# **Deep Learning**

Pontus Giselsson

#### **Outline**

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

# **Deep learning**

- Can be used both for classification and regression
- Deep learning training problem is of the form

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

where typically

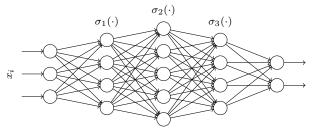
- $L(u,y) = \frac{1}{2}||u-y||_2^2$  is used for regression
- $L(u,y) = \log\left(\sum_{j=1}^K e^{u_j}\right) y^T u$  is used for K-class classification
- Difference to previous convex methods: Nonlinear model  $m(x;\theta)$ 
  - Deep learning regression generalizes least squares
  - DL classification generalizes multiclass logistic regression
  - Nonlinear model makes training problem nonconvex

### **Deep learning – Model**

Nonlinear model of the following form is often used:

$$m(x;\theta):=W_n\sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})+b_n$$
 where  $\theta$  contains all  $W_i$  and  $b_i$ 

- Each activation  $\sigma_i$  constitutes a hidden layer in the model network
- We have no final layer activation (is instead part of loss)
- Graphical representation with three hidden layers



- Some reasons for using this structure:
  - (Assumed) universal function approximators
  - Efficient gradient computation using backpropagation

# No final layer activation in classification

- In classification, it is common to use
  - Softmax final layer activation
  - Cross entropy loss function
- Equivalent to
  - no (identity) final layer activation
  - multiclass logistic loss

which is what we use

#### **Activation functions**

- Activation function  $\sigma_i$  takes as input the output of  $W_i(\cdot) + b_i$
- Often a function  $\bar{\sigma}_i : \mathbb{R} \to \mathbb{R}$  is applied to each element

• Example: 
$$\sigma_j : \mathbb{R}^3 \to \mathbb{R}^3$$
 is  $\sigma_j(u) = \begin{bmatrix} \bar{\sigma}_j(u_1) \\ \bar{\sigma}_j(u_2) \\ \bar{\sigma}_j(u_3) \end{bmatrix}$ 

ullet We will use notation over-loading and call both functions  $\sigma_j$ 

# **Examples of activation functions**

| Name      | $\sigma(u)$                                                                          | Graph |
|-----------|--------------------------------------------------------------------------------------|-------|
| Sigmoid   | $\frac{1}{1+e^{-u}}$                                                                 |       |
| Tanh      | $\frac{e^u - e^{-u}}{e^{-u} + e^u}$                                                  |       |
| ReLU      | $\max(u,0)$                                                                          |       |
| LeakyReLU | $\max(u, \alpha u)$                                                                  |       |
| ELU       | $\begin{cases} u & \text{if } u \geq 0 \\ \alpha(e^u - 1) & \text{else} \end{cases}$ |       |

# **Examples of affine transformations**

- Dense (fully connected): Dense  $W_i$
- Sparse: Sparse  $W_i$ 
  - Convolutional layer (convolution with small pictures)
  - Fixed (random) sparsity pattern
- Subsampling: reduce size,  $W_j$  fat (smaller output than input)
  - average pooling

#### **Prediction**

- Prediction as in least squares and multiclass logistic regression
- Assume model  $m(x;\theta)$  trained and "optimal"  $\theta^{\star}$  found
- Regression:
  - Predict response for new data x using  $\hat{y} = m(x; \theta^*)$
- Classification (with no final layer activation):
  - We have one model  $m_i(x; \theta^*)$  output for each class
  - $\bullet$  Predict class belonging for new data  $\boldsymbol{x}$  according to

$$\underset{j \in \{1, \dots, K\}}{\operatorname{argmax}} m_j(x; \theta^*)$$

i.e., class with largest model value (since loss designed this way)

#### Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

### Learning features

- Convex methods use prespecified feature maps (or kernels)
- Deep learning instead learns feature map during training
  - Define parameter dependent feature vector:

$$\phi(x;\theta) := \sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})$$

- Model becomes  $m(x;\theta) = W_n \phi(x;\theta) + b_n$
- Inserted into training problem:

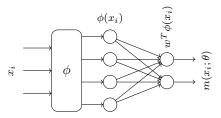
$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(W_n \phi(x_i; \theta) + b_n, y_i)$$

same as before, but with learned (parameter-dependent) features

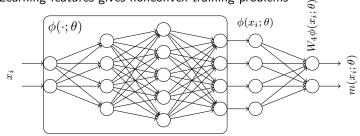
Learning features at training makes training nonconvex

# **Learning features – Graphical representation**

• Fixed features gives convex training problems



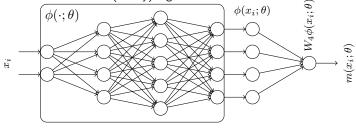
• Learning features gives nonconvex training problems



Output of last activation function is feature vector

# Optimizing only final layer

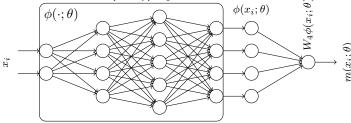
- Assume:
  - that parameters  $\bar{\theta}_f$  in the layers in the square are fixed
  - that we optimize only the final layer parameters
  - that the loss is a (binary) logistic loss



• What can you say about the training problem?

# Optimizing only final layer

- Assume:
  - that parameters  $\bar{\theta}_f$  in the layers in the square are fixed
  - that we optimize only the final layer parameters
  - that the loss is a (binary) logistic loss



- What can you say about the training problem?
  - ullet It reduces to logistic regression with fixed features  $\phi(x_i; ar{ heta}_f)$

$$\underset{\theta=(W_n,b_n)}{\text{minimize}} \sum_{i=1}^{N} L(W_n \phi(x_i; \bar{\theta}_f) + b_n, y_i)$$

• The training problem is convex

### **Design choices**

Many design choices in building model to create good features

- Number of layers
- Width of layers
- Types of layers
- Types of activation functions
- Different model structures (e.g., residual network)

### **Outline**

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

# Model properties – ReLU networks

Recall model

$$m(x;\theta):=W_n\sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})+b_n$$
 where  $\theta$  contains all  $W_i$  and  $b_i$ 

- Assume that all activation functions are (Leaky)ReLU
- What can you say about the properties of  $m(\cdot; \theta)$  for fixed  $\theta$ ?

