
Deep Learning

Pontus Giselsson

1



Outline

Deep learning

Learning features

Model properties and activation functions

Loss landscape

Residual networks

Overparameterized networks

Generalization and regularization

Generalization – Norm of weights

Generalization – Flatness of minima

Backpropagation

Vanishing and exploding gradients

2



Deep learning

• Can be used both for classification and regression

• Deep learning training problem is of the form

minimize
θ

N∑
i=1

L(m(xi; θ), yi)

where typically
• L(u, y) = 1

2
‖u− y‖22 is used for regression

• L(u, y) = log
(∑K

j=1 e
uj

)
− yTu is used for K-class classification

• Difference to previous convex methods: Nonlinear model m(x; θ)
• Deep learning regression generalizes least squares
• DL classification generalizes multiclass logistic regression
• Nonlinear model makes training problem nonconvex

3



Deep learning – Model

• Nonlinear model of the following form is often used:

m(x; θ) := Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1x+ b1) + b2) · · · ) + bn−1) + bn

where θ contains all Wi and bi
• Each activation σj constitutes a hidden layer in the model network
• We have no final layer activation (is instead part of loss)
• Graphical representation with three hidden layers

x
i

σ1(·)
σ2(·)

σ3(·)

• Some reasons for using this structure:
• (Assumed) universal function approximators
• Efficient gradient computation using backpropagation

4



No final layer activation in classification

• In classification, it is common to use
• Softmax final layer activation
• Cross entropy loss function

• Equivalent to
• no (identity) final layer activation
• multiclass logistic loss

which is what we use

5



Activation functions

• Activation function σj takes as input the output of Wj(·) + bj
• Often a function σ̄j : R→ R is applied to each element

• Example: σj : R3 → R3 is σj(u) =

σ̄j(u1)
σ̄j(u2)
σ̄j(u3)


• We will use notation over-loading and call both functions σj

6



Examples of activation functions

Name σ(u) Graph

Sigmoid 1
1+e−u

Tanh eu−e−u

e−u+eu

ReLU max(u, 0)

LeakyReLU max(u, αu)

ELU

{
u if u ≥ 0

α(eu − 1) else

7



Examples of affine transformations

• Dense (fully connected): Dense Wj

• Sparse: Sparse Wj

• Convolutional layer (convolution with small pictures)
• Fixed (random) sparsity pattern

• Subsampling: reduce size, Wj fat (smaller output than input)
• average pooling

8



Prediction

• Prediction as in least squares and multiclass logistic regression

• Assume model m(x; θ) trained and “optimal” θ? found

• Regression:
• Predict response for new data x using ŷ = m(x; θ?)

• Classification (with no final layer activation):
• We have one model mj(x; θ?) output for each class
• Predict class belonging for new data x according to

argmax
j∈{1,...,K}

mj(x; θ?)

i.e., class with largest model value (since loss designed this way)

9



Outline

Deep learning

Learning features

Model properties and activation functions

Loss landscape

Residual networks

Overparameterized networks

Generalization and regularization

Generalization – Norm of weights

Generalization – Flatness of minima

Backpropagation

Vanishing and exploding gradients

10



Learning features

• Convex methods use prespecified feature maps (or kernels)

• Deep learning instead learns feature map during training
• Define parameter dependent feature vector:

φ(x; θ) := σn−1(Wn−1σn−2(· · · (W2σ1(W1x+b1)+b2) · · · )+bn−1)

• Model becomes m(x; θ) = Wnφ(x; θ) + bn
• Inserted into training problem:

minimize
θ

N∑
i=1

L(Wnφ(xi; θ) + bn, yi)

same as before, but with learned (parameter-dependent) features

• Learning features at training makes training nonconvex

11



Learning features – Graphical representation

• Fixed features gives convex training problems

m
(x
i
;θ
)

φ(xi)

w
T
φ
(x
i
)

φx
i

• Learning features gives nonconvex training problems

m
(x
i
;θ
)

x
i

φ(xi; θ)

W
4
φ
(x
i
;θ
)

φ(·; θ)

• Output of last activation function is feature vector 12



Optimizing only final layer

• Assume:
• that parameters θ̄f in the layers in the square are fixed
• that we optimize only the final layer parameters
• that the loss is a (binary) logistic loss

m
(x
i
;θ
)

x
i

φ(xi; θ)

W
4
φ
(x
i
;θ
)

φ(·; θ)

• What can you say about the training problem?

