Stochastic Gradient Descent

Qualitative Convergence Behavior

Pontus Giselsson

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Notation

- Optimization (decision) variable notation:
- Optimization literature: x, y, z
- Statistics literature: β
- Machine learning literature: θ, w, b
- Data and labels in statistics and machine learning are x, y
- Training problems in supervised learning

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} L\left(m\left(x_{i} ; \theta\right), y_{i}\right)
$$

optimizes over decision variable θ for fixed data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$

- Optimization problem in standard optimization notation

$$
\underset{x}{\operatorname{minimize}} f(x)
$$

optimizes over decision variable x

- Will use optimization notation when algorithms not applied in ML

Gradient method

- Gradient method is applied problems of the form

$$
\underset{x}{\operatorname{minimize}} f(x)
$$

where f is differentiable and gradient method is

$$
x_{k+1}=x_{k}-\gamma_{k} \nabla f\left(x_{k}\right)
$$

where $\gamma_{k}>0$ is a step-size

- f not differentiable in DL with ReLU but still say gradient method
- For large problems, gradient can be expensive to compute \Rightarrow replace by unbiased stochastic approximation of gradient

Unbiased stochastic gradient approximation

- Stochastic gradient estimator:
- notation: $\widehat{\nabla} f(x)$
- outputs random vector in \mathbb{R}^{n} for each $x \in \mathbb{R}^{n}$
- Stochastic gradient realization:
- notation: $\widetilde{\nabla} f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- outputs, $\forall x \in \mathbb{R}^{n}$, vector in \mathbb{R}^{n} drawn from distribution of $\widehat{\nabla} f(x)$
- An unbiased stochastic gradient estimator $\widehat{\nabla} f$ satisfies $\forall x \in \mathbb{R}^{n}$:

$$
\mathbb{E} \widehat{\nabla} f(x)=\nabla f(x)
$$

- If x is random vector in \mathbb{R}^{n}, unbiased estimator satisfies

$$
\mathbb{E}[\widehat{\nabla} f(x) \mid x]=\nabla f(x)
$$

(both are random vectors in \mathbb{R}^{n})

Stochastic gradient descent (SGD)

- The following iteration generates $\left(x_{k}\right)_{k \in \mathbb{N}}$ of random variables:

$$
x_{k+1}=x_{k}-\gamma_{k} \widehat{\nabla} f\left(x_{k}\right)
$$

since $\hat{\nabla} f$ outputs random vectors in \mathbb{R}^{n}

- Stochastic gradient descent finds a realization of this sequence:

$$
x_{k+1}=x_{k}-\gamma_{k} \widetilde{\nabla} f\left(x_{k}\right)
$$

where $\left(x_{k}\right)_{k \in \mathbb{N}}$ here is a realization with values in \mathbb{R}^{n}

- Sloppy in notation for when x_{k} is random variable vs realization
- Can be efficient if evaluating $\widetilde{\nabla} f$ much cheaper than ∇f

Stochastic gradients - Finite sum problems

- Consider finite sum problems of the form

$$
\underset{x}{\operatorname{minimize}} \underbrace{\frac{1}{N}\left(\sum_{i=1}^{N} f_{i}(x)\right)}_{f(x)}
$$

where $\frac{1}{N}$ is for convenience and gives average loss

- Training problems of this form, where sum over training data
- Stochastic gradient: select f_{i} at random and take gradient step

Single function stochastic gradient

- Let I be a $\{1, \ldots, N\}$-valued random variable
- Let, as before, $\widehat{\nabla} f$ denote the stochastic gradient estimator
- Realization: let i be drawn from probability distribution of I

$$
\widetilde{\nabla} f(x)=\nabla f_{i}(x)
$$

where we will use uniform probability distribution

$$
p_{i}=p(I=i)=\frac{1}{N}
$$

- Stochastic gradient is unbiased:

$$
\mathbb{E}[\widehat{\nabla} f(x)]=\sum_{i=1}^{N} p_{i} \nabla f_{i}(x)=\frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}(x)=\nabla f(x)
$$

Mini-batch stochastic gradient

- Let \mathcal{B} be set of K-sample mini-batches to choose from:
- Example: 2-sample mini-batches and $N=4$:

$$
\mathcal{B}=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}
$$

- Number of mini batches $\binom{N}{K}$, each item in $\binom{N-1}{K-1}$ batches
- Let \mathbb{B} be \mathcal{B}-valued random variable
- Let, as before, $\widehat{\nabla} f$ denote stochastic gradient estimator
- Realization: let B be drawn from probability distribution of \mathbb{B}

$$
\widetilde{\nabla} f(x)=\frac{1}{K} \sum_{i \in B} \nabla f_{i}(x)
$$

where we will use uniform probability distribution

$$
p_{B}=p(\mathbb{B}=B)=\frac{1}{\binom{N}{K}}
$$

- Stochastic gradient is unbiased:

$$
\mathbb{E} \widehat{\nabla} f(x)=\frac{1}{\binom{N}{K}} \sum_{B \in \mathcal{B}} \frac{1}{K} \sum_{i \in B} \nabla f_{i}(x)=\frac{\binom{N-1}{K-1}}{\binom{N}{K} K} \sum_{i=1}^{N} \nabla f_{i}(x)=\frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}(x)=\nabla f(x)
$$

