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Outline

Variable metric methods

Convergence to projection point

Convergence to sharp or flat minima
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Gradient method interpretation

• Gradient method minimizes quadratic approximation of function

xk+1 = argmin
x

(
f(xk) +∇f(xk)T (x− xk) + 1

2γk
‖x− xk‖22

)
= argmin

x

(
1

2γk
‖x− (xk − γk∇f(xk))‖22

)
= xk − γk∇f(xk)

• Graphical illustration of one step

f(x)

f(xk) +∇f(xk)T (x− xk) + 1
2γk
‖x− xk‖22

xk
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Scaled gradient method

• Quadratic approximation same in all directions due to ‖ · ‖22

xk+1 = argmin
x

(
f(xk) +∇f(xk)T (x− xk) + 1

2γk
‖x− xk‖22

)
• Scaled gradient method minimizes scaled quadratic approximation

xk+1 = argmin
x

(
f(xk) +∇f(xk)T (x− xk) + 1

2γk
‖x− xk‖2H

)
= argmin

x

(
1

2γk
‖x− (xk − γkH−1∇f(xk))‖2H

)
= xk − γkH−1∇f(xk)

where H is a positive definite matrix and ‖x‖2H = xTHx

• Nominal gradient method obtained by H = I

• Better quadratic approximation (good H) ⇒ faster convergence
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Gradient descent – Example

• (Unscaled) Gradient descent on convex quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Graphical illustration:
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Scaled gradient descent – Example

• Scaled gradient descent on convex quadratic problem

minimize
x

1

2
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x2
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−0.1 1

] [
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• Scaling H = diag(∇2f) := P :
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How to select metric H?

• A priori: Use a fixed H thoughout iterations
• can be difficult to find a good performing H
• does not adapt to local geometry

• Adaptively: Iteration-dependent Hk that adapts to local geometry
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Adaptive metric methods

• Algorithms with full Hk:
• (Regularized) Newton methods
• Quasi-Newton methods

• Algorithms with diagonal Hk (in stochastic setting):
• Adagrad
• RMSProp
• Adam
• Adamax/Adadelta
• . . .
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SGD variations with adaptive diagonal scaling

• Diagonal scaling gives one step-size (learning rate) per variable

• SGD type methods with diagonal Hk = diag(h1,k, . . . , hN,k):

xk+1 = xk − γkH−1k ∇̂f(xk)

where
• the inverse is H−1

k = diag( 1
h1,k

, . . . , 1
hN,k

)

• ∇̂f(xk) is a stochastic gradient approximation

• Methods called variable metric methods since Hk defines a metric

• Introduced to improve convergence compared to SGD

• Can have worse generalization properties?
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Metrics – RMSprop and Adam

• Estimate coordinate-wise variance:

v̂k = bv v̂k−1 + (1− bv)(∇̃f(xk−1))2

where v̂0 = 0, bv ∈ (0, 1)

• Metric Hk is chosen (approximately) as standard deviation:
• RMSprop: biased estimate Hk = diag(

√
v̂k + ε)

• Adam: unbiased estimate Hk = diag(
√

v̂k
1−bkv

+ ε)

• Intuition:
• Reduce step size for high variance coordinates
• Increase step size for low variance coordinates

• Alternative intuition:
• Reduce step size for “steep” coordinate directions
• Increase step size for “flat” coordinate directions
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Filtered stochastic gradients

• Adam also filters stochastic gradients for smoother updates
• Let m̂0 = 0 and bm ∈ (0, 1), and update

m̂k = bmm̂k−1 + (1− bm)∇̃f(xk−1)

• Adam uses unbiased estimate: m̂k

1−bkm
• Fixed step-size without filtered gradient

Levelsets of summands
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Adam – Summary

• Initialize m̂0 = v̂0 = 0, bm, bv ∈ (0, 1), and select γ > 0

1. gk = ∇̃f(xk−1) (stochastic gradient)
2. m̂k = bmm̂k−1 + (1− bm)gk
3. v̂k = bv v̂k−1 + (1− bv)g2k
4. mk = m̂k/(1− bkm)
5. vk = v̂k/(1− bkv)
6. xk+1 = xk − γmk./(

√
vk + ε1)

• Suggested choices: bm = 0.9, bv = 0.999, ε = 10−8, γ = 0.001

• More succinctly

xk+1 = xk − γH−1k mk

where metric Hk = diag(
√
vk,1 + ε, . . . ,

√
vk,n + ε)
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Adam vs SGD

• Adam designed to converge faster than SGD by adaptive scaling

• Often observed to give worse generalization than SGD

• Two possible reasons for worse generalization:
• Convergence to larger norm solutions?
• Convergence to sharper minima?
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Outline