# Model properties – ReLU networks

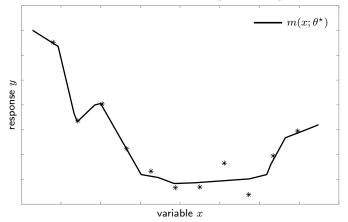
Recall model

$$m(x;\theta):=W_n\sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})+b_n$$
 where  $\theta$  contains all  $W_i$  and  $b_i$ 

- Assume that all activation functions are (Leaky)ReLU
- What can you say about the properties of  $m(\cdot; \theta)$  for fixed  $\theta$ ?
  - It is continuous piece-wise affine

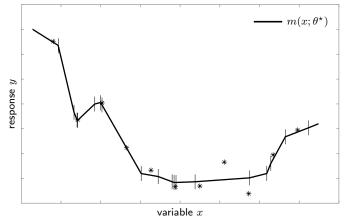
# 1D Regression – Model properties

• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyReLU



# 1D Regression – Model properties

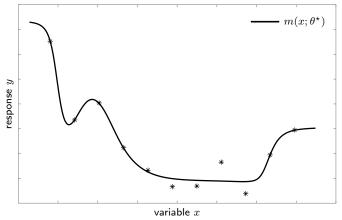
• Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyReLU



Vertical lines show kinks

# 1D Regression – Model properties

• Fully connected, layers widths: 5,5,5,1,1 (78 params), Tanh



• No kinks for Tanh

### **Identity activation**

- Do we need nonlinear activation functions?
- What can you say about model if all  $\sigma_j = \operatorname{Id}$  in

$$m(x;\theta):=W_n\sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})+b_n$$
 where  $\theta$  contains all  $W_i$  and  $b_i$ 

### **Identity activation**

- Do we need nonlinear activation functions?
- ullet What can you say about model if all  $\sigma_j=\operatorname{Id}$  in

$$m(x;\theta) := W_n \sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})+b_n$$

where  $\theta$  contains all  $W_j$  and  $b_j$ 

We then get

$$m(x;\theta) := W_n(W_{n-1}(\cdots(W_2(W_1x + b_1) + b_2)\cdots) + b_{n-1}) + b_n$$

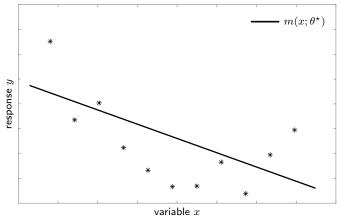
$$= \underbrace{W_nW_{n-1}\cdots W_2W_1}_{W}x + \underbrace{b_n + \sum_{l=2}^{n-1}W_n\cdots W_lb_{l-1}}_{b}$$

$$= Wx + b$$

which is linear in x (but training problem nonconvex)

# Network with identity activations - Example

• Fully connected, layers widths: 5,5,5,1,1 (78 params), Identity



#### Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

# Training problem properties

Recall model

$$m(x;\theta) := W_n \sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})+b_n$$
 where  $\theta$  includes all  $W_j$  and  $b_j$  and training problem

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

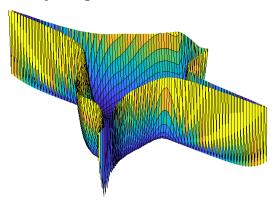
- If all  $\sigma_j$  LeakyReLU and  $L(u,y) = \frac{1}{2} ||u-y||_2^2$ , then for fixed x,y
  - $m(x;\cdot)$  is continuous piece-wise polynomial (cpp) of degree n in  $\theta$
  - $L(m(x;\theta),y)$  is cpp of degree 2n in  $\theta$

where both model output and loss can grow fast

- If  $\sigma_j$  is instead Tanh
  - model no longer piece-wise polynomial (but "more" nonlinear)
  - model output grows slower since  $\sigma_j: \mathbb{R} \to (-1,1)$

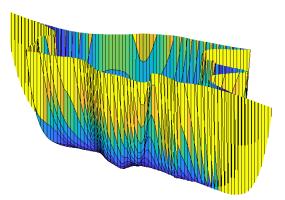
### Loss landscape - Leaky ReLU

- Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
- Regression problem, least squares loss
- Plot:  $\sum_{i=1}^{N} L(m(x_i; \theta^* + t_1\theta_1 + t_2\theta_2), y_i)$  vs scalars  $t_1$ ,  $t_2$ , where
  - $\theta^*$  is numerically found solution to training problem
  - ullet  $\theta_1$  and  $\theta_2$  are random directions in parameter space
- First choice of  $\theta_1$  and  $\theta_2$ :



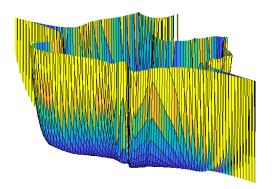
### Loss landscape – Leaky ReLU

- Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
- Regression problem, least squares loss
- Plot:  $\sum_{i=1}^{N} L(m(x_i; \theta^{\star} + t_1\theta_1 + t_2\theta_2), y_i)$  vs scalars  $t_1$ ,  $t_2$ , where
  - $\theta^{\star}$  is numerically found solution to training problem
  - $\theta_1$  and  $\theta_2$  are random directions in parameter space
- Second choice of  $\theta_1$  and  $\theta_2$ :



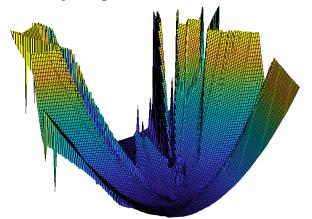
### Loss landscape – Leaky ReLU

- Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
- Regression problem, least squares loss
- Plot:  $\sum_{i=1}^{N} L(m(x_i; \theta^* + t_1\theta_1 + t_2\theta_2), y_i)$  vs scalars  $t_1$ ,  $t_2$ , where
  - $\theta^{\star}$  is numerically found solution to training problem
  - $\theta_1$  and  $\theta_2$  are random directions in parameter space
- Third choice of  $\theta_1$  and  $\theta_2$ :



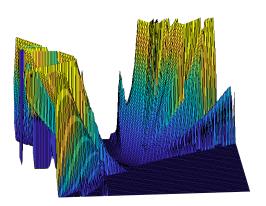
### Loss landscape - Tanh

- Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
- Regression problem, least squares loss
- Plot:  $\sum_{i=1}^{N}L(m(x_i;\theta^{\star}+t_1\theta_1+t_2\theta_2),y_i)$  vs scalars  $t_1$ ,  $t_2$ , where
  - $\theta^{\star}$  is numerically found solution to training problem
  - $\theta_1$  and  $\theta_2$  are random directions in parameter space
- First choice of  $\theta_1$  and  $\theta_2$ :