Stochastic gradient descent for finite sum problems

- The algorithm, choose $x_{0} \in \mathbb{R}^{n}$ and iterate:

1. Sample a mini-batch $B_{k} \in \mathcal{B}$ of K indices uniformly
2. Update

$$
x_{k+1}=x_{k}-\frac{\gamma_{k}}{K} \sum_{j \in B_{k}} \nabla f_{j}\left(x_{k}\right)
$$

- Can have $\mathcal{B}=\{\{1\}, \ldots,\{N\}\}$ and sample only one function
- Gives realization of underlying stochastic process

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Qualitative convergence behavior

- Consider single-function batch setting
- Assume that the individual gradients satisfy

$$
\left(\nabla f_{i}(x)\right)^{T}\left(\nabla f_{j}(x)\right) \geq \mu
$$

for all i, j and for some $\mu \in \mathbb{R}$ (i.e., can be positive or negative)

Will larger or smaller μ likely give better SGD convergence? Why?

Qualitative convergence behavior

- Consider single-function batch setting
- Assume that the individual gradients satisfy

$$
\left(\nabla f_{i}(x)\right)^{T}\left(\nabla f_{j}(x)\right) \geq \mu
$$

for all i, j and for some $\mu \in \mathbb{R}$ (i.e., can be positive or negative)

Will larger or smaller μ likely give better SGD convergence? Why?

- Larger μ gives more similar to full gradient and faster convergence

Minibatch setting

- Larger minibatch gives larger μ and faster convergence
- Comes at the cost of higher per iteration count
- Limiting minibatch case is the gradient method
- Tradeoff in how large minibatches to use to optimize convergence
- Other reasons exist that favor small batches (later)

SGD - Example

- Let $c_{1}+c_{2}+c_{3}=0$
- Solve minimize ${ }_{x}\left(\frac{1}{2}\left(\left\|x-c_{1}\right\|_{2}^{2}+\left\|x-c_{2}\right\|_{2}^{2}+\left\|x-c_{3}\right\|_{2}^{2}\right)\right)=\frac{3}{2}\|x\|_{2}^{2}+c$
- How will trajectory look for SGD with $\gamma_{k}=1 / 3$?

Levelsets of summands

Levelset of sum

SGD - Example

- Let $c_{1}+c_{2}+c_{3}=0$
- Solve minimize ${ }_{x}\left(\frac{1}{2}\left(\left\|x-c_{1}\right\|_{2}^{2}+\left\|x-c_{2}\right\|_{2}^{2}+\left\|x-c_{3}\right\|_{2}^{2}\right)\right)=\frac{3}{2}\|x\|_{2}^{2}+c$
- How will trajectory look for SGD with $\gamma_{k}=1 / 3$?

Levelsets of summands

Levelset of sum

SGD - Example

- Let $c_{1}+c_{2}+c_{3}=0$
- Solve minimize ${ }_{x}\left(\frac{1}{2}\left(\left\|x-c_{1}\right\|_{2}^{2}+\left\|x-c_{2}\right\|_{2}^{2}+\left\|x-c_{3}\right\|_{2}^{2}\right)\right)=\frac{3}{2}\|x\|_{2}^{2}+c$
- How will trajectory look for SGD with $\gamma_{k}=1 / 3$?

Levelsets of summands

Levelset of sum

- Fast convergence outside "triangle" where gradients similar, slow inside
- Constant step SGD converges to noise ball

SGD - Example

- Let $c_{1}+c_{2}+c_{3}=0$
- Solve minimize ${ }_{x}\left(\frac{1}{2}\left(\left\|x-c_{1}\right\|_{2}^{2}+\left\|x-c_{2}\right\|_{2}^{2}+\left\|x-c_{3}\right\|_{2}^{2}\right)\right)=\frac{3}{2}\|x\|_{2}^{2}+c$
- How will trajectory look for SGD with $\gamma_{k}=1 / 3$?

