)

® Then there exists hyperplane with strict separation

T

{z:s'z=r}

§={(z,y) :y <0}

Example Counter example
R, S not compact

® Mathematical formulation: There exists s # 0 and r such that

sTe <r forallz € R

sTe>r forallz € S



Consequence — S is intersection of halfspaces

‘ a closed convex set S is the intersection of all halfspaces that contain it

proof:

® let H be the intersection of all halfspaces containing S

® = obviouslyz e S=xc H

® —: assume z ¢ S, since S closed and convex and x compact (a
point), there exists a strictly separating hyperplane, i.e., z & H:
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Supporting hyperplanes

® Supporting hyperplanes touch set and have full set on one side:

S \ |/
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® We call the halfspace that contains the set supporting halfspace

® s is called normal vectorto S at x

e Definition: Hyperplane {y : sTy = r} supports S at = € bd S if

sTy<rforallye S and stx=r



Supporting hyperplane theorem

Let S be a nonempty convex set and let € bd(S). Then there exists
a supporting hyperplane to S at x.

® Does not exist for all point on boundary for nonconvex sets

® Many supporting hyperplanes exist for points of nonsmoothness
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Connection to duality and subgradients

Supporting hyperplanes are at the core of convex analysis:

® Subgradients define supporting hyperplanes to epif

® Conjugate functions define supporting hyperplanes to epif

® Duality is based on subgradients, hence supporting hyperplanes:

® Consider minimize, (f(z) + g(z)) and primal solution z*
® Dual problem minimize, (f* (1) + g*(—p)) solution p* satisfies

p € af(z”) —p" € 9g(x")

i..e, dual problem finds subgradients at optimal point*

L When solving ming (f (Lz) + g(x)) dual problem finds  such that LT 1 € 8(f o L)(x) and —LT 1 € dg(x).
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Convex functions

® Graph below line connecting any two pairs (z, f(x)) and (y, f(v))

nonconvex function convex function
® Function f : R™ — R is convex if for all 2,y € R™ and 6 € [0, 1]:
flOz+(1—0)y) <O0f(x)+(1-0)f(y)

(in extended valued arithmetics)

® A function f is concave if —f is convex
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Epigraphs and convexity

® Let f : R" > RU{o0}
® Then f is convex if and only epif is a convex set in R” x R

eplf I eplf

® fis called closed (lower semi-continuous) if epif is closed set
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First-order condition for convexity

e A differentiable function f : R™ — R is convex if and only if
F) = f@)+ V@) (y - o)

for all z,y € R™

® Function f has for all z € R™ an affine minorizer that:
® has slope s defined by V f

coincides with function f at x

is supporting hyperplane to epigraph of f

defines normal (Vf(z), —1) to epigraph of f
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Subdifferentials and subgradients

® Subgradients s define affine minorizers to the function that:

® coincide with f at x

® define normal vector (s,—1) to epigraph of f

® can be one of many affine minorizers at nondifferentiable points =
e Subdifferential of f : R™ — R at x is set of vectors s satisfying

f) > fx)+s"(y—x) forally e R, (1)

® Notation:
® subdifferential: 9f : R™ — 2% (power-set notation 2%")
® subdifferential at z: df(z) = {s: (1) holds}
® clements s € 9f(x) are called subgradients of f at x
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Subgradient existence — Nonconvex example

® Function can be differentiable at = but df(z) =0

® z1: Of(x1) = {0}, Vf(z1) =0
® 221 Of(z2) =0, Vf(z2) =0
® x3: Of(x3) =0, Vf(xzs) =0

® Gradient is a local concept, subdifferential is a global property
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Existence for extended-valued convex functions

® let f : R® — RU{oo} be convex, then:

1. Subgradients exist for all x in relative interior of dom f
2. Subgradients sometimes exist for = on boundary of dom f
3. No subgradient exists for = outside dom f

® Examples for second case, boundary points of domf:

—V1-—22 4 q(2) @+ 19 9)(x)

® No subgradient (affine minorizer) exists for left function at z = 1
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Fermat’s rule

Let f: R™ — RU {oo}, then 2 minimizes f if and only if
0€df(x)

® Proof: z minimizes f if and only if
f(y) > f(z) + 07 (y —x) forally e R™

which by definition of subdifferential is equivalent to 0 € Jf(z)
® Example: several subgradients at solution, including 0

.

