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Introduction

The exercises are divided into problem areas that roughly match the lecture schedule.

Exercises marked with (H) have hints available, listed in the end of each chapter. Chal-
lenging exercises are marked with (⋆). Even more challenging exercises are marked
with (⋆⋆).
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Chapter 1

Convex sets and convex
functions

Exercise 1.1
Given the following sets.

a. b.

c. d.

1. Which of the sets are convex. Motivate.

2. Mark all points the sets have supporting hyperplanes at.

3. Draw the convex hull of each set.

Exercise 1.2
Which of the following sets are convex? If convex, prove it using the definition of convex
sets, if not convex, disprove it by finding a counter example.

1. S = {x ∈ Rn : Ax = b} with A ∈ Rm×n and b ∈ Rm

2. S = {x ∈ Rn : Ax ≤ b} with A ∈ Rm×n and b ∈ Rm

3. S = {x ∈ Rn : x ≥ 0}

4. S = {x ∈ Rn : l ≤ x ≤ u} with l, b ∈ Rn such that l ≤ u
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5. S = {x ∈ Rn : ‖x‖2 ≤ 1}

6. S = {x ∈ Rn : −‖x‖2 ≤ −1}

7. S = {x ∈ Rn : −‖x‖2 ≤ 1}

8. S = {(x, t) ∈ Rn × R : ‖x‖2 ≤ t}

9. S = {X ∈ Rn×n : X � 0}

10. S = {x ∈ Rn : x = a} with a ∈ Rn

11. S = {x ∈ Rn : x = a or x = b} with a, b ∈ Rn such that a 6= b

Exercise 1.3
Which of the following sets are affine?

1. V = {x ∈ Rn : x = a} for some a ∈ Rn

2. V = {x ∈ Rn : ∃α ∈ [0, 1] such that x = αa + (1 − α)b} for some a, b ∈ Rn such
that a 6= b

3. V = {x ∈ Rn : ∃α ∈ R such that x = αa + (1 − α)b} for some a, b ∈ Rn such that
a 6= b

Exercise 1.4
A set K is a cone if for each x ∈ K also αx ∈ K for each α ≥ 0. Which of the following
figures represent cones? Which of them are convex?

a. b.

c. d.

Exercise 1.5
Which of the following sets are convex cones? Prove or disprove. Assume that each set
is nonempty.
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1. S = {x ∈ Rn : Ax = 0} with A ∈ Rm×n

2. S = {x ∈ Rn : Ax = b} with A ∈ Rm×n and b ∈ Rm such that b 6= 0

3. S = {x ∈ Rn : Ax ≤ 0} with A ∈ Rm×n

4. S = {x ∈ Rn : Ax ≤ b} with A ∈ Rm×n and b ∈ Rm such that there exists at
least one index j ∈ {1, . . . ,m} such that row j in the matrix A is nonzero and bj
is nonzero

5. S = {x ∈ Rn : x ≥ 0}

6. S = {(x, t) ∈ Rn × R : ‖x‖2 ≤ t}

7. S = {X ∈ Rn×n : X � 0}

Exercise 1.6
Suppose that C1 and C2 are convex sets in Rn.

1. Is the set C = {x ∈ Rn : x ∈ C1 and x ∈ C2} the union or intersection of C1 and
C2? Is it convex? Prove or provide a counter example

2. Is the set C = {x ∈ Rn : x ∈ C1 or x ∈ C2} the union or intersection of C1 and
C2? Is it convex? Prove or provide a counter example

Exercise 1.7
Let {Cj}j∈J be an indexed family of convex sets in Rn, with index set J (J can be finite,
countable or uncountable). Show that ⋂

j∈J
Cj

is convex.

Exercise 1.8
Prove convexity for each of the following sets.