Levelsets of summands

Levelset of sum

- Constant step GD converges (in this case straight to) solution (right)
- Difference is noise in stochastic gradient that can be measured by μ

SGD - Example zoomed out

- Same example but zoomed out
- Solve minimize $x\left(\frac{1}{2}\left(\left\|x-c_{1}\right\|_{2}^{2}+\left\|x-c_{2}\right\|_{2}^{2}+\left\|x-c_{3}\right\|_{2}^{2}\right)\right)=\frac{3}{2}\|x\|_{2}^{2}+c$
- How will trajectory look with $\gamma_{k}=1 / 3$ from more global view?

Levelsets of summands

Levelset of sum

SGD - Example zoomed out

- Same example but zoomed out
- Solve minimize $x\left(\frac{1}{2}\left(\left\|x-c_{1}\right\|_{2}^{2}+\left\|x-c_{2}\right\|_{2}^{2}+\left\|x-c_{3}\right\|_{2}^{2}\right)\right)=\frac{3}{2}\|x\|_{2}^{2}+c$
- How will trajectory look with $\gamma_{k}=1 / 3$ from more global view?

Levelsets of summands

Levelset of sum

- Far form solution ∇f_{i} more similar to ∇f, larger $\mu \Rightarrow$ faster convergence

Qualitative convergence behavior

- Often fast convergence far from solution, slow close to solution
- Fixed-step size converges to noise ball in general
- Need diminishing step-size to converge to solution in general

Drawback of diminishing step-size

- Diminishing step-size typically gives slow convergence
- Often better convergence with constant step (if it works)
- Is there a setting in which constant step-size works?

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Fixed step-size SGD does not converge to solution

- We can at most hope for finding point \bar{x} such that

$$
\nabla f(\bar{x})=0
$$

- Let $x_{k}=\bar{x}$, and assume $\nabla f_{i}\left(x_{k}\right) \neq 0$, then

$$
x_{k+1}=x_{k}-\gamma_{k} \nabla f_{i}\left(x_{k}\right) \neq x_{k}
$$

i.e., moves away from solution \bar{x}

- Only hope with fixed step-size if all $\nabla f_{i}(\bar{x})=0$, since for $x_{k}=\bar{x}$

$$
x_{k+1}=x_{k}-\gamma_{k} \nabla f_{i}\left(x_{k}\right)=x_{k}
$$

independent on γ_{k} and algorithm stays at solution

- How does norm of individual gradients affect local convergence?

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_{1}(0)=0.83, \nabla f_{2}(0)=-0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_{1}(0)=0.83, \nabla f_{2}(0)=-0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

$$
f\left(x_{0}\right)-f^{\star}=2.45
$$

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_{1}(0)=0.83, \nabla f_{2}(0)=-0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

$$
f\left(x_{1}\right)-f^{\star}=0
$$

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_{1}(0)=0.83, \nabla f_{2}(0)=-0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

$$
f\left(x_{2}\right)-f^{\star}=1.82
$$

Example - Large gradients at solution

- Individal gradients at solution $0: \nabla f_{1}(0)=0.83, \nabla f_{2}(0)=-0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

$f\left(x_{3}\right)-f^{\star}=0.11$

Example - Large gradients at solution

- Individal gradients at solution $0: \nabla f_{1}(0)=0.83, \nabla f_{2}(0)=-0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

$$
f\left(x_{4}\right)-f^{\star}=1.47
$$

Example - Large gradients at solution

- Individal gradients at solution $0: \nabla f_{1}(0)=0.83, \nabla f_{2}(0)=-0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

$$
f\left(x_{5}\right)-f^{\star}=0.18
$$

Example - Large gradients at solution

- Individal gradients at solution $0: \nabla f_{1}(0)=0.83, \nabla f_{2}(0)=-0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

$$
f\left(x_{6}\right)-f^{\star}=1.31
$$

Example - Large gradients at solution

- Individal gradients at solution $0: \nabla f_{1}(0)=0.83, \nabla f_{2}(0)=-0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

$$
f\left(x_{7}\right)-f^{\star}=0.28
$$

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_{1}(0)=0.83, \nabla f_{2}(0)=-0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

$$
f\left(x_{8}\right)-f^{\star}=1.16
$$

Example - Large gradients at solution

- Individal gradients at solution $0: \nabla f_{1}(0)=0.83, \nabla f_{2}(0)=-0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

$$
f\left(x_{9}\right)-f^{\star}=0.35
$$

Example - Large gradients at solution

- Individal gradients at solution 0: $\nabla f_{1}(0)=0.83, \nabla f_{2}(0)=-0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Large gradients at solution