(0, —1)
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Fermat’s rule — Nonconvex example

® Fermat's rule holds also for nonconvex functions

® Example:

2
Z1

(0, =1)

® Jf(x1) =0 and Vf(z1) = 0 (global minimum)
® Of(z2) =0 and Vf(z2) = 0 (local minimum)

® For nonconvex f, we can typically only hope to find local minima
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Subdifferential calculus rules

e Subdifferential of sum 9(f1 + f2)
® Subdifferential of composition with matrix d(g o L)
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Subdifferential of sum

If f1, f2 closed convex and relint dom f; N relint dom fo # §:
O(f1+ fo) =0f1 +0f2

® One direction always holds: if z € domdf; N domadfs:
(f1+ f2)(x) 2 0f1(x) + Ofa(x)
Proof: let s; € 0f;(x), add subdifferential definitions:
Fiy) + fo(y) 2 fr(@) + fa(@) + (s1+ 52)" (y — @)

i.e. 51+ 89 € 8<f1 + fg)(.%‘)
e If f; and f> differentiable, we have (without convexity of f)

V(fi+ fo)=Vfi+Vfo
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Subdifferential of composition

If f closed convex and relint dom(f o L) # (:
O(foL)(z)=LTof(Lx)

® One direction always holds: If Lz € domf, then
A(foL)(x)2L"of(Lx)
Proof: let s € 9f(Lx), then by definition of subgradient of f:
(foL)(y) = (foL)(z)+s"(Ly — La) = (f o L)(2) + (L"s)" (y — 2)

ie., LTs € 0(foL)(x)

e If f differentiable, we have chain rule (without convexity of f)
V(folL)(x)=L"Vf(Lx)
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A sufficient optimality condition

Let f:R™ = R, g:R" — R, and L € R™*™ then:
minimize f(Lz) + g(z)
is solved by every z € R™ that satisfies

0c LTof(Lx) + dg(x)

® Subdifferential calculus inclusions say:
0 € LTf(Lx) + dg(x) € O((f o L)(x) + g())

which by Fermat's rule is equivalent to z solution to (1)

® Note: (1) can have solution but no z exists that satisfies (2)
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A necessary and sufficient optimality condition

Let f:R™ = R, g: R” = R, L € R™*" with f, g closed convex
and assume relint dom(f o L) Nrelint domg # () then:

minimize f(Lzx) + g(z) (1)
is solved by & € R™ if and only if x satisfies

0c LTof(Lx) + dg(x) (2)

® Subdifferential calculus equality rules say:
0€ LTOf(Lx) + dg(z) = 9((f o L)(z) + g(x))

which by Fermat's rule is equivalent to « solution to (1)
e Algorithms search for z that satisfy 0 € LT9f(Lx) + dg(z)
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Evaluating subgradients of convex functions

® Obviously need to evaluate subdifferentials to solve
0¢c LTof(Lx) + dg(x)

® Explicit evaluation:

® |f function is differentiable: V f (unique)
® |f function is nondifferentiable: compute element in 9 f

® Implicit evaluation:
® Proximal operator (specific element of subdifferential)
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Proximal operator

® Proximal operator of (convex) g defined as:
prox,,(z) = argmin(g(x) + 55 [lz — 23)
€T
where v > 0 is a parameter

® Evaluating prox requires solving optimization problem
® Objective is strongly convex = solution exists and is unique
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Prox evaluates the subdifferential

® Fermat’s rule on prox definition: x = prox_,(2) if and only if
0€dg(x)+y z—2) & ~'z—2x) €dgx)

Hence, v~ 1(z — z) is element in dg(z)
® A subgradient in Og(z) where z = prox, ,(z) is computed
® Often used in algorithms when g nonsmooth (no gradient exists)
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Conjugate functions

