
Recap

Pontus Giselsson

1



Outline

• Convex analysis

• Composite optimization and duality

• Solving composite optimization problems – Algorithms

2



Convex Analysis

3



Convex sets

• A set C is convex if for every x, y ∈ C and θ ∈ [0, 1]:

θx+ (1− θ)y ∈ C

• “Every line segment that connect any two points in C is in C”

Nonconvex Convex

Nonconvex Nonconvex

• Will assume that all sets are nonempty and closed

4



Separating hyperplane theorem

• Suppose that R,S ⊆ Rn are two non-intersecting convex sets
• Then there exists hyperplane with S and R in opposite halves

{x : sTx = r}

R

S

Example

R

S

Counter-example
R nonconvex

• Mathematical formulation: There exists s 6= 0 and r such that

sTx ≤ r for all x ∈ R
sTx ≥ r for all x ∈ S

• The hyperplane {x : sTx = r} is called separating hyperplane

5



A strictly separating hyperplane theorem

• Suppose that R,S ⊆ Rn are non-intersecting closed and convex
sets and that one of them is compact (closed and bounded)

• Then there exists hyperplane with strict separation

{x : sTx = r}

R

S

Example

R = {(x, y) : y ≥ x−1, x > 0}

S = {(x, y) : y ≤ 0}

Counter example
R,S not compact

• Mathematical formulation: There exists s 6= 0 and r such that

sTx < r for all x ∈ R
sTx > r for all x ∈ S

6



Consequence – S is intersection of halfspaces

a closed convex set S is the intersection of all halfspaces that contain it

proof:

• let H be the intersection of all halfspaces containing S
• ⇒: obviously x ∈ S ⇒ x ∈ H
• ⇐: assume x 6∈ S, since S closed and convex and x compact (a

point), there exists a strictly separating hyperplane, i.e., x 6∈ H:

S

⇒

S x

⇐
7



Supporting hyperplanes

• Supporting hyperplanes touch set and have full set on one side:

s
s
s

s

• We call the halfspace that contains the set supporting halfspace

• s is called normal vector to S at x

• Definition: Hyperplane {y : sT y = r} supports S at x ∈ bd S if

sT y ≤ r for all y ∈ S and sTx = r

8



Supporting hyperplane theorem

Let S be a nonempty convex set and let x ∈ bd(S). Then there exists
a supporting hyperplane to S at x.

• Does not exist for all point on boundary for nonconvex sets

• Many supporting hyperplanes exist for points of nonsmoothness

s
s
s

s

9



Connection to duality and subgradients

Supporting hyperplanes are at the core of convex analysis:

• Subgradients define supporting hyperplanes to epif

• Conjugate functions define supporting hyperplanes to epif

• Duality is based on subgradients, hence supporting hyperplanes:
• Consider minimizex(f(x) + g(x)) and primal solution x?

• Dual problem minimizeµ(f
∗(µ) + g∗(−µ)) solution µ? satisfies

µ? ∈ ∂f(x?) −µ? ∈ ∂g(x?)

i..e, dual problem finds subgradients at optimal point1

1When solving minx(f(Lx) + g(x)) dual problem finds µ such that LT µ ∈ ∂(f ◦ L)(x) and −LT µ ∈ ∂g(x).

10



Convex functions

• Graph below line connecting any two pairs (x, f(x)) and (y, f(y))

nonconvex function convex function

• Function f : Rn → R is convex if for all x, y ∈ Rn and θ ∈ [0, 1]:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

(in extended valued arithmetics)

• A function f is concave if −f is convex

11



Epigraphs and convexity

• Let f : Rn → R ∪ {∞}
• Then f is convex if and only epif is a convex set in Rn × R

epif epif

• f is called closed (lower semi-continuous) if epif is closed set

12



First-order condition for convexity

• A differentiable function f : Rn → R is convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x)

(∇f(x),−1)

(x, f(x))

• Function f has for all x ∈ Rn an affine minorizer that:
• has slope s defined by ∇f
• coincides with function f at x
• is supporting hyperplane to epigraph of f
• defines normal (∇f(x),−1) to epigraph of f