- Individal gradients at solution $0: \nabla f_{1}(0)=0.83, \nabla f_{2}(0)=-0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

$$
f\left(x_{10}\right)-f^{\star}=1.07
$$

- Will not converge to solution with constant step-size

Example - Small gradients at solution

- Shift f_{1} and f_{2} "outwards" to get new problem
- Individal gradients at solution $0: \nabla f_{1}(0)=0.02, \nabla f_{2}(0)=-0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- Shift f_{1} and f_{2} "outwards" to get new problem
- Individal gradients at solution $0: \nabla f_{1}(0)=0.02, \nabla f_{2}(0)=-0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- Shift f_{1} and f_{2} "outwards" to get new problem
- Individal gradients at solution $0: \nabla f_{1}(0)=0.02, \nabla f_{2}(0)=-0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- Shift f_{1} and f_{2} "outwards" to get new problem
- Individal gradients at solution $0: \nabla f_{1}(0)=0.02, \nabla f_{2}(0)=-0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- Shift f_{1} and f_{2} "outwards" to get new problem
- Individal gradients at solution $0: \nabla f_{1}(0)=0.02, \nabla f_{2}(0)=-0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- Shift f_{1} and f_{2} "outwards" to get new problem
- Individal gradients at solution $0: \nabla f_{1}(0)=0.02, \nabla f_{2}(0)=-0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- Shift f_{1} and f_{2} "outwards" to get new problem
- Individal gradients at solution $0: \nabla f_{1}(0)=0.02, \nabla f_{2}(0)=-0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- Shift f_{1} and f_{2} "outwards" to get new problem
- Individal gradients at solution $0: \nabla f_{1}(0)=0.02, \nabla f_{2}(0)=-0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- Shift f_{1} and f_{2} "outwards" to get new problem
- Individal gradients at solution $0: \nabla f_{1}(0)=0.02, \nabla f_{2}(0)=-0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- Shift f_{1} and f_{2} "outwards" to get new problem
- Individal gradients at solution $0: \nabla f_{1}(0)=0.02, \nabla f_{2}(0)=-0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- Shift f_{1} and f_{2} "outwards" to get new problem
- Individal gradients at solution $0: \nabla f_{1}(0)=0.02, \nabla f_{2}(0)=-0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- Shift f_{1} and f_{2} "outwards" to get new problem
- Individal gradients at solution $0: \nabla f_{1}(0)=0.02, \nabla f_{2}(0)=-0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

Example - Small gradients at solution

- Shift f_{1} and f_{2} "outwards" to get new problem
- Individal gradients at solution $0: \nabla f_{1}(0)=0.02, \nabla f_{2}(0)=-0.02$
- SGD with $\gamma=0.07$ and cyclic update order:

- Much faster to reach small loss

Convergence and individual gradient norm

Local convergence of stochastic gradient descent is:

- slow if individual functions do not agree on minima
- individual norms "large" at and around minima
- faster if individual functions do agree on minima
- individual norms "small" at and around minima

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Over- vs under-parameterized models

- Model overparameterized if:
- in regression, zero loss is possible
- in classification, correct classification with margin possible
- logistic loss gives close to 0 loss
- hinge loss gives 0 loss
- Model underparameterized if the above does not hold

Overparameterization - LS example

- Data $A \in \mathbb{R}^{N \times n}, b \in \mathbb{R}^{N}$, and $x \in \mathbb{R}^{n}$
- Consider least squares problem

$$
\underset{x}{\operatorname{minimize}} \underbrace{\frac{1}{2}\|A x-b\|_{2}^{2}}_{f(x)}=\sum_{i=1}^{N} \underbrace{\frac{1}{2}\left(a_{i} x-b_{i}\right)^{2}}_{f_{i}(x)}
$$

where $a_{i} \in \mathbb{R}^{1 \times n}$ are rows in A and problem is

- overparameterized if $n>N$ (infinitely many 0-loss solutions)
- underparameterized if $n \leq N$ (unique solution if A full rank)

Convergence - LS example

- Random problem data: $A \in \mathbb{R}^{200 \times 100}, b \in \mathbb{R}^{200}$ from Gaussian
- Underparameterized setting and unique solution
- Local convergence of SGD quite slow:

Convergence - LS example

- Random problem data: $A \in \mathbb{R}^{200 \times 100}, b \in \mathbb{R}^{200}$ from Gaussian
- Underparameterized setting and unique solution
- Norms of $\nabla f_{i}\left(x^{\star}\right)=\frac{1}{2}\left(a_{i} x^{\star}-b_{i}\right)$ quite large:

Convergence - LS example

- Random problem data: $A \in \mathbb{R}^{200 \times 1000}, b \in \mathbb{R}^{200}$ from Gaussian
- Overparameterized, many 0-loss solutions, larger problem
- Convergence of SGD much faster:

Convergence - LS example

- Random problem data: $A \in \mathbb{R}^{200 \times 1000}, b \in \mathbb{R}^{200}$ from Gaussian
- Overparameterized, many 0-loss solutions, larger problem
- Individual norms $\nabla f_{i}\left(x^{\star}\right)=\frac{1}{2}\left(a_{i} x^{\star}-b_{i}\right)=0$:

Convergence - DL example

- Classification problem: logistic loss
- Network: Residual, ReLU, $3 \times 5,2,1$ widths (5 layers)
- Underparameterized:

Convergence - DL example

- Classification problem: logistic loss
- Network: Residual, ReLU, $15 \times 25,2,1$ widths (17 layers)
- Overparameterized:

Convergence - DL example

- Classification problem: logistic loss
- Network: Residual, ReLU, 3×5,2,1 vs $15 \times 25,2,1$
- Convergence of "best gradient" (final loss: 0.17 vs 0.00018):

Convergence - DL example

- Classification problem: logistic loss
- Network: Residual, ReLU, $3 \times 5,2,1$ vs $15 \times 25,2,1$
- Final norm of individual gradients (final loss: 0.17 vs 0.00018):

Overparameterized networks and convergence

- Overparameterized models seems to give faster SGD convergence
- Reason: individual gradients agree better!

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Step-length

- The step-length in constant step SGD is given by

$$
\left\|x_{k+1}-x_{k}\right\|_{2}=\gamma\left\|\nabla f_{i}\left(x_{k}\right)\right\|_{2}
$$

i.e., proportional to individual gradient norm

- The step-length in constant step GD is given by

$$
\left\|x_{k+1}-x_{k}\right\|_{2}=\gamma\left\|\nabla f\left(x_{k}\right)\right\|_{2}
$$

i.e., proportional to full (average) gradient norm

Flatness of minima

- Is SGD or GD more likely to escape the sharp minima?

Flatness of minima

- Is SGD or GD more likely to escape the sharp minima?

- Impossible to say only from average training loss

Example

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

Example

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

- GD will stay in both minima $\left(\nabla f\left(x_{k}\right)=0 \Rightarrow x_{k+1}=x_{k}\right)$

Example

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

- GD will stay in both minima $\left(\nabla f\left(x_{k}\right)=0 \Rightarrow x_{k+1}=x_{k}\right)$
- SGD will stay in right minima ($\nabla f_{i}\left(x_{k}\right)=0 \Rightarrow x_{k+1}=x_{k}$)
- SGD may escape left minima $\left(\left\|\nabla f_{i}\left(x_{k}\right)\right\|_{2} \neq 0 \Rightarrow x_{k+1} \neq x_{k}\right)$

Example

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

- GD will stay in both minima $\left(\nabla f\left(x_{k}\right)=0 \Rightarrow x_{k+1}=x_{k}\right)$
- SGD will stay in right minima ($\nabla f_{i}\left(x_{k}\right)=0 \Rightarrow x_{k+1}=x_{k}$)
- SGD may escape left minima $\left(\left\|\nabla f_{i}\left(x_{k}\right)\right\|_{2} \neq 0 \Rightarrow x_{k+1} \neq x_{k}\right)$
- $x_{k}=0.8$ and $\gamma=0.5$

Example

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

- GD will stay in both minima $\left(\nabla f\left(x_{k}\right)=0 \Rightarrow x_{k+1}=x_{k}\right)$
- SGD will stay in right minima ($\nabla f_{i}\left(x_{k}\right)=0 \Rightarrow x_{k+1}=x_{k}$)
- SGD may escape left minima $\left(\left\|\nabla f_{i}\left(x_{k}\right)\right\|_{2} \neq 0 \Rightarrow x_{k+1} \neq x_{k}\right)$
- $x_{k}=0.8$ and $\gamma=0.5, i=4$ and $\nabla f_{i}\left(x_{k}\right)=-2.77$

Example

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

- GD will stay in both minima $\left(\nabla f\left(x_{k}\right)=0 \Rightarrow x_{k+1}=x_{k}\right)$
- SGD will stay in right minima ($\nabla f_{i}\left(x_{k}\right)=0 \Rightarrow x_{k+1}=x_{k}$)
- SGD may escape left minima $\left(\left\|\nabla f_{i}\left(x_{k}\right)\right\|_{2} \neq 0 \Rightarrow x_{k+1} \neq x_{k}\right)$
- $x_{k}=0.8$ and $\gamma=0.5, i=4$ and $\nabla f_{i}\left(x_{k}\right)=-2.77, x_{k+1}=2.18$

Mini-batch vs single-batch

- Is escape property effected by mini-batch size?
- How large mini-batch size is best for escaping?