• It reduces to logistic regression with fixed features φ(xi; θ̄f )

minimize
θ=(Wn,bn)

N∑
i=1

L(Wnφ(xi; θ̄f ) + bn, yi)

• The training problem is convex

13



Optimizing only final layer

• Assume:
• that parameters θ̄f in the layers in the square are fixed
• that we optimize only the final layer parameters
• that the loss is a (binary) logistic loss

m
(x
i
;θ
)

x
i

φ(xi; θ)

W
4
φ
(x
i
;θ
)

φ(·; θ)

• What can you say about the training problem?
• It reduces to logistic regression with fixed features φ(xi; θ̄f )

minimize
θ=(Wn,bn)

N∑
i=1

L(Wnφ(xi; θ̄f ) + bn, yi)

• The training problem is convex

13



Design choices

Many design choices in building model to create good features

• Number of layers

• Width of layers

• Types of layers

• Types of activation functions

• Different model structures (e.g., residual network)

14



Outline

Deep learning

Learning features

Model properties and activation functions

Loss landscape

Residual networks

Overparameterized networks

Generalization and regularization

Generalization – Norm of weights

Generalization – Flatness of minima

Backpropagation

Vanishing and exploding gradients

15



Model properties – ReLU networks

• Recall model

m(x; θ) := Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1x+ b1) + b2) · · · ) + bn−1) + bn

where θ contains all Wi and bi
• Assume that all activation functions are (Leaky)ReLU

• What can you say about the properties of m(·; θ) for fixed θ?

• It is continuous piece-wise affine

16



Model properties – ReLU networks

• Recall model

m(x; θ) := Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1x+ b1) + b2) · · · ) + bn−1) + bn

where θ contains all Wi and bi
• Assume that all activation functions are (Leaky)ReLU

• What can you say about the properties of m(·; θ) for fixed θ?
• It is continuous piece-wise affine

16



1D Regression – Model properties

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyReLU

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

•

17



1D Regression – Model properties

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyReLU

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

• Vertical lines show kinks

17



1D Regression – Model properties

• Fully connected, layers widths: 5,5,5,1,1 (78 params), Tanh

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

• No kinks for Tanh

17



Identity activation

• Do we need nonlinear activation functions?

• What can you say about model if all σj = Id in

m(x; θ) := Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1x+ b1) + b2) · · · ) + bn−1) + bn

where θ contains all Wj and bj

• We then get

m(x; θ) := Wn(Wn−1(· · · (W2(W1x+ b1) + b2) · · · ) + bn−1) + bn

= WnWn−1 · · ·W2W1︸ ︷︷ ︸
W

x+ bn +

n−1∑
l=2

Wn · · ·Wlbl−1︸ ︷︷ ︸
b

= Wx+ b

which is linear in x (but training problem nonconvex)

18



Identity activation

• Do we need nonlinear activation functions?

• What can you say about model if all σj = Id in

m(x; θ) := Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1x+ b1) + b2) · · · ) + bn−1) + bn

where θ contains all Wj and bj
• We then get

m(x; θ) := Wn(Wn−1(· · · (W2(W1x+ b1) + b2) · · · ) + bn−1) + bn

= WnWn−1 · · ·W2W1︸ ︷︷ ︸
W

x+ bn +

n−1∑
l=2

Wn · · ·Wlbl−1︸ ︷︷ ︸
b

= Wx+ b

which is linear in x (but training problem nonconvex)

18



Network with identity activations – Example

• Fully connected, layers widths: 5,5,5,1,1 (78 params), Identity

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

19



Outline

Deep learning

Learning features

Model properties and activation functions

Loss landscape

Residual networks

Overparameterized networks

Generalization and regularization

Generalization – Norm of weights

Generalization – Flatness of minima

Backpropagation

Vanishing and exploding gradients

20



Training problem properties

• Recall model

m(x; θ) := Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1x+ b1) + b2) · · · ) + bn−1) + bn

where θ includes all Wj and bj and training problem

minimize
θ

N∑
i=1

L(m(xi; θ), yi)

• If all σj LeakyReLU and L(u, y) = 1
2‖u− y‖

2
2, then for fixed x, y

• m(x; ·) is continuous piece-wise polynomial (cpp) of degree n in θ
• L(m(x; θ), y) is cpp of degree 2n in θ

where both model output and loss can grow fast

• If σj is instead Tanh
• model no longer piece-wise polynomial (but “more” nonlinear)
• model output grows slower since σj : R→ (−1, 1)

21



Loss landscape – Leaky ReLU

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
• Regression problem, least squares loss
• Plot:

∑N
i=1 L(m(xi; θ

? + t1θ1 + t2θ2), yi) vs scalars t1, t2, where
• θ? is numerically found solution to training problem
• θ1 and θ2 are random directions in parameter space

• First choice of θ1 and θ2:

22



Loss landscape – Leaky ReLU

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
• Regression problem, least squares loss
• Plot:

∑N
i=1 L(m(xi; θ

? + t1θ1 + t2θ2), yi) vs scalars t1, t2, where
• θ? is numerically found solution to training problem
• θ1 and θ2 are random directions in parameter space

• Second choice of θ1 and θ2:

22



Loss landscape – Leaky ReLU

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
• Regression problem, least squares loss
• Plot:

∑N
i=1 L(m(xi; θ

? + t1θ1 + t2θ2), yi) vs scalars t1, t2, where
• θ? is numerically found solution to training problem
• θ1 and θ2 are random directions in parameter space

• Third choice of θ1 and θ2:

22



Loss landscape – Tanh

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
• Regression problem, least squares loss
• Plot:

∑N
i=1 L(m(xi; θ

? + t1θ1 + t2θ2), yi) vs scalars t1, t2, where
• θ? is numerically found solution to training problem
• θ1 and θ2 are random directions in parameter space

• First choice of θ1 and θ2:

23



Loss landscape – Tanh

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
• Regression problem, least squares loss
• Plot:

∑N
i=1 L(m(xi; θ

? + t1θ1 + t2θ2), yi) vs scalars t1, t2, where
• θ? is numerically found solution to training problem
• θ1 and θ2 are random directions in parameter space

• Second choice of θ1 and θ2:

23



Loss landscape – Tanh

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
• Regression problem, least squares loss
• Plot:

∑N
i=1 L(m(xi; θ

? + t1θ1 + t2θ2), yi) vs scalars t1, t2, where
• θ? is numerically found solution to training problem
• θ1 and θ2 are random directions in parameter space

• Third choice of θ1 and θ2:

23



ReLU vs Tanh

Previous figures suggest:

• ReLU: more regular and similar loss landscape?

• Tanh: less steep (on macro scale)?

• Tanh: Minima extend over larger regions?

24



Outline

Deep learning

Learning features

Model properties and activation functions

Loss landscape

Residual networks

Overparameterized networks

Generalization and regularization

Generalization – Norm of weights

Generalization – Flatness of minima

Backpropagation

Vanishing and exploding gradients

25



Performance with increasing depth

• Increasing depth can deteriorate performance

• Deep networks may even have worse training errors than shallow

• Intuition: deeper layers bad at approximating identity mapping

26



Residual networks

• Add skip connections between layers
• Instead of network architecture with z1 = xi (see figure):

zj+1 = σj(Wjzj + bj) for j ∈ {1, . . . , n− 1}

use residual architecture

zj+1 = zj + σj(Wjzj + bj) for j ∈ {1, . . . , n− 1}

• Assume σ(0) = 0, Wj = 0, bj = 0 for j = 1, . . . ,m (m < n− 1)
⇒ deeper part of network is identity mapping and does no harm

• Learns variation from identity mapping (residual)

x
i
=
z 1

z1 σ1(·) z2 σ2(·) z3 σ3(·) z4 σ4(·)

27



Graphical representation

For graphical representation, first collapse nodes into single node

x
i
=
z 1

z1 σ1(·) z2 σ2(·) z3 σ3(·) z4 σ4(·)

h1(·) h2(·) h3(·) h4(·)

h1(·) h2(·) h3(·) h4(·)

x
i
=
z 1

z1 z2 z3 z4

28



Graphical representation

• Collapsed network representation

h1(·) h2(·) h3(·) h4(·)

x
i
=
z 1

z1 z2 z3 z4

• Residual network

h1(·) h2(·) h3(·) h4(·)

x
i
=
z 1

Σz1
Σz2

Σz3
Σz4

• If some hj = 0 gives same performance as shallower network

29



Residual network – Example

• Fully connected – no residual layers, LeakyReLU activation

• Layers widths: 3x5,1,1 (depth: 5, 78 params)

• Trained for 5000 epochs

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

30



Residual network – Example

• Fully connected – no residual layers, LeakyReLU activation

• Layers widths: 5x5,1,1 (depth: 7, 138 params)

• Trained for 5000 epochs

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

30



Residual network – Example

• Fully connected – no residual layers, LeakyReLU activation

• Layers widths: 10x5,1,1 (depth: 12, 288 params)

• Trained for 5000 epochs

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

30



Residual network – Example

• Fully connected – no residual layers, LeakyReLU activation

• Layers widths: 15x5,1,1 (depth: 17, 438 params)

• Trained for 5000 epochs

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

30



Residual network – Example

• Fully connected – no residual layers, LeakyReLU activation

• Layers widths: 45x5,1,1 (depth: 47, 1,338 params)

• Trained for 5000 epochs

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

30



Residual network – Example

• Fully connected – residual layers, LeakyReLU activation

• Layers widths: 3x5,1,1 (depth: 5, 78 params)

• Trained for 5000 epochs

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

30



Residual network – Example

• Fully connected – residual layers, LeakyReLU activation

• Layers widths: 5x5,1,1 (depth: 7, 138 params)

• Trained for 5000 epochs

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

30



Residual network – Example

• Fully connected – residual layers, LeakyReLU activation

• Layers widths: 10x5,1,1 (depth: 12, 288 params)

• Trained for 5000 epochs

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

30



Residual network – Example

• Fully connected – residual layers, LeakyReLU activation

• Layers widths: 15x5,1,1 (depth: 17, 438 params)

• Trained for 5000 epochs

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

30



Residual network – Example

• Fully connected – residual layers, LeakyReLU activation

• Layers widths: 45x5,1,1 (depth: 47, 1,338 params)

• Trained for 5000 epochs

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

30



Outline

Deep learning

Learning features

Model properties and activation functions

Loss landscape

Residual networks

Overparameterized networks

Generalization and regularization

Generalization – Norm of weights

Generalization – Flatness of minima

Backpropagation

Vanishing and exploding gradients

31



Why overparameterization?