13



Subdifferentials and subgradients

• Subgradients s define affine minorizers to the function that:

(s,−1)
(s,−1)

(s,−1)

• coincide with f at x
• define normal vector (s,−1) to epigraph of f
• can be one of many affine minorizers at nondifferentiable points x

• Subdifferential of f : Rn → R at x is set of vectors s satisfying

f(y) ≥ f(x) + sT (y − x) for all y ∈ Rn, (1)

• Notation:
• subdifferential: ∂f : Rn → 2R

n

(power-set notation 2R
n

)
• subdifferential at x: ∂f(x) = {s : (1) holds}
• elements s ∈ ∂f(x) are called subgradients of f at x

14



Subgradient existence – Nonconvex example

• Function can be differentiable at x but ∂f(x) = ∅

x1

x2
x3

• x1: ∂f(x1) = {0}, ∇f(x1) = 0
• x2: ∂f(x2) = ∅, ∇f(x2) = 0
• x3: ∂f(x3) = ∅, ∇f(x3) = 0

• Gradient is a local concept, subdifferential is a global property

15



Existence for extended-valued convex functions

• Let f : Rn → R ∪ {∞} be convex, then:

1. Subgradients exist for all x in relative interior of domf
2. Subgradients sometimes exist for x on boundary of domf
3. No subgradient exists for x outside domf

• Examples for second case, boundary points of domf :

−
√
1− x2 + ι[−1,1](x) x2 + ι[−2,2](x)

• No subgradient (affine minorizer) exists for left function at x = 1

16



Fermat’s rule

Let f : Rn → R ∪ {∞}, then x minimizes f if and only if

0 ∈ ∂f(x)

• Proof: x minimizes f if and only if

f(y) ≥ f(x) + 0T (y − x) for all y ∈ Rn

which by definition of subdifferential is equivalent to 0 ∈ ∂f(x)

• Example: several subgradients at solution, including 0

(0,−1)

17



Fermat’s rule – Nonconvex example

• Fermat’s rule holds also for nonconvex functions

• Example:

x1
x2

(0,−1)

• ∂f(x1) = 0 and ∇f(x1) = 0 (global minimum)
• ∂f(x2) = ∅ and ∇f(x2) = 0 (local minimum)

• For nonconvex f , we can typically only hope to find local minima

18



Subdifferential calculus rules

• Subdifferential of sum ∂(f1 + f2)

• Subdifferential of composition with matrix ∂(g ◦ L)

19



Subdifferential of sum

If f1, f2 closed convex and relint domf1 ∩ relint domf2 6= ∅:
∂(f1 + f2) = ∂f1 + ∂f2

• One direction always holds: if x ∈ dom∂f1 ∩ dom∂f2:

∂(f1 + f2)(x) ⊇ ∂f1(x) + ∂f2(x)

Proof: let si ∈ ∂fi(x), add subdifferential definitions:

f1(y) + f2(y) ≥ f1(x) + f2(x) + (s1 + s2)T (y − x)

i.e. s1 + s2 ∈ ∂(f1 + f2)(x)

• If f1 and f2 differentiable, we have (without convexity of f)

∇(f1 + f2) = ∇f1 +∇f2

20



Subdifferential of composition

If f closed convex and relint dom(f ◦ L) 6= ∅:
∂(f ◦ L)(x) = LT∂f(Lx)

• One direction always holds: If Lx ∈ domf , then

∂(f ◦ L)(x) ⊇ LT∂f(Lx)

Proof: let s ∈ ∂f(Lx), then by definition of subgradient of f :

(f ◦ L)(y) ≥ (f ◦ L)(x) + sT (Ly − Lx) = (f ◦ L)(x) + (LT s)T (y − x)

i.e., LT s ∈ ∂(f ◦ L)(x)

• If f differentiable, we have chain rule (without convexity of f)

∇(f ◦ L)(x) = LT∇f(Lx)

21



A sufficient optimality condition

Let f : Rm → R, g : Rn → R, and L ∈ Rm×n then:

minimize f(Lx) + g(x) (1)

is solved by every x ∈ Rn that satisfies

0 ∈ LT∂f(Lx) + ∂g(x) (2)

