Stochastic Gradient Descent

Qualitative Convergence Behavior

Pontus Giselsson

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Notation

- Optimization (decision) variable notation:
 - Optimization literature: x, y, z
 - Statistics literature: β
 - Machine learning literature: θ, w, b
- ullet Data and labels in statistics and machine learning are x,y
- Training problems in supervised learning

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

optimizes over decision variable θ for fixed data $\{(x_i,y_i)\}_{i=1}^N$

• Optimization problem in standard optimization notation

$$\underset{x}{\operatorname{minimize}} f(x)$$

optimizes over decision variable x

Will use optimization notation when algorithms not applied in ML

Gradient method

Gradient method is applied problems of the form

$$\underset{x}{\operatorname{minimize}}\,f(x)$$

where f is differentiable and gradient method is

$$x_{k+1} = x_k - \gamma_k \nabla f(x_k)$$

where $\gamma_k > 0$ is a step-size

- ullet f not differentiable in DL with ReLU but still say gradient method
- For large problems, gradient can be expensive to compute
 replace by unbiased stochastic approximation of gradient

Unbiased stochastic gradient approximation

- Stochastic gradient *estimator*:
 - notation: $\widehat{\nabla} f(x)$
 - outputs random vector in \mathbb{R}^n for each $x \in \mathbb{R}^n$
- Stochastic gradient realization:
 - notation: $\widetilde{\nabla} f(x) : \mathbb{R}^n \to \mathbb{R}^n$
 - outputs, $\forall x \in \mathbb{R}^n$, vector in \mathbb{R}^n drawn from distribution of $\widehat{\nabla} f(x)$
- An unbiased stochastic gradient estimator $\widehat{\nabla} f$ satisfies $\forall x \in \mathbb{R}^n$:

$$\mathbb{E}\widehat{\nabla}f(x) = \nabla f(x)$$

• If x is random vector in \mathbb{R}^n , unbiased estimator satisfies

$$\mathbb{E}[\widehat{\nabla}f(x)|x] = \nabla f(x)$$

(both are random vectors in \mathbb{R}^n)

Stochastic gradient descent (SGD)

• The following iteration generates $(x_k)_{k\in\mathbb{N}}$ of random variables:

$$x_{k+1} = x_k - \gamma_k \widehat{\nabla} f(x_k)$$

since $\widehat{\nabla} f$ outputs random vectors in \mathbb{R}^n

• Stochastic gradient descent finds a *realization* of this sequence:

$$x_{k+1} = x_k - \gamma_k \widetilde{\nabla} f(x_k)$$

where $(x_k)_{k\in\mathbb{N}}$ here is a realization with values in \mathbb{R}^n

- Sloppy in notation for when x_k is random variable vs realization
- ullet Can be efficient if evaluating $\widetilde{\nabla} f$ much cheaper than ∇f

Stochastic gradients – Finite sum problems

Consider finite sum problems of the form

$$\underset{x}{\text{minimize}} \underbrace{\frac{1}{N} \left(\sum_{i=1}^{N} f_i(x) \right)}_{f(x)}$$

where $\frac{1}{N}$ is for convenience and gives average loss

- Training problems of this form, where sum over training data
- ullet Stochastic gradient: select f_i at random and take gradient step

Single function stochastic gradient

- ullet Let I be a $\{1,\ldots,N\}$ -valued random variable
- ullet Let, as before, $\widehat{
 abla}f$ denote the stochastic gradient estimator
- ullet Realization: let i be drawn from probability distribution of I

$$\widetilde{\nabla} f(x) = \nabla f_i(x)$$

where we will use uniform probability distribution

$$p_i = p(I = i) = \frac{1}{N}$$

Stochastic gradient is unbiased:

$$\mathbb{E}[\widehat{\nabla}f(x)] = \sum_{i=1}^{N} p_i \nabla f_i(x) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x) = \nabla f(x)$$