• Neural networks are often overparameterized in practice

• Why? They often perform better than underparameterized

32



What is overparameterization?

• We mean that many solutions exist that can:
• fit all data points (0 training loss) in regression
• correctly classify all training examples in classification

• This requires (many) more parameters than training examples
• Need wide and deep enough networks
• Can result in overfitting

• Questions:
• Which of all solutions give best generalization?
• (How) can network design affect generalization?

x
i

σ1(·)
σ2(·)

σ3(·)

33



Overparameterization – An example

• Assume fully connected network with
• input data xi ∈ Rp
• n layers and N ≈ p2 samples
• same width throughout (except last layer, which can be neglected)

• What is the relation between number of weights and samples?

x
i

σ1(·) σ2(·) σ3(·)

• We have:
• Number of parameters approximately: (Wj)lk: p2n and (bj)l: pn

• Then #weights
#samples

≈ p2n
p2

= n more weights than samples

34



Overparameterization – An example

• Assume fully connected network with
• input data xi ∈ Rp
• n layers and N ≈ p2 samples
• same width throughout (except last layer, which can be neglected)

• What is the relation between number of weights and samples?

x
i

σ1(·) σ2(·) σ3(·)

• We have:
• Number of parameters approximately: (Wj)lk: p2n and (bj)l: pn

• Then #weights
#samples

≈ p2n
p2

= n more weights than samples

34



Outline

Deep learning

Learning features

Model properties and activation functions

Loss landscape

Residual networks

Overparameterized networks

Generalization and regularization

Generalization – Norm of weights

Generalization – Flatness of minima

Backpropagation

Vanishing and exploding gradients

35



Generalization

• Most important for model to generalize well to unseen data

• General approach in training
• Train a model that is too expressive for the underlying data

• Overparameterization in deep learning
• Use regularization to

• find model of appropriate (lower) complexity
• favor models with desired properties

36



Regularization

What regularization techniques in DL are you familiar with?

37



Regularization techniques

• Reduce number of parameters
• Sparse weight tensors (e.g., convolutional layers)
• Subsampling (gives fewer parameters deeper in network)

• Explicit regularization term in cost function, e.g., Tikhonov

• Data augmentation – more samples, artificial often OK

• Early stopping – stop algorithm before convergence

• Dropouts

• ...

38



Implicit vs explicit regularization

• Regularization can be explicit or implicit

• Explicit – Introduce something with intent to regularize:
• Add cost function to favor desirable properties
• Design (adapt) network to have regularizing properties

• Implicit – Use something with regularization as byproduct:
• Use algorithm that finds favorable solution among many
• Will look at implicit regularization via SGD

39



Generalization – Our focus

Will here discuss generalization via:

• Norm of parameters – leads to implicit regularization via SGD

• Flatness of minima – leads to implicit regularization via SGD

40



Outline

Deep learning

Learning features

Model properties and activation functions

Loss landscape

Residual networks

Overparameterized networks

Generalization and regularization

Generalization – Norm of weights

Generalization – Flatness of minima

Backpropagation

Vanishing and exploding gradients

41



Lipschitz continuity of ReLU networks

• Assume that all activation functions 1-Lipschitz continuous

• The neural network model m(·; θ) is Lipschitz continuous in x,

‖m(x1; θ)−m(x2; θ)‖2 ≤ L‖x1 − x2‖2

for fixed θ, e.g., the θ obtained after training

• This means output differerences are bounded by input differences

• A Lipschitz constant L is given by

L = ‖Wn‖2 · ‖Wn−1‖2 · · · ‖W1‖2

since activation functions are 1-Lipschitz continuous

• For residual layers each ‖Wj‖2 replaced by (1 + ‖Wj‖2)

42



Desired Lipschitz constant

• Overparameterization gives many solutions that perfectly fit data

• Would you favor one with high or low Lipschitz constant L?

43



Small norm likely to generalize better

• Smaller Lipschitz constant probably generalizes better if perfect fit

• “Similar inputs give similar outputs”, recall

‖m(x1; θ)−m(x2; θ)‖2 ≤ L‖x1 − x2‖2

with a Lipschitz constant is given by

L = ‖Wn‖2 · ‖Wn−1‖2 · · · ‖W1‖2

or with ‖Wj‖2 replaced by (1 + ‖Wj‖2) for residual layers

• Smaller weight norms give better generalization if perfect fit

44



Generalization – Norm of weights

• Fully connected – residual layers, LeakyReLU
• Layers widths: 30x5,1,1 (888 params)
• Norm of weights (with perfect fit): 72

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

•

45



Generalization – Norm of weights

• Fully connected – residual layers, LeakyReLU
• Layers widths: 30x5,1,1 (888 params)
• Norm of weights (with perfect fit): 540

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

•

45



Generalization – Norm of weights

• Fully connected – residual layers, LeakyReLU
• Layers widths: 30x5,1,1 (888 params)
• Norm of weights (with perfect fit): 540

-1 -0.5 0 0.5 1

-20

-15

-10

-5

0

5

variable x

re
sp

o
n

se
y

m(x; θ?)