• Subdifferential calculus inclusions say:

0 ∈ LT∂f(Lx) + ∂g(x) ⊆ ∂((f ◦ L)(x) + g(x))

which by Fermat’s rule is equivalent to x solution to (1)

• Note: (1) can have solution but no x exists that satisfies (2)

22



A necessary and sufficient optimality condition

Let f : Rm → R, g : Rn → R, L ∈ Rm×n with f, g closed convex
and assume relint dom(f ◦ L) ∩ relint domg 6= ∅ then:

minimize f(Lx) + g(x) (1)

is solved by x ∈ Rn if and only if x satisfies

0 ∈ LT∂f(Lx) + ∂g(x) (2)

• Subdifferential calculus equality rules say:

0 ∈ LT∂f(Lx) + ∂g(x) = ∂((f ◦ L)(x) + g(x))

which by Fermat’s rule is equivalent to x solution to (1)

• Algorithms search for x that satisfy 0 ∈ LT∂f(Lx) + ∂g(x)

23



Evaluating subgradients of convex functions

• Obviously need to evaluate subdifferentials to solve

0 ∈ LT∂f(Lx) + ∂g(x)

• Explicit evaluation:
• If function is differentiable: ∇f (unique)
• If function is nondifferentiable: compute element in ∂f

• Implicit evaluation:
• Proximal operator (specific element of subdifferential)

24



Proximal operator

• Proximal operator of (convex) g defined as:

proxγg(z) = argmin
x

(g(x) + 1
2γ ‖x− z‖

2
2)

where γ > 0 is a parameter

• Evaluating prox requires solving optimization problem

• Objective is strongly convex ⇒ solution exists and is unique

25



Prox evaluates the subdifferential

• Fermat’s rule on prox definition: x = proxγg(z) if and only if

0 ∈ ∂g(x) + γ−1(x− z) ⇔ γ−1(z − x) ∈ ∂g(x)

Hence, γ−1(z − x) is element in ∂g(x)

• A subgradient in ∂g(x) where x = proxγg(z) is computed

• Often used in algorithms when g nonsmooth (no gradient exists)

26



Conjugate functions

• The conjugate function of f : Rn → R ∪ {∞} is defined as

f∗(s) := sup
x

(
sTx− f(x)

)
• Implicit definition via optimization problem

27



Conjugate interpretation

• Conjugate f∗(s) defines affine minorizer to f with slope s:

f(x)

sT x− f∗(s)

(s,−1)

x∗

−f∗(s)

where f∗(s) decides the constant offset to have support at x∗

• “Affine minorizor generator: Pick slope s, get offset for support”
• Why? Consider f∗(s) = sup

x

(
sTx− f(x)

)
with maximizer x∗:

f∗(s) = sTx∗ − f(x∗) ⇔ f∗(s) ≥ sTx− f(x) for all x

⇔ f(x) ≥ sTx− f∗(s) for all x

• Support at x∗ since f(x∗) = sTx∗ − f∗(s)
28



Fenchel Young’s equality

• Going back to conjugate interpretation:

f(x)

sT x− f∗(s)

(s,−1)

x∗

• Fenchel’s inequality: f(x) ≥ sTx− f∗(s) for all x, s

• Fenchel-Young’s equality and equivalence:

f(x∗) = sTx∗ − f∗(s) holds if and only if s ∈ ∂f(x∗)

29



A subdifferential formula

Assume f closed convex, then ∂f(x) = Argmaxs(s
Tx− f∗(s))

• Since f∗∗ = f , we have f(x) = sups(x
T s− f∗(s)) and

s∗ ∈ Argmax
s

(xT s− f∗(s)) ⇐⇒ f(x) = xT s∗ − f∗(s∗)

⇐⇒ s∗ ∈ ∂f(x)

• The last equivalence is Fenchel-Young

30



Subdifferential of conjugate – Inversion formula

Suppose f closed convex, then s ∈ ∂f(x)⇐⇒ x ∈ ∂f∗(s)

• Consequence of Fenchel-Young

• Another way to write the result is that for closed convex f :