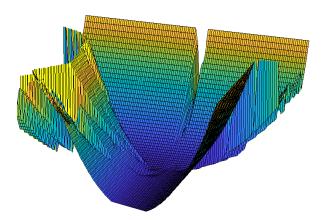
### Loss landscape - Tanh

- Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
- Regression problem, least squares loss
- Plot:  $\sum_{i=1}^{N} L(m(x_i; \theta^{\star} + t_1\theta_1 + t_2\theta_2), y_i)$  vs scalars  $t_1$ ,  $t_2$ , where
  - $\theta^*$  is numerically found solution to training problem
  - $\theta_1$  and  $\theta_2$  are random directions in parameter space
- Second choice of  $\theta_1$  and  $\theta_2$ :



### Loss landscape – Tanh

- Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
- Regression problem, least squares loss
- Plot:  $\sum_{i=1}^{N}L(m(x_i;\theta^{\star}+t_1\theta_1+t_2\theta_2),y_i)$  vs scalars  $t_1$ ,  $t_2$ , where
  - $\theta^{\star}$  is numerically found solution to training problem
  - ullet  $\theta_1$  and  $\theta_2$  are random directions in parameter space
- Third choice of  $\theta_1$  and  $\theta_2$ :



#### ReLU vs Tanh

#### Previous figures suggest:

- ReLU: more regular and similar loss landscape?
- Tanh: less steep (on macro scale)?
- Tanh: Minima extend over larger regions?

#### Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

# Performance with increasing depth

- Increasing depth can deteriorate performance
- Deep networks may even have worse training errors than shallow
- Intuition: deeper layers bad at approximating identity mapping

#### Residual networks

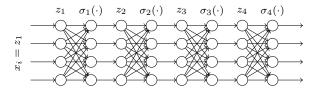
- Add skip connections between layers
- Instead of network architecture with  $z_1 = x_i$  (see figure):

$$z_{j+1} = \sigma_j(W_j z_j + b_j) \text{ for } j \in \{1, \dots, n-1\}$$

use residual architecture

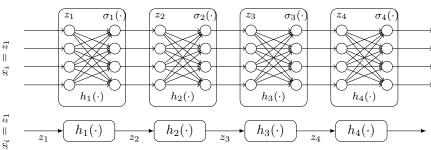
$$z_{j+1} = z_j + \sigma_j(W_j z_j + b_j)$$
 for  $j \in \{1, \dots, n-1\}$ 

- Assume  $\sigma(0) = 0$ ,  $W_j = 0$ ,  $b_j = 0$  for j = 1, ..., m (m < n 1)  $\Rightarrow$  deeper part of network is identity mapping and does no harm
- Learns variation from identity mapping (residual)



# **Graphical representation**

For graphical representation, first collapse nodes into single node

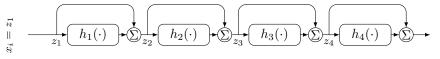


# **Graphical representation**

Collapsed network representation



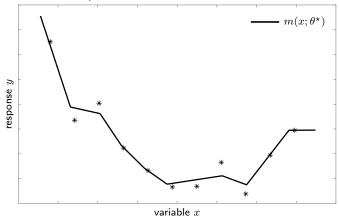
• Residual network



ullet If some  $h_j=0$  gives same performance as shallower network

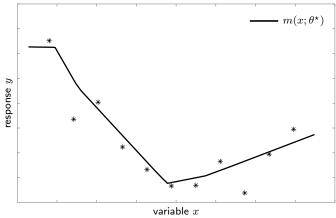
## Residual network - Example

- Fully connected no residual layers, LeakyReLU activation
- Layers widths: 3x5,1,1 (depth: 5, 78 params)
- Trained for 5000 epochs



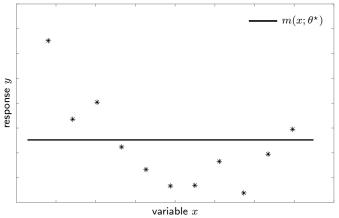
## Residual network – Example

- Fully connected no residual layers, LeakyReLU activation
- Layers widths: 5x5,1,1 (depth: 7, 138 params)
- Trained for 5000 epochs



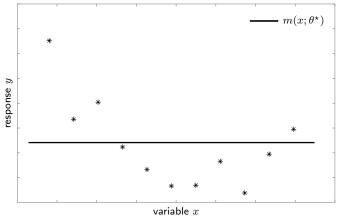
## Residual network – Example

- Fully connected no residual layers, LeakyReLU activation
- Layers widths: 10x5,1,1 (depth: 12, 288 params)
- Trained for 5000 epochs



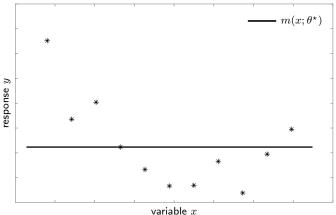
## Residual network - Example

- Fully connected no residual layers, LeakyReLU activation
- Layers widths: 15x5,1,1 (depth: 17, 438 params)
- Trained for 5000 epochs



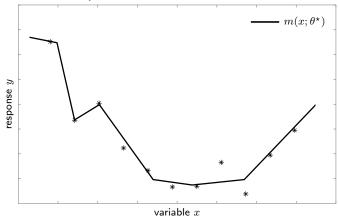
## Residual network – Example

- Fully connected no residual layers, LeakyReLU activation
- Layers widths: 45x5,1,1 (depth: 47, 1,338 params)
- Trained for 5000 epochs



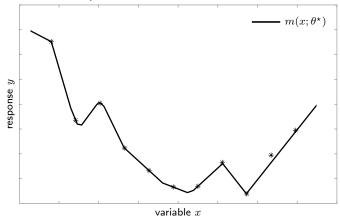
## Residual network – Example

- Fully connected residual layers, LeakyReLU activation
- Layers widths: 3x5,1,1 (depth: 5, 78 params)
- Trained for 5000 epochs



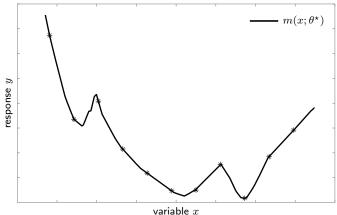
## Residual network - Example

- Fully connected residual layers, LeakyReLU activation
- Layers widths: 5x5,1,1 (depth: 7, 138 params)
- Trained for 5000 epochs



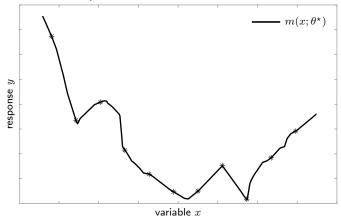
# Residual network – Example

- Fully connected residual layers, LeakyReLU activation
- Layers widths: 10x5,1,1 (depth: 12, 288 params)
- Trained for 5000 epochs