® The conjugate function of f : R” — R U {oo} is defined as
f*(s) :=sup (sTx — f(x))
T

® Implicit definition via optimization problem
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Conjugate interpretation

® Conjugate f*(s) defines affine minorizer to f with slope s:

f(=)

sTa — f*(s)

\/%
_f*y/ ('57 71)
where f*(s) decides the constant offset to have support at z*

® “Affine minorizor generator: Pick slope s, get offset for support”
® Why? Consider f*(s) = sup (s”z — f(z)) with maximizer z*:
xT

f(s) = stz — f(z*) = f*(s) > sta — f(x) for all
= f(x) > sTa — f*(s) for all

)
® Support at 2* since f(z*) = sTa* — f*(s)
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Fenchel Young's equality

® Going back to conjugate interpretation:

f(=)

Ta — [*(s)

s

(87 71)

® Fenchel's inequality: f(z) > sTz — f*(s) for all z, s
® Fenchel-Young's equality and equivalence:

‘f(a:*) = sTx* — f*(s) holds if and only if s € f(x*)
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A subdifferential formula

Assume f closed convex, then 0f(z) = Argmax,(s?x — f*(s)) ‘

® Since f** = f, we have f(x) = sup,(z¥s — f*(s)) and
s* € Argmax(zTs — f*(s)) < f(z)=2Ts* — f*(s*)
— s"e€df(x)

® The last equivalence is Fenchel-Young
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Subdifferential of conjugate — Inversion formula

Suppose f closed convex, then s € 0f(z) < = € Jf*(s) ‘

® Consequence of Fenchel-Young

® Another way to write the result is that for closed convex f:

aft =(9f)~"

(Definition of inverse of set-valued A: x € A™'u < u € Ax)
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Strong convexity

Let o >0
A function f is a—strong/}{ convex if f — | - [|3 is convex
Alternative equivalent definition of o-strong convexity:

f(Oz+(1—0)y) <Of(x) +(1-0)f(y) — 5601 — )]z -yl
holds for every z,y € R™ and 6 € [0, 1]

® Strongly convex functions are strictly convex and convex

Example: f 2-strongly convex since f — || - ||3 convex:

f(a) = =3
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First-order condition for strong convexity

® et f : R” — R be differentiable
® fis o-strongly convex with o > 0 if and only if

fy) = f@) + V(@) (y —2) + Gllz — yll3
for all x,y € R™

f(y)
f@) + Vi) (y—z)+ Sllz —yl3

(Vi(z),-1)

® Function f has for all z € R™ a quadratic minorizer that:
® has curvature defined by o
® coincides with function f at =
® defines normal (V f(x),—1) to epigraph of f
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Smoothness

A function is called S-smooth if its gradient is B-Lipschitz:

IVf(z) = Vi)l < Bllz =yl

for all z,y € R™ (it is not necessarily convex)
Alternative equivalent definition of S-smoothness

(b + (1= 0)y) > 0f(2) + (1 - 0)f(y) — 50(1 — )]z —y|
f0x+ (1= 0)y) < Of(x) + (1 —0)f(y) + 50(1 = 0)||lz — y|?

hold for every z,y € R™ and 0 € [0, 1]
Smoothness does not imply convexity
Example:
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First-order condition for smoothness
® fis B-smooth with 8 > 0 if and only if
fly) < f@)+ V@) (y—2) + 5llz —yll3
Fy) = fl@) + V@) (y —2) = §llz =yl
for all z,y € R"
/ f(=) J(r )Vf(m)T(y —2)+ Sz -yl

)= Sl -yl

® Quadratic upper/lower bounds with curvatures defined by 3
® Quadratic bounds coincide with function f at x

35



First-order condition for smooth convex

® fis S-smooth with 8 > 0 and convex if and only if
fly) < fl@) + V@) (y—2) + Sl —yll3
fy) = fa) + V(@) (y — 2)
for all z,y € R™
/ F@)+ V@) T (y—2)+ 5z - yl3

(Vf(z),-1)