Mini-batch stochastic gradient

- Let \mathcal{B} be set of K-sample mini-batches to choose from:
 - Example: 2-sample mini-batches and N=4:

$$\mathcal{B} = \{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$$

- Number of mini batches $\binom{N}{K}$, each item in $\binom{N-1}{K-1}$ batches
- Let \mathbb{B} be \mathcal{B} -valued random variable
- Let, as before, $\widehat{\nabla} f$ denote stochastic gradient estimator
- Realization: let B be drawn from probability distribution of \mathbb{B}

$$\widetilde{\nabla} f(x) = \frac{1}{K} \sum_{i \in B} \nabla f_i(x)$$

where we will use uniform probability distribution

$$p_B = p(\mathbb{B} = B) = \frac{1}{\binom{N}{K}}$$

Stochastic gradient is unbiased:

$$\mathbb{E}\widehat{\nabla}f(x) = \frac{1}{\binom{N}{K}} \sum_{B \in \mathcal{B}} \frac{1}{K} \sum_{i \in B} \nabla f_i(x) = \frac{\binom{N-1}{K-1}}{\binom{N}{K}K} \sum_{i=1}^{N} \nabla f_i(x) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x) = \nabla f(x)$$

Stochastic gradient descent for finite sum problems

- The algorithm, choose $x_0 \in \mathbb{R}^n$ and iterate:
 - 1. Sample a mini-batch $B_k \in \mathcal{B}$ of K indices uniformly
 - 2. Update

$$x_{k+1} = x_k - \frac{\gamma_k}{K} \sum_{j \in B_k} \nabla f_j(x_k)$$

- ullet Can have $\mathcal{B} = \{\{1\}, \dots, \{N\}\}$ and sample only one function
- Gives realization of underlying stochastic process

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Qualitative convergence behavior

- Consider single-function batch setting
- Assume that the individual gradients satisfy

$$(\nabla f_i(x))^T (\nabla f_j(x)) \ge \mu$$

for all i, j and for some $\mu \in \mathbb{R}$ (i.e., can be positive or negative)

Will larger or smaller μ likely give better SGD convergence? Why?

Qualitative convergence behavior

- Consider single-function batch setting
- Assume that the individual gradients satisfy

$$(\nabla f_i(x))^T (\nabla f_j(x)) \ge \mu$$

for all i, j and for some $\mu \in \mathbb{R}$ (i.e., can be positive or negative)

Will larger or smaller μ likely give better SGD convergence? Why?

 \bullet Larger μ gives more similar to full gradient and faster convergence

Minibatch setting

- Larger minibatch gives larger μ and faster convergence
- Comes at the cost of higher per iteration count
- Limiting minibatch case is the gradient method
- Tradeoff in how large minibatches to use to optimize convergence
- Other reasons exist that favor small batches (later)

SGD - Example

- Let $c_1 + c_2 + c_3 = 0$
- Solve minimize_x $(\frac{1}{2}(\|x-c_1\|_2^2 + \|x-c_2\|_2^2 + \|x-c_3\|_2^2)) = \frac{3}{2}\|x\|_2^2 + c$
- ullet How will trajectory look for SGD with $\gamma_k=1/3$?

Levelsets of summands

Levelset of sum

SGD - Example

- Let $c_1 + c_2 + c_3 = 0$
- Solve minimize_x $(\frac{1}{2}(\|x-c_1\|_2^2 + \|x-c_2\|_2^2 + \|x-c_3\|_2^2)) = \frac{3}{2}\|x\|_2^2 + c$
- ullet How will trajectory look for SGD with $\gamma_k=1/3$?

SGD – Example

- Let $c_1 + c_2 + c_3 = 0$
- Solve minimize_x $(\frac{1}{2}(\|x-c_1\|_2^2 + \|x-c_2\|_2^2 + \|x-c_3\|_2^2)) = \frac{3}{2}\|x\|_2^2 + c$
- ullet How will trajectory look for SGD with $\gamma_k=1/3$?

- Fast convergence outside "triangle" where gradients similar, slow inside
- Constant step SGD converges to noise ball

SGD – Example

- Let $c_1 + c_2 + c_3 = 0$
- Solve $\min_{x} (\frac{1}{2}(\|x c_1\|_2^2 + \|x c_2\|_2^2 + \|x c_3\|_2^2)) = \frac{3}{2}\|x\|_2^2 + c$
- ullet How will trajectory look for SGD with $\gamma_k=1/3$?

- Constant step GD converges (in this case straight to) solution (right)
- ullet Difference is noise in stochastic gradient that can be measured by μ

SGD – Example zoomed out

- Same example but zoomed out
- Solve minimize_x $(\frac{1}{2}(\|x-c_1\|_2^2 + \|x-c_2\|_2^2 + \|x-c_3\|_2^2)) = \frac{3}{2}\|x\|_2^2 + c$
- How will trajectory look with $\gamma_k = 1/3$ from more global view?