1. Affine hyperplanes. Recall that affine hyperplanes are written as hs,r = {x ∈
Rn : sTx = r} for some s ∈ Rn and r ∈ R

2. Halfspaces. Recall that halfspaces are written as Hs,r = {x ∈ Rn : sTx ≤ r} for
some s ∈ Rn and r ∈ R

3. Polytopes. Recall that a polytope C can be represented as

C = {x ∈ Rn : sTi x ≤ ri for i ∈ {1, . . . ,m} and sTi x = ri for i ∈ {m+ 1, . . . , p}},

where si ∈ Rn and ri ∈ R for each i ∈ {1, . . . , p}
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Exercise 1.9 (H)
Prove, without explicitly using the definition of convex sets, that each of the following
sets are convex set.

1. S = {x ∈ Rn : Ax = b} with A ∈ Rm×n and b ∈ Rm

2. S = {x ∈ Rn : Ax ≤ b} with A ∈ Rm×n and b ∈ Rm

3. S = {x ∈ Rn : x ≥ 0}

4. S = {x ∈ Rn : l ≤ x ≤ u} with l, b ∈ Rn such that l ≤ u

5. S = {x ∈ Rn : x = a} with a ∈ Rn

Exercise 1.10 (⋆)
Let f : Rn → Rm be a function, and let C ⊆ Rn and D ⊆ Rm be two sets. The image of
C under f is denote by f(C) and is defined by

f(C) = {f(x) : x ∈ C}.

The inverse image of D under f is denote by f−1(D) and is defined by

f−1(D) = {x : f(x) ∈ D}.

Now suppose that f is an affine function (or map), i.e. f(x) = Ax+b for someA ∈ Rm×n

and b ∈ Rm, and let both sets C and D be convex. Show that

1. f(C) is convex

2. f−1(D) is convex

Exercise 1.11 (⋆)
Let f : Rn → R ∪ {∞} be a convex function, i.e., let f satisfy

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for each θ = [0, 1] and for each x, y ∈ Rn. The effective domain of f is defined as
domf = {x ∈ Rn : f(x) <∞}. Show that domf is convex.

Exercise 1.12
Show or disprove that the following functions are convex.

1. f : Rn → R ∪ {∞} equal to the indicator function of convex set C ⊆ Rn, i.e.

f(x) = ιC(x) =

{
0 if x ∈ C

∞ otherwise

2. f : Rn → R ∪ {∞} such that f(x) = ‖x‖ for each x ∈ Rn
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3. f : Rn → R ∪ {∞} such that f(x) = −‖x‖ for each x ∈ Rn

4. f : R2 → R ∪ {∞} such that f(x, y) = xy for each (x, y) ∈ R2

5. f : Rn → R ∪ {∞} such that f(x) = aTx + b for each x ∈ Rn, where a ∈ Rn and
b ∈ R

6. f : Rn → R ∪ {∞} such that f(x) = 1
2x

TQx for each x ∈ Rn, where Q ∈ Sn+
7. f : Rn → R ∪ {∞} such that f(x) = distC(x) = infy∈C ‖x − y‖ for each x ∈ Rn,

where C ⊆ Rn is a nonempty closed convex set

Exercise 1.13
Draw the epigraph of the following functions f : R → R:

• f(x) = |x|

• f(x) = x2

• f(x) = |x|+ x2

• f(x) = max(|x|, x2)

• f(x) = min(|x|, x2)

Exercise 1.14
Let f : Rn → R be an affine function defined by

f(x) = aTx+ b

for each x ∈ Rn, where a ∈ Rn and b ∈ R. Show that epif is a halfspace in Rn+1.

Exercise 1.15
Let f : Rn → R ∪ {∞} be a function. Recall that the epigraph of f is given by epif =
{(x, r) ∈ Rn × R : f(x) ≤ r}. Show that f is convex if and only if epif is convex.

Exercise 1.16 (H)
For each i = 1, . . . ,m, assume that the function fi : Rn → R∪{∞} is a convex. Prove the
following explicitly, without resorting to convexity preserving operations on functions.