® Quadratic upper bound and affine lower bound
® Bounds coincide with function f at x
® Quadratic upper bound is called descent lemma
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Duality correspondance

Let f: R™ — RU{oo}. Then the following are equivalent:

(i) f is closed and o-strongly convex
(i) 9f is maximally monotone and o-strongly monotone
(ili) Vf* is o-cocoercive
(iv) Vf* is maximally monotone and Z-Lipschitz continuous
(v) f* is closed convex and satisfies descent lemma (is 1-smooth)
where Vf* : R” — R" and f*:R” - R
Comments:
® Relation (i) < (v) most important for us
® Since f = f** the result holds with f and f* interchanged
® Full proof available on course webpage
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Composite Optimization
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Composite optimization

We consider composite optimization problems of the form

mini;nize f(Lz) + g(x)
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Optimality conditions and dual problem
Assume f, g closed convex and that CQ holds
® Problem minimize, (f(Lx) + g(x)) is solved by x iff
0e LT of(Lx)+0g(x)
——

m

where dual variable p has been defined
Primal dual necessary and sufficient optimality conditions:

w € Of (L) Lz € 0f*(n)
—L"p € dg(x) —L*p € dg(x)
p € df (Lx) Lz € 0f*(n)

x € dg* (L") x € dg* (=L 1)

Dual optimality condition
0€0f*(u)+0(g" o ~L") () (1)

solves dual problem minimize,, f*(u) + ¢*(—L% 1)
e |f CQ-D holds, all dual problem solutions satisfy (1)
® Dual searches for p such that LTy € 0f(z) and —LTp € dg(x) 40



Solving the primal via the dual

Why solve dual? Sometimes easier to solve than primal

Only interesting if primal solution can be recovered

Assume f, g closed convex and CQ

Assume optimal dual 2 known: 0 € 9f* (i) + 9(g* o —LT)(p)

Optimal primal x must satisfy any and all primal-dual conditions:

pedf(Lx) Lz € 0f* ()
—L"p € dg(x) —L"p € dg(x)
)

w € of (Lx) Lz € 0f*(u
x € dg* (L") x € g™ (=L 1)

If one of these uniquely characterizes z, then must be solution:

® 9g* is differentiable at —L” i1 for dual solution

® Jf* is differentiable at dual solution w1 and L invertible
e ...
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Algorithms
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Proximal gradient method

® Consider minimize f(z) + g(x) where

® fis B-smooth f:R™ — R (not necessarily convex)
® g is closed convex

® Due to B-smoothness of f, we have

F@) +9) < f@)+ Vi) (y—2)+ Elly — 2/3 + 9(»)

for all z,y € R"™, i.e., r.h.s. is majorizing function for fixed x
Y I g

® Majorization minimization with majorizer if 4 € [¢, 371], € > 0:

Tit1 = argmin (f(xk) +V )y —2) + g lly — 2l + g(y))
= argmin (g(y) + 74y — (@ — V£ (@0)]3)

Y
= prox,, o (zr — WV f(zk))

gives proximal gradient method
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Proximal gradient — Fixed-points

® Denote T, := prox. (I — 7V f), gives algorithm x), 1 = TP Tk

® Proximal gradient fixed-point set definition
fixTpe ={z: 2 =T3gz} ={z 2 = prox.  ,(z — vV f(x))}

i.e., set of points for which z; 1 =z,

Let v > 0. Then z € fixT3 if and only if 0 € dg(z) + V f(Z). ‘

® Consequence: fixed-point set same for all v > 0
® We call inclusion 0 € 9g(Z) + V f(Z) fixed-point characterization

® For convex problems: global solutions
® For nonconvex problems: critical points
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Applying proximal gradient to primal problems

Problem minimize f(z) + g(z):

® Assumptions:
® f [B-smooth
® g closed convex and prox friendly?
® v € k7%'_'d
® Algorithm: xy 41 = prox,, ,(zr — WV f(zx))

Problem minimize f(Lx) + g(x):

® Assumptions:
® f B-smooth (implies f o L B||L||3-smooth)
® g closed convex and prox friendly1
® € e, Wi\\% —¢