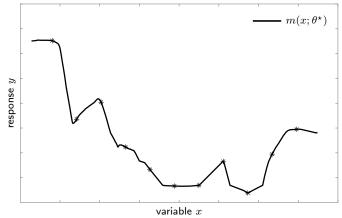
## Residual network - Example

- Fully connected residual layers, LeakyReLU activation
- Layers widths: 15x5,1,1 (depth: 17, 438 params)
- Trained for 5000 epochs



## Residual network – Example

- Fully connected residual layers, LeakyReLU activation
- Layers widths: 45x5,1,1 (depth: 47, 1,338 params)
- Trained for 5000 epochs



### **Outline**

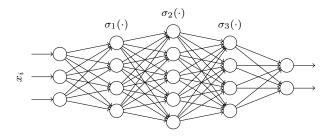
- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

# Why overparameterization?

- Neural networks are often overparameterized in practice
- Why? They often perform better than underparameterized

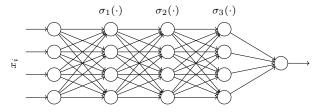
# What is overparameterization?

- We mean that many solutions exist that can:
  - fit all data points (0 training loss) in regression
  - correctly classify all training examples in classification
- This requires (many) more parameters than training examples
  - Need wide and deep enough networks
  - Can result in overfitting
- Questions:
  - Which of all solutions give best generalization?
  - (How) can network design affect generalization?



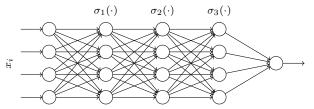
## Overparameterization – An example

- · Assume fully connected network with
  - input data  $x_i \in \mathbb{R}^p$
  - n layers and  $N \approx p^2$  samples
  - same width throughout (except last layer, which can be neglected)
- What is the relation between number of weights and samples?



# Overparameterization – An example

- Assume fully connected network with
  - input data  $x_i \in \mathbb{R}^p$
  - n layers and  $N \approx p^2$  samples
  - same width throughout (except last layer, which can be neglected)
- What is the relation between number of weights and samples?



- We have:
  - Number of parameters approximately:  $(W_j)_{lk}$ :  $p^2n$  and  $(b_j)_l$ : pn
  - Then  $\frac{\#\text{weights}}{\#\text{samples}} \approx \frac{p^2 n}{p^2} = n$  more weights than samples

### Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

#### Generalization

- Most important for model to generalize well to unseen data
- General approach in training
  - Train a model that is too expressive for the underlying data
    - Overparameterization in deep learning
  - Use regularization to
    - find model of appropriate (lower) complexity
    - favor models with desired properties

# Regularization

What regularization techniques in DL are you familiar with?

# Regularization techniques

- Reduce number of parameters
  - Sparse weight tensors (e.g., convolutional layers)
  - Subsampling (gives fewer parameters deeper in network)
- Explicit regularization term in cost function, e.g., Tikhonov
- Data augmentation more samples, artificial often OK
- Early stopping stop algorithm before convergence
- Dropouts
- ...

# Implicit vs explicit regularization

- Regularization can be explicit or implicit
- Explicit Introduce something with intent to regularize:
  - Add cost function to favor desirable properties
  - Design (adapt) network to have regularizing properties
- Implicit Use something with regularization as byproduct:
  - Use algorithm that finds favorable solution among many
  - Will look at implicit regularization via SGD

#### **Generalization – Our focus**

Will here discuss generalization via:

- Norm of parameters leads to implicit regularization via SGD
- Flatness of minima leads to implicit regularization via SGD

#### Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

# Lipschitz continuity of ReLU networks

- Assume that all activation functions 1-Lipschitz continuous
- The neural network model  $m(\cdot;\theta)$  is Lipschitz continuous in x,

$$||m(x_1;\theta) - m(x_2;\theta)||_2 \le L||x_1 - x_2||_2$$

for fixed  $\theta$ , e.g., the  $\theta$  obtained after training

- This means output differences are bounded by input differences
- A Lipschitz constant L is given by

$$L = \|W_n\|_2 \cdot \|W_{n-1}\|_2 \cdots \|W_1\|_2$$

since activation functions are 1-Lipschitz continuous

ullet For residual layers each  $\|W_j\|_2$  replaced by  $(1+\|W_j\|_2)$ 

# **Desired Lipschitz constant**

- Overparameterization gives many solutions that perfectly fit data
- Would you favor one with high or low Lipschitz constant *L*?

# Small norm likely to generalize better

- Smaller Lipschitz constant probably generalizes better if perfect fit
- "Similar inputs give similar outputs", recall

$$||m(x_1;\theta) - m(x_2;\theta)||_2 \le L||x_1 - x_2||_2$$

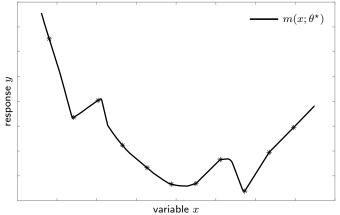
with a Lipschitz constant is given by

$$L = \|W_n\|_2 \cdot \|W_{n-1}\|_2 \cdots \|W_1\|_2$$

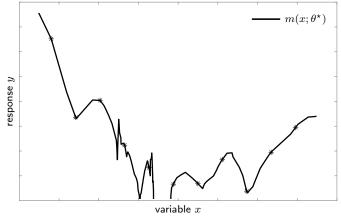
or with  $||W_j||_2$  replaced by  $(1 + ||W_j||_2)$  for residual layers

• Smaller weight norms give better generalization if perfect fit

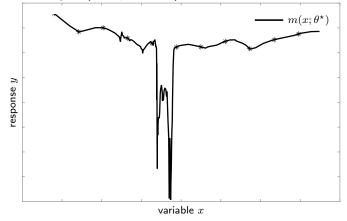
- Fully connected residual layers, LeakyReLU
- Layers widths: 30x5,1,1 (888 params)
- Norm of weights (with perfect fit): 72



- Fully connected residual layers, LeakyReLU
- Layers widths: 30x5,1,1 (888 params)
- Norm of weights (with perfect fit): 540

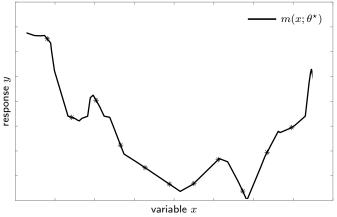


- Fully connected residual layers, LeakyReLU
- Layers widths: 30x5,1,1 (888 params)
- Norm of weights (with perfect fit): 540