∂f∗ = (∂f)−1

(Definition of inverse of set-valued A: x ∈ A−1u⇐⇒ u ∈ Ax)

31



Strong convexity

• Let σ > 0
• A function f is σ-strongly convex if f − σ

2 ‖ · ‖
2
2 is convex

• Alternative equivalent definition of σ-strong convexity:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− σ
2 θ(1− θ)‖x− y‖

2

holds for every x, y ∈ Rn and θ ∈ [0, 1]
• Strongly convex functions are strictly convex and convex
• Example: f 2-strongly convex since f − ‖ · ‖22 convex:

f(x) f(x)− ‖x‖22
32



First-order condition for strong convexity

• Let f : Rn → R be differentiable
• f is σ-strongly convex with σ > 0 if and only if

f(y) ≥ f(x) +∇f(x)T (y − x) + σ
2 ‖x− y‖

2
2

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x) + σ
2
‖x− y‖22

(∇f(x),−1)

(x, f(x))

• Function f has for all x ∈ Rn a quadratic minorizer that:
• has curvature defined by σ
• coincides with function f at x
• defines normal (∇f(x),−1) to epigraph of f

33



Smoothness

• A function is called β-smooth if its gradient is β-Lipschitz:

‖∇f(x)−∇f(y)‖2 ≤ β‖x− y‖2
for all x, y ∈ Rn (it is not necessarily convex)

• Alternative equivalent definition of β-smoothness

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)− β
2 θ(1− θ)‖x− y‖

2

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) + β
2 θ(1− θ)‖x− y‖

2

hold for every x, y ∈ Rn and θ ∈ [0, 1]
• Smoothness does not imply convexity
• Example:

34



First-order condition for smoothness

• f is β-smooth with β ≥ 0 if and only if

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖

2
2

f(y) ≥ f(x) +∇f(x)T (y − x)− β
2 ‖x− y‖

2
2

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x)− β
2
‖x− y‖22

f(x) +∇f(x)T (y − x) + β
2
‖x− y‖22

• Quadratic upper/lower bounds with curvatures defined by β
• Quadratic bounds coincide with function f at x

35



First-order condition for smooth convex

• f is β-smooth with β ≥ 0 and convex if and only if

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖

2
2

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x) + β
2
‖x− y‖22

f(x) +∇f(x)T (y − x)

(∇f(x),−1)

(x, f(x))

• Quadratic upper bound and affine lower bound
• Bounds coincide with function f at x
• Quadratic upper bound is called descent lemma

36



Duality correspondance

Let f : Rn → R ∪ {∞}. Then the following are equivalent:

(i) f is closed and σ-strongly convex

(ii) ∂f is maximally monotone and σ-strongly monotone

(iii) ∇f∗ is σ-cocoercive

(iv) ∇f∗ is maximally monotone and 1
σ -Lipschitz continuous

(v) f∗ is closed convex and satisfies descent lemma (is 1
σ -smooth)

where ∇f∗ : Rn → Rn and f∗ : Rn → R
Comments:

• Relation (i) ⇔ (v) most important for us

• Since f = f∗∗ the result holds with f and f∗ interchanged

• Full proof available on course webpage

37



Composite Optimization

38



Composite optimization

We consider composite optimization problems of the form

minimize
x

f(Lx) + g(x)

39



Optimality conditions and dual problem

• Assume f, g closed convex and that CQ holds
• Problem minimizex(f(Lx) + g(x)) is solved by x iff

0 ∈ LT ∂f(Lx)︸ ︷︷ ︸
µ

+∂g(x)

where dual variable µ has been defined
• Primal dual necessary and sufficient optimality conditions:{

µ ∈ ∂f(Lx)

−LTµ ∈ ∂g(x)

{
Lx ∈ ∂f∗(µ)

−L∗µ ∈ ∂g(x){
µ ∈ ∂f(Lx)

x ∈ ∂g∗(−LTµ)

{
Lx ∈ ∂f∗(µ)

x ∈ ∂g∗(−LTµ)