® Gradient V(fo L)(z) = LTV f(Lz)

e Algorithm: z1 = prox.,  (zx — LTV f(Lxy))

'Ykg(

!Prox friendly: proximal operator cheap to evaluate, e.g., g separable
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Applying proximal gradient to dual problem

Dual problem minimize f*(v) + g*(—LTv):

® Assumptions:
® f closed convex and prox friendly
2
® g o-strongly convex (which implies g* o —LT %-smooth)
® W€ [67 ”iiig - E]
Gradient: V(g* o —LT)(v) = —LVg*(—LTv)

Prox (Moreau): prox., ;«(v) =v — 'ykproka_lf('ykfll/)

Algorithm:

Vi1 = Prox., g« (v — wV(g* o =L7) (1))
=(- *ykprox,yglf('yk_l oI))(vp + W LVg* (=L wy))

Problem must be convex to have dual!

Enough to know prox of f
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What problems cannot be solved (efficiently)?

Problem minimize f(x) + g(x)

® Assumptions: f and g convex and nonsmooth

® No term differentiable, another method must be used:
® Subgradient method
® Douglas-Rachford splitting
® Primal-dual methods

Problem minimize f(x) + g(Lx)
xr
® Assumptions:
® f smooth

® g nonsmooth convex
® [ arbitrary structured matrix

® Can apply proximal gradient method, but
PTroX., (gor)(2) = argfling(L:v) + o5 llz = 2[13)

often not “prox friendly”, i.e., it is expensive to evaluate
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Training problems

® Training problem format

N n
minimize Z L(m(zi;0),y:) + Z 9i(05)
i=1 j=1
———
f(X6) g(0)
where f is data misfit term and g is regularizer
® Regularizers (0 = (w, b))
® Tikhonov g(#) = |lw]|3 is prox-friendly
® Sparsity inducing 1-norm g(6) = ||w||1 is prox-friendly
¢ Data misfit terms (with m(x;0) = ¢(x)76 for convex problems)
® Least squares L(u,y) = ||u — y||3 smooth, hence f smooth
® Logistic L(u,y) = log(1 + €“) — yu smooth, hence f smooth
® SVM L(u,y) = max(0,1 — yu) not smooth, hence f not smooth
® Proximal gradient method
® | east squares: can efficiently solve primal
® |ogistic regression: can solve primal
® SVM: add strongly convex regularization and solve dual
® Strongly convex regulariztion to have one conjugate smooth
® |f bias term not regularized, only strongly convex in w
® SVM with || - ||1-regularization not solvable with prox-grad
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Dual training problem

® Convex training problem

N

miniemize Zl L((z:)"0,y;) + Zl 95(0;)
_ j=
f(X0) g(8)

has dual

N n
e . * * T
mlnlemlzezlL (ui)+zggj((—X 1)5)
1= J=

f* () g* (= XTp)

where the conjugate of L is w.r.t. first argument

® Dual has same structure as primal, finite-sum plus separable
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Training problem structure

® Primal training problem

N n
mini@mize Z L(m(z;0),y:) + Z 95(05)

i=1

N
f(X0) g(0)

® Dual training problem

N n
mini‘gmize ; L*(p;) + Z; g; (=
= j_
F=(r) g*(=XTpu)

® Common structure, finite sum plus separable:

mlnlmlze Z fi((X0);) + Z ; (0

® Primal: f; = L(m(xs;-),y:) (one summand per training example)
* Dual: fi = g;((-X")), ;= L*
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Exploiting structure

® Common structure, finite sum plus separable:

mlnlmlze Z fi((X0);) + Z ;0

i=1

® Stochastic gradient descent exploits finite-sum structure:
® Computes stochastic gradient of smooth part f
Pick summand f; at random and perform gradient step
Primal formulations: Pick training example and compute gradient
Deep learning: evaluted via backpropagation

® Coordinate gradient descent exploits separable structure:

® Coordinate-wise updates if nonsmooth ¢; separable
® Requires efficient coordinate-wise evaluations of V f
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