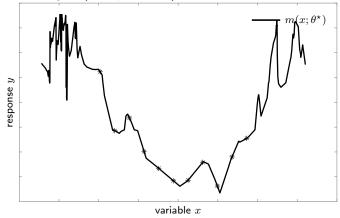
Same as previous, new scaling

- Fully connected residual layers, LeakyReLU
- Layers widths: 30x5,1,1 (888 params)
- Norm of weights (with perfect fit): 595



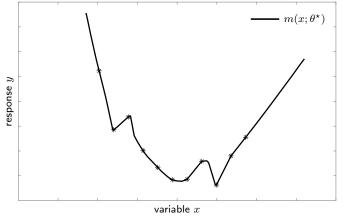
• Large norm, but seemingly fair generalization

- Fully connected residual layers, LeakyReLU
- Layers widths: 30x5,1,1 (888 params)
- Norm of weights (with perfect fit): 595



Same as previous, new scaling

- Fully connected residual layers, LeakyReLU
- Layers widths: 30x5,1,1 (888 params)
- Norm of weights (with perfect fit): 72



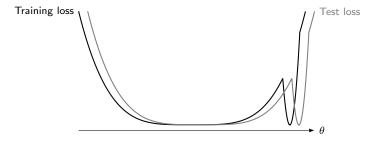
Same as first, new scaling – overfits less than large norm solutions

### Outline

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

### Flatness of minima

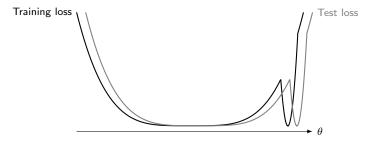
• Consider the following illustration of average loss:



- Depicts test loss as shifted training loss
- Motivation to that flat minima generalize better than sharp

### Flatness of minima

• Consider the following illustration of average loss:



- Depicts test loss as shifted training loss
- Motivation to that flat minima generalize better than sharp
- Is there a limitation in considering the average loss only?

#### Generalization from loss landscape

• Training set  $\{(x_i, y_i)\}_{i=1}^N$  and training problem:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

• Test set  $\{(\hat{x}_i,\hat{y}_i)\}_{i=1}^{\hat{N}}$ ,  $\theta$  generalizes well if test loss small

$$\sum_{i=1}^{\hat{N}} L(m(\hat{x}_i; \theta), \hat{y}_i)$$

ullet By overparameterization, we can for each  $(\hat{x}_i,\hat{y}_i)$  find  $\hat{ heta}_i$  so that

$$L(m(\hat{x}_i; \theta), \hat{y}_i) = L(m(x_{j_i}; \theta + \hat{\theta}_i), y_{j_i})$$

for all  $\theta$  given a (similar)  $(x_{j_i}, y_{j_i})$  pair in training set

- Evaluate test loss by training loss at shifted points  $\theta + \hat{ heta}_{\hat{i}}^{-1)}$
- ullet Test loss small if original individual loss small at all  $heta+\hat{ heta}_i$
- Previous figure used same  $\hat{\theta}_i = \hat{\theta}$  for all i

<sup>1)</sup> Don't compute in practice, just thought experiment to connect generalization to training loss

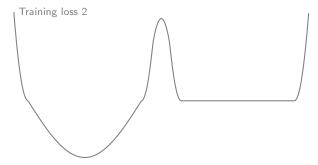
- Can flat (local) minima be different?
- Does one of the following minima generalize better?



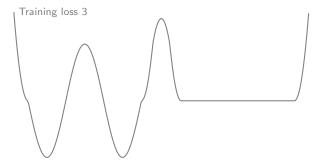
- Can flat (local) minima be different?
- Does one of the following minima generalize better?



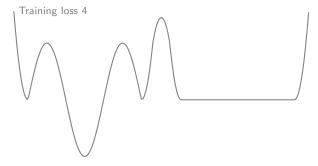
- Can flat (local) minima be different?
- Does one of the following minima generalize better?



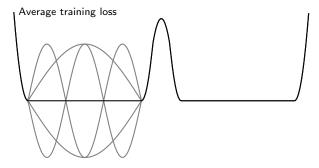
- Can flat (local) minima be different?
- Does one of the following minima generalize better?



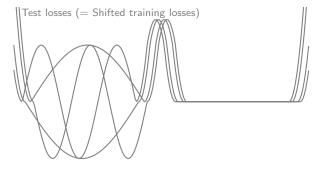
- Can flat (local) minima be different?
- Does one of the following minima generalize better?



- Can flat (local) minima be different?
- Does one of the following minima generalize better?

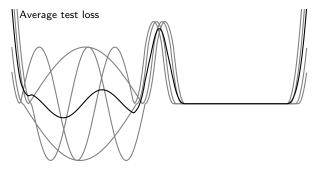


- Can flat (local) minima be different?
- Does one of the following minima generalize better?



- It depends on individual losses
- Let us evaluate test loss by shifting individual training losses

- Can flat (local) minima be different?
- Does one of the following minima generalize better?



- It depends on individual losses
- Let us evaluate test loss by shifting individual training losses
- Do not only want flat minima, want individual losses flat at minima

#### Individually flat minima

- Both flat minima have  $\nabla f(\theta) = 0$ , but
  - One minima has large individual gradients  $\|\nabla f_i(\theta)\|$
  - Other minima has small individual gradients  $\|\nabla f_i(\theta)\|$
  - The latter (individually flat minima) seems to generalize better
- Want individually flat minima (with small  $\|\nabla f_i(\theta)\|$ )
  - This implies average flat minima
  - The reverse implication may not hold
  - Overparameterized networks:
    - The reverse implication may often hold at global minima
    - Why?  $f(\theta)=0$  and  $\nabla f(\theta)=0$  implies  $f_i(\theta)=0$  and  $\nabla f_i(\theta)=0$

#### **Outline**

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

#### **Training algorithm**

- Neural networks often trained using stochastic gradient descent
- DNN weights are updated via gradients in training
- Gradient of cost is sum of gradients of summands (samples)
- Gradient of each summand computed using backpropagation

#### **Backpropagation**

- Backpropagation is reverse mode automatic differentiation
- Based on chain-rule in differentiation
- Backpropagation must be performed per sample
- Our derivation assumes:
  - Fully connected layers (W full, if not, set elements in W to 0)
  - Activation functions  $\sigma_j(v) = (\sigma_j(v_1), \dots, \sigma_j(v_p))$  element-wise (overloading of  $\sigma_j$  notation)
  - Weights  $W_j$  are matrices, samples  $x_i$  and responses  $y_i$  are vectors
  - No residual connections