SGD - Example zoomed out

- Same example but zoomed out
- Solve minimize_x $(\frac{1}{2}(\|x-c_1\|_2^2 + \|x-c_2\|_2^2 + \|x-c_3\|_2^2)) = \frac{3}{2}\|x\|_2^2 + c$
- How will trajectory look with $\gamma_k = 1/3$ from more global view?

ullet Far form solution ∇f_i more similar to ∇f_i , larger $\mu \Rightarrow$ faster convergence

Qualitative convergence behavior

- Often fast convergence far from solution, slow close to solution
- Fixed-step size converges to noise ball in general
- Need diminishing step-size to converge to solution in general

Drawback of diminishing step-size

- Diminishing step-size typically gives slow convergence
- Often better convergence with constant step (if it works)
- Is there a setting in which constant step-size works?

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Fixed step-size SGD does not converge to solution

• We can at most hope for finding point \bar{x} such that

$$\nabla f(\bar{x}) = 0$$

• Let $x_k = \bar{x}$, and assume $\nabla f_i(x_k) \neq 0$, then

$$x_{k+1} = x_k - \gamma_k \nabla f_i(x_k) \neq x_k$$

i.e., moves away from solution \bar{x}

• Only hope with fixed step-size if all $\nabla f_i(\bar{x}) = 0$, since for $x_k = \bar{x}$

$$x_{k+1} = x_k - \gamma_k \nabla f_i(x_k) = x_k$$

independent on γ_k and algorithm stays at solution

How does norm of individual gradients affect local convergence?

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- $\bullet~$ SGD with $\gamma=0.07$ and cyclic update order:

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- SGD with $\gamma=0.07$ and cyclic update order:

Example – Large gradients at solution

- Individal gradients at solution 0: $\nabla f_1(0) = 0.83$, $\nabla f_2(0) = -0.83$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

• Will not converge to solution with constant step-size

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- $\bullet~$ SGD with $\gamma=0.07$ and cyclic update order:

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- $\bullet~$ SGD with $\gamma=0.07$ and cyclic update order:

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- $\bullet~$ SGD with $\gamma=0.07$ and cyclic update order:

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

- ullet Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- $\bullet~$ SGD with $\gamma=0.07$ and cyclic update order:

- Shift f_1 and f_2 "outwards" to get new problem
- Individal gradients at solution 0: $\nabla f_1(0) = 0.02$, $\nabla f_2(0) = -0.02$
- \bullet SGD with $\gamma=0.07$ and cyclic update order:

Much faster to reach small loss

Convergence and individual gradient norm

Local convergence of stochastic gradient descent is:

- slow if individual functions do not agree on minima
 - individual norms "large" at and around minima
- faster if individual functions do agree on minima
 - individual norms "small" at and around minima

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Over- vs under-parameterized models

- Model overparameterized if:
 - in regression, zero loss is possible
 - in classification, correct classification with margin possible
 - logistic loss gives close to 0 loss
 - hinge loss gives 0 loss
- Model underparameterized if the above does not hold

Overparameterization – LS example

- Data $A \in \mathbb{R}^{N \times n}$, $b \in \mathbb{R}^N$, and $x \in \mathbb{R}^n$
- Consider least squares problem

minimize
$$\underbrace{\frac{1}{2} ||Ax - b||_2^2}_{f(x)} = \sum_{i=1}^{N} \underbrace{\frac{1}{2} (a_i x - b_i)^2}_{f_i(x)}$$

where $a_i \in \mathbb{R}^{1 \times n}$ are rows in A and problem is

- overparameterized if n > N (infinitely many 0-loss solutions)
- underparameterized if $n \leq N$ (unique solution if A full rank)

- Random problem data: $A \in \mathbb{R}^{200 \times 100}$, $b \in \mathbb{R}^{200}$ from Gaussian
- Underparameterized setting and unique solution
- Local convergence of SGD quite slow:

- Random problem data: $A \in \mathbb{R}^{200 \times 100}$, $b \in \mathbb{R}^{200}$ from Gaussian
- Underparameterized setting and unique solution
- Norms of $\nabla f_i(x^*) = \frac{1}{2}(a_i x^* b_i)$ quite large:

- Random problem data: $A \in \mathbb{R}^{200 \times 1000}$, $b \in \mathbb{R}^{200}$ from Gaussian
- Overparameterized, many 0-loss solutions, larger problem
- Convergence of SGD much faster:

- Random problem data: $A \in \mathbb{R}^{200 \times 1000}$, $b \in \mathbb{R}^{200}$ from Gaussian
- Overparameterized, many 0-loss solutions, larger problem
- Individual norms $\nabla f_i(x^*) = \frac{1}{2}(a_i x^* b_i) = 0$:

- Classification problem: logistic loss
- Network: Residual, ReLU, 3x5,2,1 widths (5 layers)
- Underparameterized:

- Classification problem: logistic loss
- Network: Residual, ReLU, 15x25,2,1 widths (17 layers)
- Overparameterized:

- Classification problem: logistic loss
- Network: Residual, ReLU, 3x5,2,1 vs 15x25,2,1
- Convergence of "best gradient" (final loss: 0.17 vs 0.00018):

- Classification problem: logistic loss
- Network: Residual, ReLU, 3x5,2,1 vs 15x25,2,1
- Final norm of individual gradients (final loss: 0.17 vs 0.00018):

Overparameterized networks and convergence

- Overparameterized models seems to give faster SGD convergence
- Reason: individual gradients agree better!

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Step-length

The step-length in constant step SGD is given by

$$||x_{k+1} - x_k||_2 = \gamma ||\nabla f_i(x_k)||_2$$

i.e., proportional to individual gradient norm

• The step-length in constant step GD is given by

$$||x_{k+1} - x_k||_2 = \gamma ||\nabla f(x_k)||_2$$

i.e., proportional to full (average) gradient norm

Flatness of minima

• Is SGD or GD more likely to escape the sharp minima?

Flatness of minima

• Is SGD or GD more likely to escape the sharp minima?

• Impossible to say only from average training loss

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

ullet GD will stay in both minima $(\nabla f(x_k) = 0 \Rightarrow x_{k+1} = x_k)$

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

- GD will stay in both minima $(\nabla f(x_k) = 0 \Rightarrow x_{k+1} = x_k)$
- SGD will stay in right minima $(\nabla f_i(x_k) = 0 \Rightarrow x_{k+1} = x_k)$
- SGD may escape left minima ($\|\nabla f_i(x_k)\|_2 \neq 0 \Rightarrow x_{k+1} \neq x_k$)

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

- GD will stay in both minima $(\nabla f(x_k) = 0 \Rightarrow x_{k+1} = x_k)$
- ullet SGD will stay in right minima $\big(\nabla f_i(x_k)=0\Rightarrow x_{k+1}=x_k\big)$
- SGD may escape left minima $(\|\nabla f_i(x_k)\|_2 \neq 0 \Rightarrow x_{k+1} \neq x_k)$
- $x_k = 0.8$ and $\gamma = 0.5$

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

- GD will stay in both minima $(\nabla f(x_k) = 0 \Rightarrow x_{k+1} = x_k)$
- ullet SGD will stay in right minima $ig(
 abla f_i(x_k) = 0 \Rightarrow x_{k+1} = x_k ig)$
- SGD may escape left minima $(\|\nabla f_i(x_k)\|_2 \neq 0 \Rightarrow x_{k+1} \neq x_k)$
- $x_k = 0.8$ and $\gamma = 0.5$, i = 4 and $\nabla f_i(x_k) = -2.77$

Example

- Flat (local) minima can be different
- Is SGD or GD more likely to escape right/left minima?

- GD will stay in both minima $(\nabla f(x_k) = 0 \Rightarrow x_{k+1} = x_k)$
- SGD will stay in right minima $(\nabla f_i(x_k) = 0 \Rightarrow x_{k+1} = x_k)$
- SGD may escape left minima $(\|\nabla f_i(x_k)\|_2 \neq 0 \Rightarrow x_{k+1} \neq x_k)$
- $x_k = 0.8$ and $\gamma = 0.5$, i = 4 and $\nabla f_i(x_k) = -2.77$, $x_{k+1} = 2.18$

Mini-batch vs single-batch

- Is escape property effected by mini-batch size?
- How large mini-batch size is best for escaping?