Mini-batch setting

- Use mini-batches of size 2 :

Mini-batch setting

- Use mini-batches of size 2 :

Functions in batch loss 2

Mini-batch setting

- Use mini-batches of size 2 :

- Larger mini-batch \Rightarrow smaller gradients \Rightarrow worse at escaping
- Single-batch better at escaping

Connection to generalization

- Argued that individually flat minima generalize better, i.e., all $\left\|\nabla f_{i}(x)\right\|_{2}$ small in region around minima
- SGD more likely to escape if individual gradients not small
- Smaller batch size increases chances of escaping "bad" minima Have also argued for:
- Good convergence properties towards individually flat minima In summary:
- Single-batch SGD well suited for overparameterized training

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Step-sizes

- Diminising step-sizes are needed for convergence in general
- Common static step-size rules
- redude step-size every K epochs:

$$
\gamma_{k}=\frac{\gamma_{0}}{1+\lceil k / K\rceil} \quad \gamma_{k}=\frac{\gamma_{0}}{1+\sqrt{\lceil k / K\rceil}}
$$

where $\lceil k / K\rceil$ increases by 1 every K epochs

- Convergence analysis under smoothness or convexity requires

$$
\sum_{k=0}^{\infty} \gamma_{k}=\infty \quad \text { and } \quad \sum_{k=0}^{\infty} \gamma_{k}^{2}<\infty
$$

which is satisfied by first but not second above

- Refined analysis gives requirements

$$
\sum_{k=0}^{\infty} \gamma_{k}=\infty \quad \text { and } \quad \frac{\sum_{k=0}^{\infty} \gamma_{k}}{\sum_{k=0}^{\infty} \gamma_{k}^{2}}=\infty
$$

which is satisfied by all the above

Large gradients

- Fixed step-size rules does not take gradient size into account
- Gradients can be very large:

- Step-size rule

$$
\gamma_{k}=\frac{\gamma_{0}}{\alpha\left\|\widetilde{\nabla} f\left(x_{k}\right)\right\|_{2}+1}
$$

with $\gamma_{0}, \alpha>0$ gives

- small steps if $\left\|\widetilde{\nabla} f\left(x_{k}\right)\right\|_{2}$ large
- approximately γ_{0} steps if $\left\|\widetilde{\nabla} f\left(x_{k}\right)\right\|_{2}$ small

Combined step-size rule

- Combination the two previous rules

$$
\gamma_{k}=\frac{\gamma_{0}}{(1+\psi(\lceil k / K\rceil))\left(\alpha\left\|\widetilde{\nabla} f\left(x_{k}\right)\right\|_{2}+1\right)}
$$

where, e.g., $\psi(x)=\frac{1}{x}$ or $\psi(x)=\frac{1}{\sqrt{x}}$ (as before)

- Properties
- $\left\|\widetilde{\nabla} f\left(x_{k}\right)\right\|_{2}$ large: small step-sizes
- $\left\|\widetilde{\nabla} f\left(x_{k}\right)\right\|_{2}$ small: diminshing step-sizes according to $\frac{\gamma_{0}}{1+\psi(\lceil k / K\rceil)}$

Step-size rules and convergence

- Classification, Residual layers, ReLU, $15 \times 25,2,1$ widths (17 layers)
- Step-size parameters: $\psi(x)=0.5 \sqrt{x}, K=50, \alpha=\gamma_{0}=0.1$
- Iteration data:

\# epoch	step-size	batch norm	full norm
0	$4.8 \cdot 10^{-8}$	$2.1 \cdot 10^{7}$	$6.8 \cdot 10^{5}$
10	$1.4 \cdot 10^{-5}$	$7.2 \cdot 10^{4}$	$1.4 \cdot 10^{4}$
50	0.097	0.31	1.4
100	0.016	0.28	3.2
200	0.012	$6.8 \cdot 10^{-5}$	0.72
300	0.01	0.33	11.8
500	0.008	0	0.529
700	0.007	$1.2 \cdot 10^{-6}$	0.0008
1000	0.006	$3.1 \cdot 10^{-6}$	0.0003

- Large initial gradients dampened
- Diminishing step-size gives local convergence

Step-size rules and convergence

- Classification, Residual layers, ReLU, $15 \times 25,2,1$ widths (17 layers)
- Step-size parameters: $\psi(x)=0.5 \sqrt{x}, K=50, \alpha=0, \gamma_{0}=0.1$
- Iteration data:

\# epoch	step-size	batch norm	full norm
1	0.1	$1.2 \cdot 10^{6}$	$6.8 \cdot 10^{5}$
2	-	NaN	NaN
50	-	NaN	NaN
100	-	NaN	NaN
200	-	NaN	NaN
300	-	NaN	NaN
500	-	NaN	NaN
700	-	NaN	NaN
1000	-	NaN	NaN

- No adaptation to large gradients - Gradient explodes
- Diminishing step-size does of course not help

Step-size rules and convergence

- Classification, Residual layers, ReLU, $15 \times 25,2,1$ widths (17 layers)
- Step-size parameters: $\psi \equiv 0, \alpha=\gamma_{0}=0.1$
- Iteration data:

\# epoch	step-size	batch norm	full norm
0	$1.4 \cdot 10^{-7}$	$7.0 \cdot 10^{6}$	$4.7 \cdot 10^{5}$
10	0.004	257	39.4
50	0.10	$6.2 \cdot 10^{-10}$	4.1
100	0.087	1.5	1.3
200	0.089	1.2	0.26
300	0.1	$2.0 \cdot 10^{-12}$	1.3
500	0.1	$5.1 \cdot 10^{-12}$	0.198
700	0.1	$2.4 \cdot 10^{-13}$	0.16
1000	0.087	1.5	0.013

- Large initial gradients dampened
- Larger final full norm than first choice since not diminishing γ_{k}

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Convergence analysis

- Need some inequality that function satisfies to analyze SGD
- Convexity inequality not applicable in deep learning
- Smoothness inequality not applicable in deep learning in general
- ReLU networks are not differentiable and therefore not smooth
- Tanh networks with smooth loss are cont. diff. \Rightarrow locally smooth
- We have seen that training problem is piece-wise polynomial if
- L2 loss and piece-wise linear activation functions
- hinge loss and piece-wise linear activation functions
but does not provide an inequality for proving convergence

Error bound

- In absence of convexity, an error bound is useful in analysis:

$$
\delta\left(f(x)-f\left(x^{\star}\right)\right) \leq\|\nabla f(x)\|_{2}^{2}
$$

that holds locally around solution x^{\star} with $\delta>0$

- Gradient in error bound can be replaced by
- sub-gradient for convex nondifferentiable f
- limiting sub-gradient for nonconvex nondifferentiable f

Kurdyka-Lojasiewicz

- Error bound is instance of the Kurdyka-Lojasiewicz (KL) property
- KL property has exponent $\alpha \in[0,1), \alpha=\frac{1}{2}$ gives error bound
- Examples of KL functions:
- Continuous (on closed domain) semialgebraic functions are KL:

$$
\operatorname{graph} f=\cup_{i=1}^{r}\left(\cap_{j=1}^{q}\left\{x: h_{i j}(x)=0\right\} \cap_{l=1}^{p}\left\{x: g_{i l}(x)<0\right\}\right)
$$

graph is union of intersection, where $h_{i j}$ and $g_{i l}$ polynomials

- Continuous piece-wise polynomials (some DL training problems)
- Strongly convex functions
- Often difficult to decide KL-exponent
- Result: descent methods on KL functions converge
- sublinearly if $\alpha \in\left(\frac{1}{2}, 1\right)$
- linearly if $\alpha \in\left(0, \frac{1}{2}\right]$ (the error bound regime)

Strongly convex functions satisfy error bound

- $s+\sigma x \in \partial f(x)$ with $s \in \partial g(x)$ for convex $g=f-\frac{\sigma}{2}\|\cdot\|_{2}^{2}$
- Therefore

$$
\begin{aligned}
\|s+\sigma x\|_{2}^{2} & =\|s\|_{2}^{2}+2 \sigma s^{T} x+\sigma^{2}\|x\|_{2}^{2} \\
& \geq\|s\|_{2}^{2}+2 \sigma s^{T} x^{\star}+2 \sigma\left(g(x)-g\left(x^{\star}\right)\right)+\sigma^{2}\|x\|_{2}^{2} \\
& =\|s\|_{2}^{2}+2 \sigma s^{T} x^{\star}+\sigma\left\|x^{\star}\right\|_{2}^{2}+2 \sigma\left(f(x)-f\left(x^{\star}\right)\right) \\
& =\left\|s+\sigma x^{\star}\right\|_{2}^{2}+2 \sigma\left(f(x)-f\left(x^{\star}\right)\right) \\
& \geq 2 \sigma\left(f(x)-f\left(x^{\star}\right)\right)
\end{aligned}
$$

where we used

- subgradient definition $g\left(x^{\star}\right) \geq g(x)+s^{T}\left(x^{\star}-x\right)$ in first inequality
- nonnegativity of norms in the second inequality

Implications of error bound

- Restating error bound for differentiable case

$$
\delta\left(f(x)-f\left(x^{\star}\right)\right) \leq\|\nabla f(x)\|_{2}^{2}
$$

- Assume it holds for all x in some ball X around solution x^{\star}
- What can you say about local minima and saddle-points in X ?