1. Show that f(x) =
∑m

i=1 αifi(x) is convex, where αi ≥ 0 for each i = 1, . . . ,m

2. Show that f(x) = maxi=1,...,m fi(x) is convex

Exercise 1.17
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Show that the following functions f : Rn → R∪{∞} are convex. You may use convexity
preserving operations.

1. f(x) = ‖x‖p where p ≥ 1

2. f(x) = ‖Ax− b‖22 + ‖x‖1 where A ∈ Rm×n and b ∈ Rm

3. f(x) = max(‖x‖, ‖x‖2, ‖x‖3)

4. f(x) =
∑n

i=1max(0, 1 + xi) + ‖x‖22
5. f(x) = supy∈Rn(xT y − g(y)) where g : Rn → R ∪ {∞} is proper

Exercise 1.18
Let g : Rn → R ∪ {∞} and define Cα = {x ∈ Rn : g(x) ≤ α} for each α ∈ R.

1. Suppose that g is convex and suppose that there exists an x̄ ∈ Rn such that
g(x̄) < α for some α ∈ R. Show that Cα is a nonempty convex set.

2. For n = 1, construct a nonconvex function g such that C0 is convex.

3. For n = 1, construct a nonconvex function g such that C0 is nonconvex.

Exercise 1.19
Let f : Rn1 → R ∪ {∞} be a convex function and define a function g : Rn1 × Rn2 →
R ∪ {∞} such that g(x, y) = f(x). Show that g is a convex function.

Exercise 1.20 (H)
Prove, without explicitly using the definition of convex sets, that each of the following
sets are convex.

1. S = {x ∈ Rn : ‖x‖2 ≤ 1}

2. S = {(x, t) ∈ Rn × R : ‖x‖2 ≤ t}

Exercise 1.21 (H)
Let f : Rn → R ∪ {∞} be a convex function. Suppose that x⋆ ∈ Rn is a local optimum,
i.e., there exists an δ > 0 such that

f(x⋆) ≤ f(x)

for each x ∈ Rn such that ‖x− x⋆‖ ≤ δ. Show that x⋆ is a global minimum, i.e.

f(x⋆) ≤ f(x)

for each x ∈ Rn.
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Exercise 1.22
Let f : Rn → R ∪ {∞} be a proper strictly convex function. Recall that f is called
strictly convex if

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for each x, y ∈ domf such that x 6= y and for each θ ∈ (0, 1). Completely analogous to
Exercise 1.11, one can show that domf must be convex.

1. Suppose that there exists a point x∗ ∈ Rn such that

f(x⋆) ≤ f(x) (1.1)

for each x ∈ Rn. Show that x⋆ is the unique minimizer of f .

2. Provide a strictly convex f whose infimum is not attained by any point x⋆.

Remark: For (proper, closed and) strongly convex functions, a minimizer always exists.
Moreover, since strongly convex functions are strictly convex, the minimizer is unique.

Exercise 1.23
Decide which of the following convex functions f : R → R ∪ {∞} are

• smooth,

• strictly convex,

• strongly convex,

or none of the above. In this exercise, you only need to draw/plot the functions and
decide from the drawings.

1. f(x) =
{
− log(x) if x > 0

∞ if x ≤ 0

2. f(x) =


1

x
if x > 0

∞ if x ≤ 0

3. f(x) = x

4. f(x) = 1
2x

2

5. f(x) = |x|

6. f(x) =
{

1
2x

2 if |x| ≤ 1

|x| − 1
2 else

7. f(x) = ex

8. f(x) = x4

Exercise 1.24 (H)
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Suppose we are given some function f : R → R ∪ {∞} where we only know that
f(−1) = 0 and f(1) = 1. For x ∈ [−1, 1], draw the known bounds on f(x) given the
following assumptions:

• f is convex

• f is convex and 2-smooth

• f is 2-smooth and 1
2 -strongly convex

For each case, draw an example of a function that satisfies the assumptions.