Mini-batch setting

• Use mini-batches of size 2:

Mini-batch setting

• Use mini-batches of size 2:

Mini-batch setting

• Use mini-batches of size 2:

- ullet Larger mini-batch \Rightarrow smaller gradients \Rightarrow worse at escaping
- Single-batch better at escaping

Connection to generalization

Argued that individually flat minima generalize better, i.e.,

all $\|\nabla f_i(x)\|_2$ small in region around minima

- SGD more likely to escape if individual gradients not small
- Smaller batch size increases chances of escaping "bad" minima
 Have also argued for:
- Good convergence properties towards individually flat minima
 In summary:
 - Single-batch SGD well suited for overparameterized training

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Step-sizes

- Diminising step-sizes are needed for convergence in general
- Common static step-size rules
 - ullet redude step-size every K epochs:

$$\gamma_k = \frac{\gamma_0}{1 + \lceil k/K \rceil}$$
 $\gamma_k = \frac{\gamma_0}{1 + \sqrt{\lceil k/K \rceil}}$

where $\lceil k/K \rceil$ increases by 1 every K epochs

Convergence analysis under smoothness or convexity requires

$$\sum_{k=0}^{\infty} \gamma_k = \infty \qquad \text{and} \qquad \sum_{k=0}^{\infty} \gamma_k^2 < \infty$$

which is satisfied by first but not second above

• Refined analysis gives requirements

$$\sum_{k=0}^{\infty} \gamma_k = \infty \qquad \text{and} \qquad \frac{\sum_{k=0}^{\infty} \gamma_k}{\sum_{k=0}^{\infty} \gamma_k^2} = \infty$$

which is satisfied by all the above

Large gradients

- Fixed step-size rules does not take gradient size into account
- Gradients can be very large:

• Step-size rule

$$\gamma_k = \frac{\gamma_0}{\alpha \|\widetilde{\nabla} f(x_k)\|_2 + 1}$$

with $\gamma_0, \alpha > 0$ gives

- small steps if $\|\widetilde{\nabla} f(x_k)\|_2$ large
- ullet approximately γ_0 steps if $\|\widetilde{\nabla} f(x_k)\|_2$ small

Combined step-size rule

Combination the two previous rules

$$\gamma_k = \frac{\gamma_0}{(1 + \psi(\lceil k/K \rceil))(\alpha \|\widetilde{\nabla} f(x_k)\|_2 + 1)}$$

where, e.g.,
$$\psi(x) = \frac{1}{x}$$
 or $\psi(x) = \frac{1}{\sqrt{x}}$ (as before)

- Properties
 - $\|\widetilde{\nabla} f(x_k)\|_2$ large: small step-sizes
 - $\|\widetilde{\nabla} f(x_k)\|_2$ small: diminshing step-sizes according to $\frac{\gamma_0}{1+\psi(\lceil k/K \rceil)}$

Step-size rules and convergence

- Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)
- Step-size parameters: $\psi(x) = 0.5\sqrt{x}$, K = 50, $\alpha = \gamma_0 = 0.1$
- Iteration data:

# epoch	step-size	batch norm	full norm
0	$4.8 \cdot 10^{-8}$	$2.1 \cdot 10^{7}$	$6.8\cdot 10^5$
10	$1.4\cdot 10^{-5}$	$7.2 \cdot 10^4$	$1.4\cdot 10^4$
50	0.097	0.31	1.4
100	0.016	0.28	3.2
200	0.012	$6.8 \cdot 10^{-5}$	0.72
300	0.01	0.33	11.8
500	0.008	0	0.529
700	0.007	$1.2\cdot 10^{-6}$	0.0008
1000	0.006	$3.1\cdot 10^{-6}$	0.0003

- Large initial gradients dampened
- Diminishing step-size gives local convergence

Step-size rules and convergence

- Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)
- Step-size parameters: $\psi(x)=0.5\sqrt{x}, K=50, \alpha=0, \gamma_0=0.1$
- Iteration data:

# epoch	step-size	batch norm	full norm
1	0.1	$1.2 \cdot 10^{6}$	$6.8 \cdot 10^5$
2	-	NaN	NaN
50	-	NaN	NaN
100	-	NaN	NaN
200	-	NaN	NaN
300	-	NaN	NaN
500	-	NaN	NaN
700	-	NaN	NaN
1000	-	NaN	NaN

- No adaptation to large gradients Gradient explodes
- Diminishing step-size does of course not help

Step-size rules and convergence

- Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)
- Step-size parameters: $\psi \equiv 0$, $\alpha = \gamma_0 = 0.1$
- Iteration data:

# epoch	step-size	batch norm	full norm
0	$1.4\cdot 10^{-7}$	$7.0 \cdot 10^{6}$	$4.7 \cdot 10^5$
10	0.004	257	39.4
50	0.10	$6.2\cdot10^{-10}$	4.1
100	0.087	1.5	1.3
200	0.089	1.2	0.26
300	0.1	$2.0\cdot10^{-12}$	1.3
500	0.1	$5.1\cdot10^{-12}$	0.198
700	0.1	$2.4\cdot 10^{-13}$	0.16
1000	0.087	1.5	0.013

- Large initial gradients dampened
- ullet Larger final full norm than first choice since not diminishing γ_k

Outline

- Stochastic gradient descent
- Convergence and distance to solution
- Convergence and solution norms
- Overparameterized vs underparameterized setting
- Escaping not individually flat minima
- SGD step-sizes
- SGD convergence

Convergence analysis

- Need some inequality that function satisfies to analyze SGD
- Convexity inequality not applicable in deep learning
- Smoothness inequality not applicable in deep learning in general
 - ReLU networks are not differentiable and therefore not smooth
 - ullet Tanh networks with smooth loss are cont. diff. \Rightarrow locally smooth
- We have seen that training problem is piece-wise polynomial if
 - L2 loss and piece-wise linear activation functions
 - hinge loss and piece-wise linear activation functions

but does not provide an inequality for proving convergence

Error bound

• In absence of convexity, an error bound is useful in analysis:

$$\delta(f(x) - f(x^*)) \le \|\nabla f(x)\|_2^2$$

that holds locally around solution x^* with $\delta > 0$

- Gradient in error bound can be replaced by
 - sub-gradient for convex nondifferentiable f
 - \bullet limiting sub-gradient for nonconvex nondifferentiable f

Kurdyka-Lojasiewicz

- Error bound is instance of the Kurdyka-Lojasiewicz (KL) property
- KL property has exponent $\alpha \in [0,1)$, $\alpha = \frac{1}{2}$ gives error bound
- Examples of KL functions:
 - Continuous (on closed domain) semialgebraic functions are KL:

$$\operatorname{graph} f = \bigcup_{i=1}^r \left(\bigcap_{j=1}^q \{x : h_{ij}(x) = 0\} \cap_{l=1}^p \{x : g_{il}(x) < 0\} \right)$$

graph is union of intersection, where h_{ij} and g_{il} polynomials

- Continuous piece-wise polynomials (some DL training problems)
- Strongly convex functions
- Often difficult to decide KL-exponent
- Result: descent methods on KL functions converge
 - sublinearly if $\alpha \in (\frac{1}{2}, 1)$
 - linearly if $\alpha \in (0, \frac{1}{2}]$ (the error bound regime)

Strongly convex functions satisfy error bound

- $s + \sigma x \in \partial f(x)$ with $s \in \partial g(x)$ for convex $g = f \frac{\sigma}{2} \|\cdot\|_2^2$
- Therefore

$$||s + \sigma x||_{2}^{2} = ||s||_{2}^{2} + 2\sigma s^{T} x + \sigma^{2} ||x||_{2}^{2}$$

$$\geq ||s||_{2}^{2} + 2\sigma s^{T} x^{*} + 2\sigma (g(x) - g(x^{*})) + \sigma^{2} ||x||_{2}^{2}$$

$$= ||s||_{2}^{2} + 2\sigma s^{T} x^{*} + \sigma ||x^{*}||_{2}^{2} + 2\sigma (f(x) - f(x^{*}))$$

$$= ||s + \sigma x^{*}||_{2}^{2} + 2\sigma (f(x) - f(x^{*}))$$

$$\geq 2\sigma (f(x) - f(x^{*}))$$

where we used

- subgradient definition $g(x^*) \ge g(x) + s^T(x^* x)$ in first inequality
- nonnegativity of norms in the second inequality

Implications of error bound

Restating error bound for differentiable case

$$\delta(f(x) - f(x^*)) \le \|\nabla f(x)\|_2^2$$

- Assume it holds for all x in some ball X around solution x^*
- What can you say about local minima and saddle-points in X?