• Same as previous, new scaling
45



Generalization – Norm of weights

• Fully connected – residual layers, LeakyReLU
• Layers widths: 30x5,1,1 (888 params)
• Norm of weights (with perfect fit): 595

-1 -0.5 0 0.5 1

0

1

2

3

4

5

variable x

re
sp

o
n

se
y

m(x; θ?)

• Large norm, but seemingly fair generalization
45



Generalization – Norm of weights

• Fully connected – residual layers, LeakyReLU
• Layers widths: 30x5,1,1 (888 params)
• Norm of weights (with perfect fit): 595

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

0

1

2

3

4

5

6

7

variable x

re
sp

o
n

se
y

m(x; θ?)

• Same as previous, new scaling
45



Generalization – Norm of weights

• Fully connected – residual layers, LeakyReLU
• Layers widths: 30x5,1,1 (888 params)
• Norm of weights (with perfect fit): 72

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

0

1

2

3

4

5

6

7

variable x

re
sp

o
n

se
y

m(x; θ?)

• Same as first, new scaling – overfits less than large norm solutions
45



Outline

Deep learning

Learning features

Model properties and activation functions

Loss landscape

Residual networks

Overparameterized networks

Generalization and regularization

Generalization – Norm of weights

Generalization – Flatness of minima

Backpropagation

Vanishing and exploding gradients

46



Flatness of minima

• Consider the following illustration of average loss:

Training loss Test loss

θ

• Depicts test loss as shifted training loss

• Motivation to that flat minima generalize better than sharp

47



Flatness of minima

• Consider the following illustration of average loss:

Training loss Test loss

θ

• Depicts test loss as shifted training loss

• Motivation to that flat minima generalize better than sharp

• Is there a limitation in considering the average loss only?

47



Generalization from loss landscape

• Training set {(xi, yi)}Ni=1 and training problem:

minimize
θ

N∑
i=1

L(m(xi; θ), yi)

• Test set {(x̂i, ŷi)}N̂i=1, θ generalizes well if test loss small

N̂∑
i=1

L(m(x̂i; θ), ŷi)

• By overparameterization, we can for each (x̂i, ŷi) find θ̂i so that

L(m(x̂i; θ), ŷi) = L(m(xji ; θ + θ̂i), yji)

for all θ given a (similar) (xji , yji) pair in training set
• Evaluate test loss by training loss at shifted points θ + θ̂i

1)

• Test loss small if original individual loss small at all θ + θ̂i
• Previous figure used same θ̂i = θ̂ for all i

1) Don’t compute in practice, just thought experiment to connect generalization to training loss

48



Example

• Can flat (local) minima be different?

• Does one of the following minima generalize better?

Average training loss

49



Example

• Can flat (local) minima be different?

• Does one of the following minima generalize better?

Training loss 1

It depends on individual losses

49



Example

• Can flat (local) minima be different?

• Does one of the following minima generalize better?

Training loss 2

It depends on individual losses

49



Example

• Can flat (local) minima be different?

• Does one of the following minima generalize better?

Training loss 3

It depends on individual losses

49



Example

• Can flat (local) minima be different?

• Does one of the following minima generalize better?

Training loss 4

It depends on individual losses

49



Example

• Can flat (local) minima be different?

• Does one of the following minima generalize better?

Average training loss

It depends on individual losses

49



Example

• Can flat (local) minima be different?

• Does one of the following minima generalize better?

Test losses (= Shifted training losses)

It depends on individual losses

Let us evaluate test loss by shifting individual training losses

49



Example

• Can flat (local) minima be different?

• Does one of the following minima generalize better?

Average test loss

It depends on individual losses

Let us evaluate test loss by shifting individual training losses

Do not only want flat minima, want individual losses flat at minima

49



Individually flat minima

• Both flat minima have ∇f(θ) = 0, but
• One minima has large individual gradients ‖∇fi(θ)‖
• Other minima has small individual gradients ‖∇fi(θ)‖
• The latter (individually flat minima) seems to generalize better

• Want individually flat minima (with small ‖∇fi(θ)‖)
• This implies average flat minima
• The reverse implication may not hold
• Overparameterized networks:

• The reverse implication may often hold at global minima
• Why? f(θ) = 0 and ∇f(θ) = 0 implies fi(θ) = 0 and ∇fi(θ) = 0

50



Outline

Deep learning

Learning features

Model properties and activation functions

Loss landscape

Residual networks

Overparameterized networks

Generalization and regularization

Generalization – Norm of weights

Generalization – Flatness of minima

Backpropagation

Vanishing and exploding gradients

51



Training algorithm

• Neural networks often trained using stochastic gradient descent

• DNN weights are updated via gradients in training

• Gradient of cost is sum of gradients of summands (samples)

• Gradient of each summand computed using backpropagation

52



Backpropagation

• Backpropagation is reverse mode automatic differentiation

• Based on chain-rule in differentiation

• Backpropagation must be performed per sample

• Our derivation assumes:
• Fully connected layers (W full, if not, set elements in W to 0)
• Activation functions σj(v) = (σj(v1), . . . , σj(vp)) element-wise

(overloading of σj notation)
• Weights Wj are matrices, samples xi and responses yi are vectors
• No residual connections

53



Jacobians

• The Jacobian of a function f : Rn → Rm is given by

∂f

∂x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
...