#### **Jacobians**

• The Jacobian of a function  $f: \mathbb{R}^n \to \mathbb{R}^m$  is given by

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

ullet The Jacobian of a function  $f:\mathbb{R}^{p imes n} o\mathbb{R}$  is given by

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_{11}} & \cdots & \frac{\partial f}{\partial x_{1n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial f}{\partial x_{p1}} & \cdots & \frac{\partial f}{\partial x_{pn}} \end{bmatrix} \in \mathbb{R}^{p \times n}$$

• The Jacobian of a function  $f: \mathbb{R}^{p \times n} \to \mathbb{R}^m$  is at layer j given by

$$\begin{bmatrix} \frac{\partial f}{\partial x} \end{bmatrix}_{:,j,:} = \begin{bmatrix} \frac{\partial f_1}{\partial x_{j1}} & \cdots & \frac{\partial f_1}{\partial x_{jn}} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_{j1}} & \cdots & \frac{\partial f_m}{\partial x_{jn}} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

the full Jacobian is a 3D tensor in  $\mathbb{R}^{m \times p \times n}$ 

#### Jacobian vs gradient

• The Jacobian of a function  $f:\mathbb{R}^n \to \mathbb{R}$  is given by

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

• The gradient of a function  $f: \mathbb{R}^n \to \mathbb{R}$  is given by

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

i.e., transpose of Jacobian for  $f: \mathbb{R}^n \to \mathbb{R}$ 

• Chain rule holds for Jacobians:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial x}$$

#### Jacobian vs gradient – Example

- Consider differentiable  $f: \mathbb{R}^m \to \mathbb{R}$  and  $M \in \mathbb{R}^{m \times n}$
- Compute Jacobian of  $g = (f \circ M)$  using chain rule:
  - Rewrite as g(x) = f(z) where z = Mx
  - Compute Jacobian by partial Jacobians  $\frac{\partial f}{\partial z}$  and  $\frac{\partial z}{\partial x}$ :

$$\frac{\partial g}{\partial x} = \frac{\partial g}{\partial z} \frac{\partial z}{\partial x} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial x} = \nabla f(z)^T M = \nabla f(Mx)^T M \in \mathbb{R}^{1 \times n}$$

• Know gradient of  $(f \circ M)(x)$  satisfies

$$\nabla (f \circ M)(x) = M^T \nabla f(Mx) \in \mathbb{R}^n$$

which is transpose of Jacobian

#### **Backpropagation – Introduce states**

Compute gradient/Jacobian of

w.r.t. 
$$\theta=\{(W_j,b_j)\}_{j=1}^n$$
, where 
$$m(x_i;\theta)=W_n\sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x_i+b_1)+b_2)\cdots)+b_{n-1})+b_n$$

 $L(m(x_i;\theta),y_i)$ 

ullet Rewrite as function with states  $z_j$ 

$$L(z_{n+1},y_i)$$
 where  $z_{j+1}=\sigma_j(W_jz_j+b_j)$  for  $j\in\{1,\dots,n\}$  and  $z_1=x_i$  where  $\sigma_n(u)\equiv u$ 

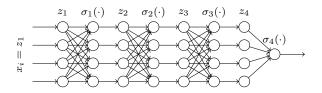
#### **Graphical representation**

• Per sample loss function

$$L(z_{n+1},y_i)$$
 where  $z_{j+1}=\sigma_j(W_jz_j+b_j)$  for  $j\in\{1,\ldots,n\}$  and  $z_1=x_i$ 

where  $\sigma_n(u) \equiv u$ 

Graphical representation



#### **Backpropagation – Chain rule**

ullet Jacobian of L w.r.t.  $W_j$  and  $b_j$  can be computed as

$$\begin{split} \frac{\partial L}{\partial W_j} &= \frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial W_j} \\ \frac{\partial L}{\partial b_j} &= \frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial b_j} \end{split}$$

where we mean derivative w.r.t. first argument in L

Backpropagation evaluates partial Jacobians as follows

$$\frac{\partial L}{\partial W_j} = \left( \left( \frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \right) \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \right) \frac{\partial z_{j+1}}{\partial W_j}$$

$$\frac{\partial L}{\partial b_j} = \left( \left( \frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \right) \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \right) \frac{\partial z_{j+1}}{\partial b_j}$$

### Backpropagation – Forward and backward pass

- Jacobian of  $L(z_{n+1}, y_i)$  w.r.t.  $z_{n+1}$  (transpose of gradient)
- Computing Jacobian of  $L(z_{n+1}, y_i)$  requires  $z_{n+1}$  $\Rightarrow$  forward pass:  $z_1 = x_i$ ,  $z_{j+1} = \sigma_j(W_j z_j + b_j)$
- Backward pass, store  $\delta_i$ :

$$\frac{\partial L}{\partial z_{j+1}} = \left( \underbrace{\left( \underbrace{\frac{\partial L}{\partial z_{n+1}}}_{\delta_{n+1}^T} \underbrace{\frac{\partial z_{n+1}}{\partial z_n}} \right) \cdots \underbrace{\frac{\partial z_{j+2}}{\partial z_{j+1}}}_{\delta_{j+1}^T} \right)}_{\delta_{j+1}^T}$$

Compute

$$\begin{split} \frac{\partial L}{\partial W_j} &= \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial W_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial W_j} \\ \frac{\partial L}{\partial b_j} &= \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial b_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial b_j} \end{split}$$

#### **Dimensions**

- ullet Let  $z_j \in \mathbb{R}^{n_j}$ , consequently  $W_j \in \mathbb{R}^{n_{j+1} \times n_j}$ ,  $b_j \in \mathbb{R}^{n_{j+1}}$
- Dimensions

$$\frac{\partial L}{\partial W_{j}} = \left( \left( \underbrace{\frac{\partial L}{\partial z_{n+1}}}_{1 \times n_{n+1}} \underbrace{\frac{\partial z_{n+1}}{\partial z_{n}}}_{1 \times n_{n+1} \times n_{n}} \right) \cdots \underbrace{\frac{\partial z_{j+2}}{\partial z_{j+1}}}_{n_{j+2} \times n_{j+1}} \right) \underbrace{\frac{\partial z_{j+1}}{\partial W_{j}}}_{n_{j+1} \times n_{j+1} \times n_{j}}$$

$$\frac{\partial L}{\partial b_{j}} = \underbrace{\left( \left( \underbrace{\frac{\partial L}{\partial z_{n+1}}}_{1 \times n_{j+1}} \underbrace{\frac{\partial z_{n+1}}{\partial z_{n}}}_{1 \times n_{j+1}} \right) \cdots \underbrace{\frac{\partial z_{j+2}}{\partial z_{j+1}}}_{n_{j+1} \times n_{j+1}} \underbrace{\frac{\partial z_{j+1}}{\partial b_{j}}}_{n_{j+1} \times n_{j+1}} \right)}_{1 \times n_{j+1}}$$