Variable metric methods

Convergence to projection point

Convergence to sharp or flat minima
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Generalization in neural networks

• Recall: Lipschitz constant L of neural network

L = ‖Wn‖2 · ‖Wn−1‖2 · · · ‖W1‖2

or with ‖Wj‖2 replaced by (1 + ‖Wj‖2) for residual layers

• Can use ‖θ‖2 where θ = {(Wi, bi)}ni=1 as proxy

• Overparameterized networks
• Infinitely many solutions exist
• Want a solution with small ‖θ‖2 for good generalization
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Explicit vs implicit regularization

• Tikhonov adds ‖ · ‖22 norm penalty for better generalization

minimize
θ

N∑
i=1

L(m(xi; θ), yi) + λ
2 ‖θ‖

2
2

which gives a smaller θ and is a form of explicit regularization

• Deep learning has no explicit regularization ⇒ training problem:

minimize
θ

N∑
i=1

L(m(xi; θ), yi)

with many 0-loss solutions in overparameterized setting

• Implicit regularization if algorithm finds small norm solution
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(S)GD limit points

• Assume overparameterized convex least squares problem

• Gradient descent converges to projection point of initial point

• If SGD converges, it converges to same projection point
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Least squares

• Consider least squares problem of the form

minimize
x

1
2‖Ax− b‖

2
2

where A ∈ Rm×n, b ∈ Rm, m < n, and ∃x̄ such that Ax̄ = b

• Problem is overparameterized and has many solutions

• Since m < n, solution set is

X := {x : Ax = b}

which is (at least) n−m-dimensional affine set
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Gradient method convergence to projection point

• Will show that scaled gradient method

xk+1 = xk − γkH−1∇f(xk)

converges to ‖ · ‖H -norm projection onto solution set from x0
• Means that scaled gradient method converges to solution of

minimizex ‖x− x0‖2H
subject to Ax = b

where H decides metric in which to measure distance from x0
• If x0 = 0, we get minimum ‖ · ‖H -norm solution in {x : Ax = b}
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Characterizing projection point

• The unique projection point x̂ = argmin
x∈X

(‖x−x0‖2H) if and only if

Hx̂−Hx0 ∈ R(AT ) and Ax̂ = b

where R(AT ) is the range space of AT

• The range space is R(AT ) = {v ∈ Rn : v = ATλ and λ ∈ Rm}
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Convergence to projection point

• The scaled gradient method can be written as

Hxk+1 = Hxk − γkAT (Axk − b),

if all γk > ε > 0 are small enough, it converges to a solution x̄:

xk → x̄ and Ax̄ = b

• Letting λk = −
∑k
l=0 γl(Axl − b) ∈ Rm and unfolding iteration:

Hxk+1 −Hx0 = −
k∑
l=0

γlA
T (Axl − b) = ATλk ∈ R(AT )

• In the limit xk → x̄, we get

Hx̄−Hx0 ∈ R(AT )

which with Ax̄ = b gives optimality conditions for projection
• If x0 = 0, the algorithm converges to argmin

x∈X
(‖x‖H)
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Graphical interpretation

• What happens with scaled gradient method?

• Solution set X extends infinitely
• sequence is perpendicular to X in scalar product (Hx)T y
• algorithm converges to projection point argminx∈X(‖x− x0‖H)

{x : Ax = b}

Gradient method

{x : Ax = b}

A scaled gradient method

22



SGD – Convergence to projection point

• Least squares problem on finite sum form

minimize
x

1
2‖Ax− b‖

2
2 = 1

2

m∑
i=1

(aTi x− bi)2

where A = [a1, . . . , am]T

• Applying single-batch scaled SGD:

xk+1 = xk − γkH−1aik(aTikxk − bik)

• The iteration can be unfolded as

Hxk+1 −Hx0 = −
k∑
l=0

ailγl(a
T
ilxl − bil) = AT


−

k∑
l=0

χ
il=1

(γl(a
T
1 xl − b1))

...

−
k∑
l=0

χ
il=m

(γl(a
T
mxl − bm))


where χ

il=j
(v) = v if il = j, else 0, so Hxk+1 −Hx0 ∈ R(AT )

• Assume xk → x̄ with Ax̄ = b ⇒ convergence to projection point
23



SGD vs Adam

This analysis hints towards that SGD gives smaller norm solutions and
better generalization than variable metric Adam. Is this true?
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How about deep learning?