Exercise 1.25 (H)
Suppose we are given some differentiable function f : R → R where we only know that
f(1) = 1 and f ′(1) = 1. Draw the known bounds on f given the following assumptions:

• f is strictly convex.

• f is strictly convex and 2-smooth.

• f is 2-smooth and 1-strongly convex.

For each case, draw an example of a function that satisfies the assumptions.

Exercise 1.26 (H)
Suppose that a, b ≥ 0 and p, q > 1 such that 1

p + 1
q = 1. Show that

ab ≤ ap

p
+
bq

q
. (1.2)

Inequality (1.2) is called Young’s inequality.

Exercise 1.27 (H) (⋆)
Consider the following statement: A differentiable function f : Rn → R is convex if
and only if

f(y) ≥ f(x) +∇f(x)T (y − x) (1.3)

for each x, y ∈ Rn.

1. Show that the statement is true.

2. Provide a nonconvex differentiable function f and a point x for which (1.3) does
not hold.

Exercise 1.28 (H)

9



Let f : Rn → R be convex and differentiable. Suppose that the point x ∈ Rn satisfies
∇f(x) = 0. Show that x is a global minimizer of f .

Exercise 1.29 (⋆)
Suppose that f : Rn → R is a differentiable function. Show that f is strictly convex if
and only if

f(y) > f(x) +∇f(x)T (y − x) (1.4)

for each x, y ∈ Rn such that x 6= y.

Exercise 1.30 (H)
Suppose that f : Rn → R is a differentiable function and let σ > 0. Show that f is
σ-strongly convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x) +
σ

2
‖x− y‖22 (1.5)

for each x, y ∈ Rn.

Exercise 1.31 (⋆)
The indicator function ιC : R → R ∪ {∞} of a set C ⊆ Rn is defined as

ιC(x) =

{
0 if x ∈ C

∞ otherwise.

Show the following:

1. Let K ∈ Rm×n, b ∈ Rm and C = {x ∈ Rn : Kx− b = 0}. Show that

ιC(x) = sup
µ∈Rm

µT (Kx− b).

2. Let g : Rn → Rm and C = {x ∈ Rn : g(x) ≤ 0}. Show that

ιC(x) = sup
µ∈Rm

+

µT g(x).

Exercise 1.32 (H) (⋆)
Solve the following problems:

1. Suppose that h : R → R is differentiable with nondecreasing derivative. Show
that h is convex.
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2. Let p ≥ 1. Show that the function h : R → R given by

h(x) =

{
xp if x ≥ 0

0 otherwise

is a nondecreasing convex function.

Exercise 1.33 (H) (⋆)
Let f : Rn → R∪{∞} be a convex function. Let n ∈ N, x1, . . . , xn ∈ Rn and θ1, . . . , θn ≥ 0
such that

∑n
i=1 θi = 1. Show that

f

(
n∑

i=1

θixi

)
≤

n∑
i=1

θif(xi). (1.6)

Inequality (1.6) is called Jensen’s inequality.

Exercise 1.34 (⋆⋆)

Let f : Rn → R. Show that f is affine if and only if f is convex and concave.

Exercise 1.35 (⋆)

Let f : Rn → R∪{∞} and let σ > 0. Recall that f is called σ-strongly convex if f− σ
2 ‖‖

2
2

is convex. Show that f is σ-strongly convex if and only if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− σ
2 θ(1− θ)‖x− y‖2 (1.7)

for each x, y ∈ Rn and for each θ ∈ [0, 1].

Exercise 1.36
Let f : Rn → R∪{∞} and let β ≥ 0. Suppose that f is β-smooth, i.e., f is differentiable
and ∇f is β-Lipschitz continuous. Let A ∈ Rn×m and b ∈ Rn. Let g : Rm → R ∪ {∞}
such that

g(x) = f(Ax+ b)

for each x ∈ Rm. Show that g is β ‖A‖22-smooth.