- Vector matrix multiplies except for in last step
- Multiplication with tensor  $\frac{\partial z_{j+1}}{\partial W_i}$  can be simplified
- ullet Backpropagation variables  $\delta_j \in \mathbb{R}^{n_j}$  are vectors (not matrices)

# Partial Jacobian $\frac{\partial z_{j+1}}{\partial z_j}$

- Recall relation  $z_{j+1} = \sigma_j(W_jz_j + b_j)$  and let  $v_j = W_jz_j + b_j$
- Chain rule gives

$$\begin{split} \frac{\partial z_{j+1}}{\partial z_j} &= \frac{\partial z_{j+1}}{\partial v_j} \frac{\partial v_j}{\partial z_j} = \mathbf{diag}(\sigma_j'(v_j)) \frac{\partial v_j}{\partial z_j} \\ &= \mathbf{diag}(\sigma_j'(W_j z_j + b_j)) W_j \end{split}$$

where, with abuse of notation (notation overloading)

$$\sigma'_{j}(u) = \begin{bmatrix} \sigma'_{j}(u_{1}) \\ \vdots \\ \sigma'_{j}(u_{n_{j+1}}) \end{bmatrix}$$

• Reason:  $\sigma_j(u) = [\sigma_j(u_1), \dots, \sigma_j(u_{n_{j+1}})]^T$  with  $\sigma_j: \mathbb{R}^{n_{j+1}} \to \mathbb{R}^{n_{j+1}}$ , gives

$$\frac{d\sigma_j}{du} = \begin{bmatrix} \sigma'_j(u_1) & & \\ & \ddots & \\ & & \sigma'_j(u_{n_{j+1}}) \end{bmatrix} = \mathbf{diag}(\sigma'_j(u))$$

# Partial Jacobian $\delta_j^T = \frac{\partial L}{\partial z_j}$

• For any vector  $\delta_{j+1} \in \mathbb{R}^{n_{j+1} \times 1}$ , we have

$$\begin{split} \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial z_j} &= \delta_{j+1}^T \operatorname{\mathbf{diag}}(\sigma_j'(W_j z_j + b_j)) W_j \\ &= (W_j^T (\delta_{j+1}^T \operatorname{\mathbf{diag}}(\sigma_j'(W_j z_j + b_j)))^T)^T \\ &= (W_j^T (\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j)))^T \end{split}$$

where ⊙ is element-wise (Hadamard) product

• We have defined  $\delta_{n+1}^T = \frac{\partial L}{\partial z_{n+1}}$ , then

$$\delta_n^T = \frac{\partial L}{\partial z_n} = \delta_{n+1}^T \frac{\partial z_{n+1}}{\partial z_n} = (\underbrace{W_n^T (\delta_{n+1} \odot \sigma_n' (W_n z_n + b_n))}_{\delta_n})^T$$

Consequently, using induction:

$$\delta_j^T = \frac{\partial L}{\partial z_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial z_j} = (\underbrace{W_j^T (\delta_{j+1} \odot \sigma_j' (W_j z_j + b_j))}_{\delta_j})^T$$

# Information needed to compute $\frac{\partial L}{\partial z_j}$

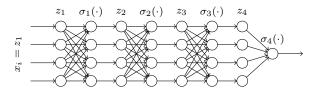
- To compute first Jacobian  $\frac{\partial L}{\partial z_n}$ , we need  $z_n \Rightarrow$  forward pass
- Computing

$$\frac{\partial L}{\partial z_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial z_j} = (W_j^T (\delta_{j+1} \odot \sigma_j' (W_j z_j + b_j)))^T = \delta_j^T$$

is done using a backward pass

$$\delta_j = W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))$$

• All  $z_j$  (or  $v_j = W_j z_j + b_j$ ) need to be stored for backward pass



## Partial Jacobian $\frac{\partial L}{\partial W_i}$

Computed by

$$\frac{\partial L}{\partial W_j} = \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial W_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial W_j}$$

where  $z_{j+1} = \sigma_j(v_j)$  and  $v_j = W_j z_j + b_j$ 

ullet Recall  $rac{\partial z_{j+1}}{\partial W_l}$  is 3D tensor, compute Jacobian w.r.t. row l  $(W_j)_l$ 

$$\delta_{j+1}^T \frac{\partial z_{j+1}}{\partial (W_j)_l} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial v_j} \frac{\partial v_j}{\partial (W_j)_l} = \delta_{j+1}^T \operatorname{\mathbf{diag}}(\sigma_j'(v_j)) \begin{bmatrix} \vdots \\ \vdots \\ z_j^T \\ \vdots \\ 0 \end{bmatrix}$$

$$=(\delta_{j+1}\odot\sigma_j'(W_jz_j+b_j))^Tegin{bmatrix}0\ dots\ z_j^T\ dots\ 0\end{bmatrix}=(\delta_{j+1}\odot\sigma_j'(W_jz_j+b_j))_lz_j^T\ dots\ 0$$

## Partial Jacobian $\frac{\partial L}{\partial W_i}$ cont'd

• Stack Jacobians w.r.t. rows to get full Jacobian:

$$\frac{\partial L}{\partial W_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial W_j} = \begin{bmatrix} \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial (W_j)_1} \\ \vdots \\ \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial (W_j)_{n_{j+1}}} \end{bmatrix} = \begin{bmatrix} (\delta_{j+1} \odot \sigma'_j (W_j z_j + b_j))_1 z_j^T \\ \vdots \\ (\delta_{j+1} \odot \sigma'_j (W_j z_j + b_j))_{n_{j+1}} z_j^T \end{bmatrix} \\
= (\delta_{j+1} \odot \sigma'_j (W_j z_j + b_j)) z_j^T$$

for all  $j \in \{1, ..., n-1\}$ 

- Dimension of result is  $n_{j+1} \times n_j$ , which matches  $W_j$
- ullet This is used to update  $W_j$  weights in algorithm