• The analysis does not carry over to nonconvex DL settings

• However, often convergence to similar norm as initial point
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How to select initial point?

• For standard networks:
• To avoid vanishing and exploding gradient, we want:

L‖Wj‖2 ≈ 1 and ‖bj‖2 small

where L is average activation Lipschitz constant (L = 0.5 for
ReLU)

• Initialization for ReLU:
• (Wj)il ∼ N (0, 2√

mjnj
) gives average ‖Wj‖2 = 2

• (bj)i small or 0

• For residual networks:
• To avoid vanishing and exploding gradient, we want

L(1 + ‖Wj‖2) ≈ 1 and ‖bj‖2 small

where L is average activation Lipschitz constant
• Use smaller initilization than for standard networks
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Initialization in next example

• Set scaling of weights by σ

• For the residual layers (all square layers)
• (Wj)ij ∼ N (0, 1), normalize Wj , scale by σ
• (bj)i ∼ N (0, 1), normalize bj , scale by σ

• For the non-residual layers (non-square layers)
• (Wj)ij ∼ N (0, 1), normalize Wj , scale by max(1, σ)
• (bj)i ∼ N (0, 1), normalize bj , scale by max(1, σ)
• use max(1, σ) for gradient to not vanish in non-residual layers
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 0.01 Algorithm: SGD

-1 -0.5 0 0.5 1

-1
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0.8

1

‖θ0‖2 =

‖θend‖2 = loss(θend) =

Lm =3.57

9.9 0.051

8.4 · 104
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 0.1 Algorithm: SGD
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 1 Algorithm: SGD
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 5 Algorithm: SGD
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 10 Algorithm: SGD
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 0.01 Algorithm: Adam
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 0.1 Algorithm: Adam
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 1 Algorithm: Adam
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 5 Algorithm: Adam
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Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 10 Algorithm: Adam
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Conclusions

• Choice of initial point is significant for generalization

• Here, Adam gives models with larger Lipschitz constant Lm

Adam SGD

scaling σ ‖θ0‖2 ‖θend‖2 Lm ‖θ0‖2 ‖θend‖2 Lm

0.01 3.6 17.4 9.3 · 107 3.57 9.9 8.4 · 104

0.1 3.9 16.2 4.5 · 107 3.8 10.4 2.0 · 105

1 10.7 18.7 4.3 · 107 10.8 14.4 2.4 · 105

5 54.61 54.61 1.9 · 1012 54.2 49.5 1.9 · 1012

10 109.278 109.282 3.8 · 1016 107.2 96.2 1.6 · 1015
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Convergence to sharp or flat minima

• Have argued flat minima generalize well, sharp minima poorly

• Is Adam or SGD most likely to converge to sharp minimum?
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Variable metric methods – Interpretation

• Variable metric methods

xk+1 = xk − γkH−1k ∇f(xk) (1)

can be interpreted as taking pure (stochastic) gradient step on

fHk
= (f ◦H−1/2k )(x)

• Why? Gradient method on fHk
is

vk+1 = vk − γk∇fHk
(vk) = vk − γkH−1/2k f(H

−1/2
k vk)

which after
• multiplication with H−1/2

• and change of variables according to xk = H
−1/2
k vk

gives (1)
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Interpretation consequence

• Variable metric methods choose Hk to make fHk
well conditioned

• Consequences:
• Sharp minima in f become less sharp in fHk

• (Flat minima in f become less flat in fHk )

• Adam maybe more likely to converge to sharp minima than SGD

• This can be a reason for worse generalization in Adam than SGD
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Adam vs SGD – Flat or sharp minima

• Data from previous classification example with σ = 10

• Loss landscape around final point θend for SGD and Adam

• SGD and Adam reach 0 loss but Adam minimum much sharper

• Same θ1, θ2 directions, same axes, zmax = 1000

SGD Adam
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Adam vs SGD – Flat or sharp minima

• Data from previous classification example with σ = 10

• Loss landscape around final point θend for SGD and Adam

• SGD and Adam reach 0 loss but Adam minimum much sharper

• Same θ1, θ2 directions, same axes, zmax = 100000

SGD Adam

34



Adam vs SGD – Flat or sharp minima

• Data from previous classification example with σ = 10

• Loss landscape around final point θend for SGD and Adam

• SGD and Adam reach 0 loss but Adam minimum much sharper
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