Remark: Recall that ‖A‖2 is the spectral norm of the matrix A and that ‖A‖2 =
∥∥AT

∥∥
2

holds.

Exercise 1.37 (⋆⋆)
Let f : Rn → R be a differentiable function and let β ≥ 0. Consider the following
properties

11



I) ‖∇f(x)−∇f(y)‖2 ≤ β‖x− y‖2, for each x, y ∈ Rn, i.e., f is β-smooth

II) For each x, y ∈ Rn{
f(y) ≤ f(x) +∇f(x)T (y − x) + β

2 ‖x− y‖22,
f(y) ≥ f(x) +∇f(x)T (y − x)− β

2 ‖x− y‖22

III) β
2 ‖ · ‖

2
2 − f and f + β

2 ‖ · ‖
2
2 are convex

IV) For each x, y ∈ Rn and for each θ ∈ [0, 1]{
f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) + β

2 θ(1− θ)‖x− y‖22,
f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)− β

2 θ(1− θ)‖x− y‖22

Show that these properties are equivalent.

Exercise 1.38 (H)(⋆)
Let f : Rn → R be a twice differentiable function and let β ≥ 0. Show that the following
properties are equivalent:

I) ‖∇f(x)−∇f(y)‖2 ≤ β‖x− y‖2, for each x, y ∈ Rn, i.e., f is β-smooth

II) −βI � ∇2f(x) � βI, for each x ∈ Rn

Hints
Hint to exercise 1.9
Use the results from Exercise 1.8.

Hint to exercise 1.16
For the second subproblem, use the fact that a function is convex if and only if its
epigraph is convex, i.e. use Exercise 1.15.

Hint to exercise 1.20
Use the results from Exercise 1.18 and 1.19.

Hint to exercise 1.21
Use a proof by contradiction.

12



Hint to exercise 1.24
Recall that f is 2-smooth if and only if{

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) + θ(1− θ)‖x− y‖22,
f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)− θ(1− θ)‖x− y‖22

for each x, y ∈ R and all θ ∈ [0, 1] and that f is 1
2 -strongly convex if and only if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− 1
4θ(1− θ)‖x− y‖2

for each x, y ∈ R and all θ ∈ [0, 1].

Hint to exercise 1.25
Recall that f is 2-smooth if and only if{

f(y) ≤ f(x) +∇f(x)T (y − x) + ‖x− y‖22,
f(y) ≥ f(x) +∇f(x)T (y − x)− ‖x− y‖22

for each x, y ∈ R and that f is 1-strongly convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x) + 1
2‖x− y‖22

for each x, y ∈ R.

Hint to exercise 1.26
Consider the case a = 0 or b = 0 and the case a > 0 and b > 0 separately. Moreover,
note that

x = exp(lnx)

for each x > 0.

Hint to exercise 1.27
The directional derivative of f at x ∈ Rn in direction d ∈ Rn satisfies

lim
θ→0

f(x+ θd)− f(x)

θ
= ∇f(x)Td.

Hint to exercise 1.28
Use Exercise 1.27.

Hint to exercise 1.30
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Use Exercise 1.27.

Hint to exercise 1.32

1. The mean value theorem might be helpful.

2. Consider the cases p = 1 and p > 1 separately.

Hint to exercise 1.33
Use induction on n.

Hint to exercise 1.38
Use Exercise 1.37 and the second-order condition for convex functions.
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Chapter 2

Subdifferentials and proximal
operators

Exercise 2.1
Compute the subdifferentials for the following proper closed convex functions:

1. f : Rn → R such that f(x) = 1
2‖x‖

2
2 for each x ∈ Rn

2. f : Rn → R such that f(x) = 1
2x

THx+ hTx for each x ∈ Rn, where H ∈ Sn+
3. f : R → R such that f(x) = |x| for each x ∈ R

4. f : R → R ∪ {∞} such that f(x) = ι[−1,1](x) for each x ∈ R

5. f : R → R such that f(x) = max(0, 1 + x) for each x ∈ R. This is known as the
hinge loss

6. f : R → R such that f(x) = max(0, 1− x) for each x ∈ R

You are allowed to rely on graphical arguments in this exercise.