## Partial Jacobian $\frac{\partial L}{\partial b_i}$

- Recall  $z_{j+1} = \sigma_j(v_j)$  where  $v_j = W_j z_j + b_j$
- Computed by

$$\begin{split} \frac{\partial L}{\partial b_j} &= \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial v_j} \frac{\partial v_j}{\partial b_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial v_j} \frac{\partial v_j}{\partial b_j} = \delta_{j+1}^T \operatorname{\mathbf{diag}}(\sigma_j'(v_j)) \\ &= (\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))^T \end{split}$$

### **Backpropagation summarized**

1. Forward pass: Compute and store  $z_j$  (or  $v_j = W_j z_j + b_j$ ):

$$z_{j+1} = \sigma_j(W_j z_j + b_j)$$

where  $z_1 = x_i$  and  $\sigma_n = \operatorname{Id}$ 

2. Backward pass:

$$\delta_j = W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))$$

with 
$$\delta_{n+1} = \frac{\partial L}{\partial z_{n+1}}$$

3. Weight update Jacobians (used in SGD)

$$\frac{\partial L}{\partial W_j} = (\delta_{j+1} \odot \sigma'_j (W_j z_j + b_j)) z_j^T$$
$$\frac{\partial L}{\partial b_j} = (\delta_{j+1} \odot \sigma'_j (W_j x_j + b_j))^T$$

### Backpropagation - Residual networks

1. Forward pass: Compute and store  $z_j$  (or  $v_j = W_j z_j + b_j$ ):

$$z_{j+1} = \sigma_j(W_j z_j + b_j) + z_j$$

where  $z_1 = x_i$  and  $\sigma_n = \operatorname{Id}$ 

2. Backward pass:

$$\delta_j = W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j)) + \delta_{j+1}$$

with 
$$\delta_{n+1} = \frac{\partial L}{\partial z_{n+1}}$$

3. Weight update Jacobians (used in SGD)

$$\frac{\partial L}{\partial W_j} = (\delta_{j+1} \odot \sigma'_j (W_j z_j + b_j)) z_j^T$$

$$\frac{\partial L}{\partial b_j} = (\delta_{j+1} \odot \sigma'_j (W_j x_j + b_j))^T$$

#### **Outline**

- Deep learning
- Learning features
- Model properties and activation functions
- Loss landscape
- Residual networks
- Overparameterized networks
- Generalization and regularization
- Generalization Norm of weights
- Generalization Flatness of minima
- Backpropagation
- Vanishing and exploding gradients

### Vanishing and exploding gradient problem

- For some activation functions, gradients can vanish
- For other activation functions, gradients can explode

#### Vanishing gradient example: Sigmoid

- Assume  $\|W_j\| \le 1$  for all j and  $\|\delta_{n+1}\| \le C$
- Maximal derivative of sigmoid ( $\sigma$ ) is 0.25
- Then

$$\left\| \frac{\partial L}{\partial z_j} \right\| = \|\delta_j\| = \|W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))\| \le 0.25 \|\delta_{j+1}\|$$
$$\le 0.25^{n-j+1} \|\delta_{n+1}\| \le 0.25^{n-j+1} C$$

- ullet Hence, as n grows, gradients can become very small for small i
- In general, vanishing gradient if  $\sigma' < 1$  everywhere
- Similar reasoning: exploding gradient if  $\sigma' > 1$  everywhere
- Hence, need  $\sigma' = 1$  in important regions

#### Vanishing gradients – Residual networks

Residual networks with forward pass

$$z_{j+1} = \sigma_j(W_j z_j + b_j) + z_j$$

and backward pass

$$\delta_j = W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j)) + \delta_{j+1}$$

ullet Gradients do not vanish in passes despite small  $\sigma$  gain

### **Examples of activation functions**

Activation functions that (partly) avoid vanishing gradients

| Name      | $\sigma(u)$                                                                          | Graph |
|-----------|--------------------------------------------------------------------------------------|-------|
| Tanh      | $\frac{e^u - e^{-u}}{e^{-u} + e^u}$                                                  |       |
| ReLU      | $\max(u,0)$                                                                          |       |
| LeakyReLU | $\max(u, \alpha u)$                                                                  |       |
| ELU       | $\begin{cases} u & \text{if } u \geq 0 \\ \alpha(e^u - 1) & \text{else} \end{cases}$ |       |

#### **Exploding gradient – Example**

- Assume L-Lipschitz activation (ReLU, Tanh etc have L=1)
  - Forward pass estimation:

$$||z_{j+1}||_2 = ||\sigma_j(W_j z_j + b_j)||_2 \le L||W_j z_j + b_j||_2 \le L(||W_j z_j||_2 + ||b_j||_2)$$
  

$$\le L||W_j||_2 ||z_j||_2 + L||b_j||_2$$

Backward pass estimation:

$$\|\delta_{j}\|_{2} = \|W_{j}^{T}(\delta_{j+1} \odot \sigma'_{j}(W_{j}z_{j} + b_{j}))\|_{2}$$

$$\leq \|W_{j}^{T}\|_{2}\|\delta_{j+1} \odot \sigma'_{j}(W_{j}z_{j} + b_{j})\|_{2}$$

$$\leq L\|W_{j}\|_{2}\|\delta_{j+1}\|_{2}$$

- If  $L \leq 1$ ,  $||W_j||_2 \leq 1$  and  $||b_j||_2$  small, gradients do not explode
- ReLU "average" L=0.5 reduces "average estimate"
- Tanh reduces "average estimates" more since
  - $\sigma_j$ -outputs are constrained to (-1,1)
  - "average Lipschitz constant" is smaller

#### Exploding gradient – Residual network

- Assume L-Lipschitz activation (ReLU, Tanh have L=1)
  - Forward pass estimation:

$$||z_{j+1}||_2 = ||\sigma_j(W_jz_j + b_j)||_2 + ||z_j||_2 \le (1 + L||W_j||_2)||z_j||_2 + L||b_j||_2$$

Backward pass estimation:

$$\|\delta_j\|_2 = \|W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))\|_2 + \delta_{j+1}$$
  
 
$$\leq (1 + L\|W_j\|_2)\|\delta_{j+1}\|_2$$

- Larger estimates than for non-residual networks
- Activations with  $L \leq 1$  to avoid exploding and vanishing gradients:
  - $\alpha \times \text{ReLU}$  with  $\alpha \in (0, 1)$
  - $\alpha \times \mathsf{Tanh}$  with  $\alpha \in (0,1)$