...
∂fm
∂x1

· · · ∂fm
∂xn

 ∈ Rm×n

• The Jacobian of a function f : Rp×n → R is given by

∂f

∂x
=


∂f
∂x11

· · · ∂f
∂x1n

...
...

...
∂f
∂xp1

· · · ∂f
∂xpn

 ∈ Rp×n

• The Jacobian of a function f : Rp×n → Rm is at layer j given by

[
∂f

∂x

]
:,j,:

=


∂f1
∂xj1

· · · ∂f1
∂xjn

...
...

...
∂fm
∂xj1

· · · ∂fm
∂xjn

 ∈ Rm×n

the full Jacobian is a 3D tensor in Rm×p×n
54



Jacobian vs gradient

• The Jacobian of a function f : Rn → R is given by

∂f

∂x
=
[
∂f
∂x1

· · · ∂f
∂xn

]
• The gradient of a function f : Rn → R is given by

∇f =


∂f
∂x1

...
∂f
∂xn


i.e., transpose of Jacobian for f : Rn → R

• Chain rule holds for Jacobians:

∂f

∂x
=
∂f

∂z

∂z

∂x

55



Jacobian vs gradient – Example

• Consider differentiable f : Rm → R and M ∈ Rm×n
• Compute Jacobian of g = (f ◦M) using chain rule:

• Rewrite as g(x) = f(z) where z = Mx
• Compute Jacobian by partial Jacobians ∂f

∂z
and ∂z

∂x
:

∂g

∂x
=
∂g

∂z

∂z

∂x
=
∂f

∂z

∂z

∂x
= ∇f(z)TM = ∇f(Mx)TM ∈ R1×n

• Know gradient of (f ◦M)(x) satisfies

∇(f ◦M)(x) = MT∇f(Mx) ∈ Rn

which is transpose of Jacobian

56



Backpropagation – Introduce states

• Compute gradient/Jacobian of

L(m(xi; θ), yi)

w.r.t. θ = {(Wj , bj)}nj=1, where

m(xi; θ) = Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1xi + b1) + b2) · · · ) + bn−1) + bn

• Rewrite as function with states zj

L(zn+1, yi)

where zj+1 = σj(Wjzj + bj) for j ∈ {1, . . . , n}
and z1 = xi

where σn(u) ≡ u

57



Graphical representation

• Per sample loss function

L(zn+1, yi)

where zj+1 = σj(Wjzj + bj) for j ∈ {1, . . . , n}
and z1 = xi

where σn(u) ≡ u
• Graphical representation

x
i
=
z 1

z1 σ1(·) z2 σ2(·) z3 σ3(·) z4

σ4(·)

58



Backpropagation – Chain rule

• Jacobian of L w.r.t. Wj and bj can be computed as

∂L

∂Wj
=

∂L

∂zn+1

∂zn+1

∂zn
· · · ∂zj+2

∂zj+1

∂zj+1

∂Wj

∂L

∂bj
=

∂L

∂zn+1

∂zn+1

∂zn
· · · ∂zj+2

∂zj+1

∂zj+1

∂bj

where we mean derivative w.r.t. first argument in L

• Backpropagation evaluates partial Jacobians as follows

∂L

∂Wj
=

((
∂L

∂zn+1

∂zn+1

∂zn

)
· · · ∂zj+2

∂zj+1

)
∂zj+1

∂Wj

∂L

∂bj
=

((
∂L

∂zn+1

∂zn+1

∂zn

)
· · · ∂zj+2

∂zj+1

)
∂zj+1

∂bj

59



Backpropagation – Forward and backward pass

• Jacobian of L(zn+1, yi) w.r.t. zn+1 (transpose of gradient)
• Computing Jacobian of L(zn+1, yi) requires zn+1

⇒ forward pass: z1 = xi, zj+1 = σj(Wjzj + bj)
• Backward pass, store δj :

∂L

∂zj+1
=

((
∂L

∂zn+1︸ ︷︷ ︸
δTn+1

∂zn+1

∂zn

)
︸ ︷︷ ︸

δTn

· · · ∂zj+2

∂zj+1

)