Exercise 2.2
Consider the following even nonconvex function f : R → R:

2

2-2

f

x
x1

x2

x3

1. Compute (approximate) gradient and subdifferential at x1, x2, and x3.

2. As which of the points x1, x2, and x3 does Fermat’s rule hold?
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Exercise 2.3
Assume that f and g are two real-valued functions. Figure (a) depicts ∂f(x) and Figure
(b) depicts ∂g(y).

(a) (b)

1. What are the domains for f and g? Note that we are not asking for the effective
domains domf and domg.

2. Is x a minimum to f?

3. Is y a minimum to g?

4. Is f differentiable at x?

5. Is g differentiable at y?

6. Draw/explain examples of functions f and g that comply with the figures

Exercise 2.4
Suppose that f : R → R satisfies

f(−1) = 1, ∂f(−1) = {−1}

and

f(1) = 1, ∂f(1) = {1}.

1. Draw a function that lower bounds f

2. Compute a lower bound to the optimal value of f

3. Draw a function f that complies with the requirements

Exercise 2.5
Below a list of set-valued operators A : R → 2R are given.

• Which of them are monotone?

• Which of them can be a subdifferential of a closed convex function?
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x

A

a.

x

A

b.

x

A

c.

x

A

d.

Exercise 2.6
Let A : Rn → 2R

n be an operator and let σ > 0. Show that A is σ-strongly monotone if
and only if A− σI is monotone.

Remark: In particular, note that if f : Rn → R ∪ {∞}, the subdifferential ∂f is σ-
strongly monotone if and only if ∂f − σI is monotone.

Exercise 2.7 (⋆)
Provide a monotone operatorA : Rn → 2R

n that is monotone but not the subdifferential
of a function.

Exercise 2.8 (H)(⋆)
Let f : Rn → R be a differentiable function. Then the following properties are equiva-
lent:

I) f(y) ≥ f(x) +∇f(x)T (y − x) for each x, y ∈ Rn, i.e. f is convex

II) (∇f(y)−∇f(x))T (y − x) ≥ 0 for each x, y ∈ Rn, i.e. ∇f is monotone

1. Show that I) implies II)

2. Show that II) implies I)
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Exercise 2.9
The subdifferential ∂f of two functions f : R → R are drawn below.

x

∂f

a.

x

∂f

b.

1. Are the corresponding functions f closed and convex?

2. Can you find an x∗ that minimizes f . If so, where is it?

3. Can you compute the optimal value f(x∗)?

4. Draw examples of corresponding f

Exercise 2.10 (⋆)
Let f : Rn → R ∪ {∞} be closed and let σ > 0. We denote the effective domain of the
subdifferential ∂f as dom∂f and define it as

dom∂f = {x ∈ Rn : ∂f(x) 6= ∅}.

Assume that f is σ-strongly convex. Show that

f(y) ≥ f(x) + sT (y − x) +
σ

2
‖x− y‖22

for each y ∈ Rn, for each x ∈ dom∂f and for each s ∈ ∂f(x).

Exercise 2.11
The subdifferentials of four closed convex functions f : R → R are drawn below. State
for each if

• f is differentiable,

• ∇f is Lipschitz continuous and

• f is strongly convex.

Also, if they exists, estimate the Lipschitz and the strong convexity parameters (given
that the axes are equal).
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(a) (b)

(c) (d)

Exercise 2.12 (⋆)
Let g : Rn → R∪{∞}. Suppose there exists gi : R → R∪{∞} for each i = 1, . . . , n such
that

g(x) =

n∑
i=1

gi(xi), where x = (x1, . . . , xn)

for each x ∈ Rn. Let x = (x1, . . . , xn) ∈ Rn and let s = (x1, . . . , xn) ∈ Rn. Show that
s ∈ ∂g(x) if and only if si ∈ ∂gi(xi) for each i = 1, . . . , n.