Implications of error bound

- Restating error bound for differentiable case

$$
\delta\left(f(x)-f\left(x^{\star}\right)\right) \leq\|\nabla f(x)\|_{2}^{2}
$$

- Assume it holds for all x in some ball X around solution x^{\star}
- What can you say about local minima and saddle-points in X ?
- There are none! Proof by contradiction:
- Assume local minima or saddle-point \bar{x}
- Then $\nabla f(\bar{x})=0 \Rightarrow f(\bar{x})=f\left(x^{\star}\right)$ and \bar{x} is global minima

Convergence analysis - Smoothness and error bound

- Convergence analysis of gradient method
- β-smoothness and error bound assumptions $\left(f^{\star}=f\left(x^{\star}\right)\right.$):

$$
\begin{aligned}
f\left(x_{k+1}\right)-f^{\star} & \leq f\left(x_{k}\right)-f^{\star}+\nabla f\left(x_{k}\right)^{T}\left(x_{k+1}-x_{k}\right)+\frac{\beta}{2}\left\|x_{k}-x_{k+1}\right\|_{2}^{2} \\
& =f\left(x_{k}\right)-f^{\star}-\gamma_{k}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}+\frac{\beta \gamma_{k}^{2}}{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} \\
& =f\left(x_{k}\right)-f^{\star}-\gamma_{k}\left(1-\frac{\beta \gamma_{k}}{2}\right)\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} \\
& \leq\left(1-\gamma_{k} \delta\left(1-\frac{\beta \gamma_{k}}{2}\right)\right)\left(f\left(x_{k}\right)-f^{\star}\right)
\end{aligned}
$$

where

- β-smoothness of f is used in first inequality
- gradient update $x_{k+1}=x_{k}-\gamma_{k} \nabla f\left(x_{k}\right)$ in first equality
- error bound is used in the final inequality
- Linear convergence in function values if $\gamma_{k} \in\left[\epsilon, \frac{2}{\beta}-\epsilon\right], \epsilon>0$

Semi-smoothness

- Typical DL training problems are not smooth
- E.g.: overparameterized ReLU networks with smooth loss
- But semi-smooth ${ }^{1}$ in neighborhood around random initialization ${ }^{2}$:

$$
f(x) \leq f(y)+\nabla f(y)^{T}(x-y)+c\|x-y\|_{2} \sqrt{f(y)}+\frac{\beta}{2}\|x-y\|_{2}^{2}
$$

for some constants c and β

- Holds locally for large enough c, β if cont. piece-wise polynomial
- Constants and neighborhood quantified in [1] ${ }^{2}$
- $c=0$ gives smoothness
- c small gives close to smoothness but allows nondifferentiable

[^0]
Convergence - Error bound and semi-smoothness

- Convergence analysis of gradient descent method
- Assumptions: (c, β)-semi-smooth, δ-error bound, $f^{\star}=0$ (w.l.o.g.)
- Parameters $c \leq \frac{\sqrt{\delta} \gamma \beta}{2}$ and $\gamma \in\left(0, \frac{1}{\beta}\right)$:

$$
\begin{aligned}
& f\left(x_{k+1}\right) \\
& \leq f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T}\left(x_{k+1}-x_{k}\right)+c\left\|x_{k+1}-x_{k}\right\| \sqrt{f\left(x_{k}\right)}+\frac{\beta}{2}\left\|x_{k+1}-x_{k}\right\|_{2}^{2} \\
& =f\left(x_{k}\right)-\gamma\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}+c \gamma\left\|\nabla f\left(x_{k}\right)\right\| \sqrt{f\left(x_{k}\right)}+\frac{\beta \gamma^{2}}{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} \\
& \leq f\left(x_{k}\right)-\gamma\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}+\frac{c \gamma}{\sqrt{\delta}}\left\|\nabla f\left(x_{k}\right)\right\|^{2}+\frac{\beta \gamma^{2}}{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} \\
& \leq f\left(x_{k}\right)-\gamma\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}+\beta \gamma^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \\
& \leq f\left(x_{k}\right)-\gamma(1-\beta \gamma)\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} \\
& \leq(1-c \gamma(1-\beta \gamma)) f\left(x_{k}\right)
\end{aligned}
$$

which shows linear convergence to 0 loss

- Need the nonsmooth part of upper bound c to be small enough
- Can analyze SGD in similar manner

Convergence in deep learning

- Setting: ReLU network, fully connected, smooth loss
- c is small enough when model overparameterized enough [1] ${ }^{1}$
- Linear convergence (with high prob.) for random initialization [1]
- In practice:
- β will be big - relies on small enough ($\leq \frac{1}{\beta}$) constant step-size
- need to find "correct" step-size by diminishing rule
- need to control steps to not depart from linear convergence region
- hopefully achieved by previous step-size rule

[^1]
[^0]: 1 Semismoothness definition not a standard semismoothness definition
 2 [1] A Convergence Theory for Deep Learning via Over-Parameterization. Z. Allen-Zhu et al.

[^1]: ${ }^{1}$ [1] A Convergence Theory for Deep Learning via Over-Parameterization. Z. Allen-Zhu et al.