︸ ︷︷ ︸
δTj+1

• Compute

∂L

∂Wj
=

∂L

∂zj+1

∂zj+1

∂Wj
= δTj+1

∂zj+1

∂Wj

∂L

∂bj
=

∂L

∂zj+1

∂zj+1

∂bj
= δTj+1

∂zj+1

∂bj

60



Dimensions

• Let zj ∈ Rnj , consequently Wj ∈ Rnj+1×nj , bj ∈ Rnj+1

• Dimensions

∂L

∂Wj
=

((
∂L

∂zn+1︸ ︷︷ ︸
1×nn+1

∂zn+1

∂zn︸ ︷︷ ︸
nn+1×nn︸ ︷︷ ︸

1×nn

)
· · · ∂zj+2

∂zj+1︸ ︷︷ ︸
nj+2×nj+1

︸ ︷︷ ︸
1×nj+1

)
∂zj+1

∂Wj︸ ︷︷ ︸
nj+1×nj+1×nj

︸ ︷︷ ︸
nj+1×nj

∂L

∂bj
=

((
∂L

∂zn+1

∂zn+1

∂zn

)
· · · ∂zj+2

∂zj+1

)
︸ ︷︷ ︸

1×nj+1

∂zj+1

∂bj︸ ︷︷ ︸
nj+1×nj+1︸ ︷︷ ︸

1×nj+1

• Vector matrix multiplies except for in last step
• Multiplication with tensor

∂zj+1

∂Wj
can be simplified

• Backpropagation variables δj ∈ Rnj are vectors (not matrices)
61



Partial Jacobian ∂zj+1

∂zj

• Recall relation zj+1 = σj(Wjzj + bj) and let vj = Wjzj + bj
• Chain rule gives

∂zj+1

∂zj
=
∂zj+1

∂vj

∂vj
∂zj

= diag(σ′j(vj))
∂vj
∂zj

= diag(σ′j(Wjzj + bj))Wj

where, with abuse of notation (notation overloading)

σ′j(u) =

 σ′j(u1)
...

σ′j(unj+1
)


• Reason: σj(u) = [σj(u1), . . . , σj(unj+1

)]T with
σj : Rnj+1 → Rnj+1 , gives

dσj
du

=

σ
′
j(u1)

. . .

σ′j(unj+1
)

 = diag(σ′j(u))

62



Partial Jacobian δTj = ∂L
∂zj

• For any vector δj+1 ∈ Rnj+1×1, we have

δTj+1

∂zj+1

∂zj
= δTj+1 diag(σ′j(Wjzj + bj))Wj

= (WT
j (δTj+1 diag(σ′j(Wjzj + bj)))

T )T

= (WT
j (δj+1 � σ′j(Wjzj + bj)))

T

where � is element-wise (Hadamard) product
• We have defined δTn+1 = ∂L

∂zn+1
, then

δTn =
∂L

∂zn
= δTn+1

∂zn+1

∂zn
= (WT

n (δn+1 � σ′n(Wnzn + bn))︸ ︷︷ ︸
δn

)T

• Consequently, using induction:

δTj =
∂L

∂zj
= δTj+1

∂zj+1

∂zj
= (WT

j (δj+1 � σ′j(Wjzj + bj))︸ ︷︷ ︸
δj

)T

63



Information needed to compute ∂L
∂zj

• To compute first Jacobian ∂L
∂zn

, we need zn ⇒ forward pass

• Computing

∂L

∂zj
= δTj+1

∂zj+1

∂zj
= (WT

j (δj+1 � σ′j(Wjzj + bj)))
T = δTj

is done using a backward pass

δj = WT
j (δj+1 � σ′j(Wjzj + bj))

• All zj (or vj = Wjzj + bj) need to be stored for backward pass

x
i
=
z 1

z1 σ1(·) z2 σ2(·) z3 σ3(·) z4

σ4(·)

64



Partial Jacobian ∂L
∂Wj

• Computed by

∂L

∂Wj
=

∂L

∂zj+1

∂zj+1

∂Wj
= δTj+1

∂zj+1

∂Wj

where zj+1 = σj(vj) and vj = Wjzj + bj
• Recall

∂zj+1

∂Wl
is 3D tensor, compute Jacobian w.r.t. row l (Wj)l

δTj+1
∂zj+1

∂(Wj)l
= δTj+1

∂zj+1

∂vj

∂vj
∂(Wj)l

= δTj+1 diag(σ′j(vj))



0
...
zTj
...
0



= (δj+1 � σ′j(Wjzj + bj))
T



0
...
zTj
...
0

 = (δj+1 � σ′j(Wjzj + bj))lz
T
j

65



Partial Jacobian ∂L
∂Wj

cont’d

• Stack Jacobians w.r.t. rows to get full Jacobian:

∂L

∂Wj
= δTj+1

∂zj+1

∂Wj
=


δTj+1

∂zj+1

∂(Wj)1
...