Implications of error bound

Restating error bound for differentiable case

$$\delta(f(x) - f(x^*)) \le \|\nabla f(x)\|_2^2$$

- Assume it holds for all x in some ball X around solution x^*
- What can you say about local minima and saddle-points in X?
- There are none! Proof by contradiction:
 - Assume local minima or saddle-point \bar{x}
 - Then $\nabla f(\bar{x}) = 0 \Rightarrow f(\bar{x}) = f(x^\star)$ and \bar{x} is global minima

Convergence analysis – Smoothness and error bound

- Convergence analysis of gradient method
- β -smoothness and error bound assumptions $(f^* = f(x^*))$:

$$f(x_{k+1}) - f^* \leq f(x_k) - f^* + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta}{2} ||x_k - x_{k+1}||_2^2$$

$$= f(x_k) - f^* - \gamma_k ||\nabla f(x_k)||_2^2 + \frac{\beta \gamma_k^2}{2} ||\nabla f(x_k)||_2^2$$

$$= f(x_k) - f^* - \gamma_k (1 - \frac{\beta \gamma_k}{2}) ||\nabla f(x_k)||_2^2$$

$$\leq (1 - \gamma_k \delta(1 - \frac{\beta \gamma_k}{2})) (f(x_k) - f^*)$$

where

- β -smoothness of f is used in first inequality
- gradient update $x_{k+1} = x_k \gamma_k \nabla f(x_k)$ in first equality
- error bound is used in the final inequality
- Linear convergence in function values if $\gamma_k \in [\epsilon, \frac{2}{\beta} \epsilon]$, $\epsilon > 0$

Semi-smoothness

- Typical DL training problems are not smooth
 - E.g.: overparameterized ReLU networks with smooth loss
- But semi-smooth in neighborhood around random initialization :

$$f(x) \le f(y) + \nabla f(y)^T (x - y) + c ||x - y||_2 \sqrt{f(y)} + \frac{\beta}{2} ||x - y||_2^2$$

for some constants c and β

- Holds locally for large enough c, β if cont. piece-wise polynomial
- Constants and neighborhood quantified in [1]²
- c=0 gives smoothness
- c small gives close to smoothness but allows nondifferentiable

Semismoothness definition not a standard semismoothness definition
 [1] A Convergence Theory for Deep Learning via Over-Parameterization. Z. Allen-Zhu et al.

Convergence – Error bound and semi-smoothness

- Convergence analysis of gradient descent method
- Assumptions: (c,β) -semi-smooth, δ -error bound, $f^* = 0$ (w.l.o.g.)
- Parameters $c \leq \frac{\sqrt{\delta}\gamma\beta}{2}$ and $\gamma \in (0, \frac{1}{\beta})$:

$$f(x_{k+1})$$

$$\leq f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + c \|x_{k+1} - x_k\| \sqrt{f(x_k)} + \frac{\beta}{2} \|x_{k+1} - x_k\|_2^2$$

$$= f(x_k) - \gamma \|\nabla f(x_k)\|_2^2 + c\gamma \|\nabla f(x_k)\| \sqrt{f(x_k)} + \frac{\beta\gamma^2}{2} \|\nabla f(x_k)\|_2^2$$

$$\leq f(x_k) - \gamma \|\nabla f(x_k)\|_2^2 + \frac{c\gamma}{\sqrt{\delta}} \|\nabla f(x_k)\|^2 + \frac{\beta\gamma^2}{2} \|\nabla f(x_k)\|_2^2$$

$$\leq f(x_k) - \gamma \|\nabla f(x_k)\|_2^2 + \beta\gamma^2 \|\nabla f(x_k)\|^2$$

$$\leq f(x_k) - \gamma (1 - \beta\gamma) \|\nabla f(x_k)\|_2^2$$

$$\leq (1 - c\gamma(1 - \beta\gamma)) f(x_k)$$

which shows linear convergence to 0 loss

- ullet Need the nonsmooth part of upper bound c to be small enough
- Can analyze SGD in similar manner

Convergence in deep learning

- Setting: ReLU network, fully connected, smooth loss
- ullet c is small enough when model overparameterized enough $[1]^1$
- Linear convergence (with high prob.) for random initialization [1]
- In practice:
 - β will be big relies on small enough $(\leq \frac{1}{\beta})$ constant step-size
 - need to find "correct" step-size by diminishing rule
 - need to control steps to not depart from linear convergence region
 - hopefully achieved by previous step-size rule

 $^{^{1}}$ [1] A Convergence Theory for Deep Learning via Over-Parameterization. Z. Allen-Zhu et al.