Exercise 2.13 (⋆)
Let f : Rn → R ∪ {∞} be convex and let y ∈ Rn be a point such that f(y) < ∞. Show
that ∂f(x) is empty for each x 6∈ domf .

Exercise 2.14 (⋆)

Show that the subdifferential of the indicator function of a nonempty set C ⊆ Rn is
the normal cone to C.

Exercise 2.15
Compute the proximal mapping for the following proper closed convex functions:

1. f : Rn → R such that f(x) = 1
2‖x‖

2
2 for each x ∈ Rn

2. f : Rn → R such that f(x) = 1
2x

THx+ hTx for each x ∈ Rn, where H ∈ Sn+
3. f : R → R such that f(x) = |x| for each x ∈ R
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4. f : R → R ∪ {∞} such that f(x) = ι[−1,1](x) for each x ∈ R

5. f : R → R such that f(x) = max(0, 1 + x) for each x ∈ R

6. f : R → R such that f(x) = max(0, 1− x) for each x ∈ R

Exercise 2.16
Let g : Rn → R ∪ {∞} be a proper, closed and convex function. Suppose there exists
gi : R → R ∪ {∞} for each i = 1, . . . , n such that

g(x) =

n∑
i=1

gi(xi), where x = (x1, . . . , xn)

for each x ∈ Rn. Let z = (z1, . . . , zn) ∈ Rn and let γ > 0. Show that

proxγg(z) =

proxγg1(z1)...
proxγgn(zn)

 .

Hints
Hint to exercise 2.8

1. Add I) and I) with x and y swapped.

2. Let x, y ∈ Rn and t ∈ R. Then

∂

∂t
f(x+ t(y − x)) = ∇f(x+ t(y − x))T (y − x).

This gives that

f(y)− f(x) =

∫ 1

0
∇f(x+ t(y − x))T (y − x)dt. (2.1)

Subtracting ∇f(x)T (y − x) from the expression above yields

f(y)− f(x)−∇f(x)T (y − x)

=

∫ 1

0
(∇f(x+ t(y − x))−∇f(x))T (y − x)dt

=

∫ 1

0
t−1(∇f(x+ t(y − x))−∇f(x))T ((x+ t(y − x))− x)dt.
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Chapter 3

Conjugate functions and duality

Exercise 3.1
Compute the conjugates for the following proper closed convex functions:

1. f : Rn → R such that f(x) = 1
2‖x‖

2
2 for each x ∈ Rn

2. f : Rn → R such that f(x) = 1
2x

THx+ hTx for each x ∈ Rn, where H ∈ Sn+
3. f : R → R ∪ {∞} such that f(x) = ι[−1,1](x) for each x ∈ R

4. f : R → R such that f(x) = |x| for each x ∈ R

5. f : R → R such that f(x) = max(0, 1 + x) for each x ∈ R

6. f : R → R such that f(x) = max(0, 1− x) for each x ∈ R

Exercise 3.2
Let f, g : Rn → R ∪ {∞} be two functions. Show that

1. f∗∗ ≤ f

2. f ≤ g implies that f∗ ≥ g∗

3. f ≤ g implies that f∗∗ ≤ g∗∗

4. f = f∗ if and only if f = 1
2‖ · ‖

2
2

Exercise 3.3 (H)
Let p ∈ (1,∞) and q = p/(p− 1). Show that(

|·|p

p

)∗
=

(
|·|q

q

)
.

Exercise 3.4
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Let f, g : Rn → R ∪ {∞} and α ∈ (0, 1). Show that

(αf + (1− α)g)∗ ≤ αf∗ + (1− α)g∗.