• Dual optimality condition

0 ∈ ∂f∗(µ) + ∂(g∗ ◦ −LT )(µ) (1)

solves dual problem minimizeµ f
∗(µ) + g∗(−LTµ)

• If CQ-D holds, all dual problem solutions satisfy (1)
• Dual searches for µ such that LTµ ∈ ∂f(x) and −LTµ ∈ ∂g(x) 40



Solving the primal via the dual

• Why solve dual? Sometimes easier to solve than primal

• Only interesting if primal solution can be recovered

• Assume f, g closed convex and CQ

• Assume optimal dual µ known: 0 ∈ ∂f∗(µ) + ∂(g∗ ◦ −LT )(µ)

• Optimal primal x must satisfy any and all primal-dual conditions:{
µ ∈ ∂f(Lx)

−LTµ ∈ ∂g(x)

{
Lx ∈ ∂f∗(µ)

−LTµ ∈ ∂g(x){
µ ∈ ∂f(Lx)

x ∈ ∂g∗(−LTµ)

{
Lx ∈ ∂f∗(µ)

x ∈ ∂g∗(−LTµ)

• If one of these uniquely characterizes x, then must be solution:
• ∂g∗ is differentiable at −LTµ for dual solution µ
• ∂f∗ is differentiable at dual solution µ and L invertible
• · · ·

41



Algorithms

42



Proximal gradient method

• Consider minimize
x

f(x) + g(x) where

• f is β-smooth f : Rn → R (not necessarily convex)
• g is closed convex

• Due to β-smoothness of f , we have

f(y) + g(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖

2
2 + g(y)

for all x, y ∈ Rn, i.e., r.h.s. is majorizing function for fixed x

• Majorization minimization with majorizer if γk ∈ [ε, β−1], ε > 0:

xk+1 = argmin
y

(
f(xk) +∇f(xk)T (y − x) + 1

2γk
‖y − xk‖22 + g(y)

)
= argmin

y

(
g(y) + 1

2γk
‖y − (xk − γk∇f(xk))‖22

)
= proxγkg(xk − γk∇f(xk))

gives proximal gradient method

43



Proximal gradient – Fixed-points

• Denote T γPG := proxγg(I − γ∇f), gives algorithm xk+1 = T γPGxk
• Proximal gradient fixed-point set definition

fixT γPG = {x : x = T γPGx} = {x : x = proxγg(x− γ∇f(x))}

i.e., set of points for which xk+1 = xk

Let γ > 0. Then x̄ ∈ fixT γPG if and only if 0 ∈ ∂g(x̄) +∇f(x̄).

• Consequence: fixed-point set same for all γ > 0

• We call inclusion 0 ∈ ∂g(x̄) +∇f(x̄) fixed-point characterization
• For convex problems: global solutions
• For nonconvex problems: critical points

44



Applying proximal gradient to primal problems

Problem minimize
x

f(x) + g(x):

• Assumptions:
• f β-smooth
• g closed convex and prox friendly1

• γk ∈ [ε, 2
β
− ε]

• Algorithm: xk+1 = proxγkg(xk − γk∇f(xk))

Problem minimize
x

f(Lx) + g(x):

• Assumptions:
• f β-smooth (implies f ◦ L β‖L‖22-smooth)
• g closed convex and prox friendly1

• γk ∈ [ε, 2
β‖L‖22

− ε]

• Gradient ∇(f ◦ L)(x) = LT∇f(Lx)
• Algorithm: xk+1 = proxγkg(xk − γkL

T∇f(Lxk))

1Prox friendly: proximal operator cheap to evaluate, e.g., g separable
45



Applying proximal gradient to dual problem

Dual problem minimize
ν

f∗(ν) + g∗(−LT ν):

• Assumptions:
• f closed convex and prox friendly

• g σ-strongly convex (which implies g∗ ◦ −LT ‖L‖
2
2

σ
-smooth)

• γk ∈ [ε, 2σ
‖L‖22

− ε]

• Gradient: ∇(g∗ ◦ −LT )(ν) = −L∇g∗(−LT ν)

• Prox (Moreau): proxγkf∗(ν) = ν − γkproxγ−1
k f (γ−1

k ν)

• Algorithm:

νk+1 = proxγkf∗(νk − γk∇(g∗ ◦ −LT )(νk))

= (I − γkproxγ−1
k f (γ−1

k ◦ I))(νk + γkL∇g∗(−LT νk))

• Problem must be convex to have dual!