δTj+1
∂zj+1

∂(Wj)nj+1

 =

 (δj+1 � σ′j(Wjzj + bj))1z
T
j

...
(δj+1 � σ′j(Wjzj + bj))nj+1

zTj


= (δj+1 � σ′j(Wjzj + bj))z

T
j

for all j ∈ {1, . . . , n− 1}

• Dimension of result is nj+1 × nj , which matches Wj

• This is used to update Wj weights in algorithm

66



Partial Jacobian ∂L
∂bj

• Recall zj+1 = σj(vj) where vj = Wjzj + bj
• Computed by

∂L

∂bj
=

∂L

∂zj+1

∂zj+1

∂vj

∂vj
∂bj

= δTj+1

∂zj+1

∂vj

∂vj
∂bj

= δTj+1 diag(σ′j(vj))

= (δj+1 � σ′j(Wjzj + bj))
T

67



Backpropagation summarized

1. Forward pass: Compute and store zj (or vj = Wjzj + bj):

zj+1 = σj(Wjzj + bj)

where z1 = xi and σn = Id

2. Backward pass:

δj = WT
j (δj+1 � σ′j(Wjzj + bj))

with δn+1 = ∂L
∂zn+1

3. Weight update Jacobians (used in SGD)

∂L

∂Wj
= (δj+1 � σ′j(Wjzj + bj))z

T
j

∂L

∂bj
= (δj+1 � σ′j(Wjxj + bj))

T

68



Backpropagation – Residual networks

1. Forward pass: Compute and store zj (or vj = Wjzj + bj):

zj+1 = σj(Wjzj + bj) + zj

where z1 = xi and σn = Id

2. Backward pass:

δj = WT
j (δj+1 � σ′j(Wjzj + bj)) + δj+1

with δn+1 = ∂L
∂zn+1

3. Weight update Jacobians (used in SGD)

∂L

∂Wj
= (δj+1 � σ′j(Wjzj + bj))z

T
j

∂L

∂bj
= (δj+1 � σ′j(Wjxj + bj))

T

69



Outline

Deep learning

Learning features

Model properties and activation functions

Loss landscape

Residual networks

Overparameterized networks

Generalization and regularization

Generalization – Norm of weights

Generalization – Flatness of minima

Backpropagation

Vanishing and exploding gradients

70



Vanishing and exploding gradient problem

• For some activation functions, gradients can vanish

• For other activation functions, gradients can explode

71



Vanishing gradient example: Sigmoid

• Assume ‖Wj‖ ≤ 1 for all j and ‖δn+1‖ ≤ C
• Maximal derivative of sigmoid (σ) is 0.25

• Then∥∥∥∥ ∂L∂zj
∥∥∥∥ = ‖δj‖ = ‖WT

j (δj+1 � σ′j(Wjzj + bj))‖ ≤ 0.25‖δj+1‖

≤ 0.25n−j+1‖δn+1‖ ≤ 0.25n−j+1C

• Hence, as n grows, gradients can become very small for small i

• In general, vanishing gradient if σ′ < 1 everywhere

• Similar reasoning: exploding gradient if σ′ > 1 everywhere

• Hence, need σ′ = 1 in important regions

72



Vanishing gradients – Residual networks

• Residual networks with forward pass

zj+1 = σj(Wjzj + bj) + zj

and backward pass

δj = WT
j (δj+1 � σ′j(Wjzj + bj)) + δj+1

• Gradients do not vanish in passes despite small σ gain

73



Examples of activation functions

Activation functions that (partly) avoid vanishing gradients

Name σ(u) Graph

Tanh eu−e−u

e−u+eu

ReLU max(u, 0)

LeakyReLU max(u, αu)

ELU

{
u if u ≥ 0

α(eu − 1) else

74



Exploding gradient – Example

• Assume L-Lipschitz activation (ReLU, Tanh etc have L = 1)
• Forward pass estimation:

‖zj+1‖2 = ‖σj(Wjzj + bj)‖2 ≤ L‖Wjzj + bj‖2 ≤ L(‖Wjzj‖2 + ‖bj‖2)

≤ L‖Wj‖2‖zj‖2 + L‖bj‖2

• Backward pass estimation:

‖δj‖2 = ‖WT
j (δj+1 � σ′j(Wjzj + bj))‖2

≤ ‖WT
j ‖2‖δj+1 � σ′j(Wjzj + bj)‖2

≤ L‖Wj‖2‖δj+1‖2

• If L ≤ 1, ‖Wj‖2 ≤ 1 and ‖bj‖2 small, gradients do not explode

• ReLU “average” L = 0.5 reduces “average estimate”

• Tanh reduces “average estimates” more since
• σj-outputs are constrained to (−1, 1)
• “average Lipschitz constant” is smaller

75



Exploding gradient – Residual network

• Assume L-Lipschitz activation (ReLU, Tanh have L = 1)
• Forward pass estimation:

‖zj+1‖2 = ‖σj(Wjzj + bj)‖2 + ‖zj‖2 ≤ (1 + L‖Wj‖2)‖zj‖2 + L‖bj‖2

• Backward pass estimation:

‖δj‖2 = ‖WT
j (δj+1 � σ′j(Wjzj + bj))‖2 + δj+1

≤ (1 + L‖Wj‖2)‖δj+1‖2

• Larger estimates than for non-residual networks

• Activations with L ≤ 1 to avoid exploding and vanishing
gradients:
• α×ReLU with α ∈ (0, 1)
• α×Tanh with α ∈ (0, 1)

76