• Enough to know prox of f

46



What problems cannot be solved (efficiently)?

Problem minimize
x

f(x) + g(x)

• Assumptions: f and g convex and nonsmooth
• No term differentiable, another method must be used:

• Subgradient method
• Douglas-Rachford splitting
• Primal-dual methods

Problem minimize
x

f(x) + g(Lx)

• Assumptions:
• f smooth
• g nonsmooth convex
• L arbitrary structured matrix

• Can apply proximal gradient method, but

proxγk(g◦L)(z) = argmin
x

g(Lx) + 1
2γ ‖x− z‖

2
2)

often not “prox friendly”, i.e., it is expensive to evaluate

47



Training problems

• Training problem format

minimize
θ

N∑
i=1

L(m(xi; θ), yi)︸ ︷︷ ︸
f(Xθ)

+

n∑
j=1

gj(θj)︸ ︷︷ ︸
g(θ)

where f is data misfit term and g is regularizer
• Regularizers (θ = (w, b))

• Tikhonov g(θ) = ‖w‖22 is prox-friendly
• Sparsity inducing 1-norm g(θ) = ‖w‖1 is prox-friendly

• Data misfit terms (with m(x; θ) = φ(x)T θ for convex problems)
• Least squares L(u, y) = ‖u− y‖22 smooth, hence f smooth
• Logistic L(u, y) = log(1 + eu)− yu smooth, hence f smooth
• SVM L(u, y) = max(0, 1− yu) not smooth, hence f not smooth

• Proximal gradient method
• Least squares: can efficiently solve primal
• Logistic regression: can solve primal
• SVM: add strongly convex regularization and solve dual

• Strongly convex regulariztion to have one conjugate smooth
• If bias term not regularized, only strongly convex in w
• SVM with ‖ · ‖1-regularization not solvable with prox-grad 48



Dual training problem

• Convex training problem

minimize
θ

N∑
i=1

L(φ(xi)
T θ, yi)︸ ︷︷ ︸

f(Xθ)

+

n∑
j=1

gj(θj)︸ ︷︷ ︸
g(θ)

has dual

minimize
θ

N∑
i=1

L∗(µi)︸ ︷︷ ︸
f∗(µ)

+

n∑
j=1

g∗j ((−XTµ)j)︸ ︷︷ ︸
g∗(−XTµ)

where the conjugate of L is w.r.t. first argument

• Dual has same structure as primal, finite-sum plus separable

49



Training problem structure

• Primal training problem

minimize
θ

N∑
i=1

L(m(xi; θ), yi)︸ ︷︷ ︸
f(Xθ)

+

n∑
j=1

gj(θj)︸ ︷︷ ︸
g(θ)

• Dual training problem

minimize
θ

N∑
i=1

L∗(µi)︸ ︷︷ ︸
f∗(µ)

+

n∑
j=1

g∗j ((−XTµ)j)︸ ︷︷ ︸
g∗(−XTµ)

• Common structure, finite sum plus separable:

minimize
θ

N∑
i=1

fi((Xθ)i) +

n∑
j=1

ψj(θj)

• Primal: fi = L(m(xi; ·), yi) (one summand per training example)
• Dual: fi = g∗j ((−XT ·)j), ψj = L∗

50



Exploiting structure

• Common structure, finite sum plus separable:

minimize
θ

N∑
i=1

fi((Xθ)i) +

n∑
j=1

ψj(θj)

• Stochastic gradient descent exploits finite-sum structure:
• Computes stochastic gradient of smooth part f
• Pick summand fi at random and perform gradient step
• Primal formulations: Pick training example and compute gradient
• Deep learning: evaluted via backpropagation

• Coordinate gradient descent exploits separable structure:
• Coordinate-wise updates if nonsmooth φj separable
• Requires efficient coordinate-wise evaluations of ∇f

51