Exercise 3.5
Let f : Rn → R ∪ {∞} and fi : R → R ∪ {∞} for each i = 1, . . . , n. Suppose that

f(x) =

n∑
i=1

fi(xi)

for each x = (x1, . . . , xn) ∈ Rn, i.e, f is separable. Show that

f∗(s) =

n∑
i=1

f∗i (si)

for each s = (s1, . . . , sn) ∈ Rn, i.e, f∗ is also separable.

Exercise 3.6 (H)
Compute the conjugates of the following functions f : Rn → R ∪ {∞}:

1. f(x) = ‖x‖1 for each x ∈ Rn

2. f(x) = ι[−1,1](x) for each x ∈ Rn, where 1 = (1, . . . , 1) ∈ Rn

Exercise 3.7
Let f : R → R ∪ {∞} be the nonconvex function in the figure below. It satisfies

f(x) =



0 if x = −1,

1 if x = 0,

−1 if x = 1,

0 if x = 2,

∞ otherwise .

(-1,0)

(0,1)

(1,-1)

(2,0)
x

f(x)

1. Draw the conjugate f∗ of f
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2. Draw the biconjugate f∗∗ of f

Exercise 3.8 (H) (⋆)
Let f : Rn → R ∪ {∞} such that

f(x) = ‖x‖2

for each x ∈ Rn.

1. Compute the conjugate f∗ via the following steps:

(a) Show that f∗(s) ≥ 0 for each s ∈ Rn

(b) Show that f∗(s) ≤ 0 for each s ∈ Rn such that ‖s‖2 ≤ 1

(c) Show that f∗(s) = ∞ for each s ∈ Rn such that ‖s‖2 > 1

(d) Combine the results and give f∗(s)

2. Use the conjugate to compute the subdifferential of f

Exercise 3.9 (⋆)
Let ∆ be the n-dimensional probability simplex, i.e.

∆ =
{
x ∈ Rn : x ≥ 0 and 1Tx = 1

}
.

Similarly, let D be the set

D =
{
x ∈ Rn : x ≥ 0 and 1Tx ≤ 1

}
.

1. Let f = ι∆. Show that

f∗(s) = max
i=1,...,n

si

for each s = (s1, . . . , sn) ∈ Rn

2. Find f∗∗

3. Let g = ιD. Show that

g∗(s) = max

(
0, max

i=1,...,n
si

)
for each s = (s1, . . . , sn) ∈ Rn

4. Find g∗∗

Exercise 3.10
Consider the following set-valued operators A : R → 2R:
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1. Draw the inverses A−1 : R → 2R

2. Which operators A are functions f : R → R?

3. Which operator inverses A−1 are functions f : R → R?

a. b.

c. d.

Exercise 3.11
Consider the following four subdifferentials ∂f of proper closed convex functions in
the figure below. Decide ∂f∗, i.e., the subdifferential of the conjugate.

x

∂f(x) = {σx}

a.

x

∂f(x) = {0}

b.

x

∂f(x)

−1

1

c.

x

∂f(x)

−1

1

−1

1

d.
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Exercise 3.12
Let f : Rn → R ∪ {∞} be proper closed convex and γ > 0. Show that

proxγf (z) = (I + γ∂f)−1(z)

for each z ∈ Rn, where the inverse denotes the operator inverse.

Exercise 3.13 (H)
Compute the proximal mapping for the following convex functions on R. Use graphical
arguments and that proxγf (z) = (I + γ∂f)−1(z).

1. f(x) = |x|

2. f(x) = ι[−1,1](x)

3. f(x) = max(0, 1 + x)

4. f(x) = max(0, 1− x)

Exercise 3.14 (H)
Let f : Rn → R ∪ {∞} be proper closed convex and γ > 0. Show that:

1. proxf (z) + proxf∗(z) = z for each z ∈ Rn

2. (γf)∗(s) = γf∗(γ−1s) for each s ∈ Rn

3. prox(γf)∗(z) = γproxγ−1f∗(γ−1z) for each z ∈ Rn

4. proxγf (z) + γproxγ−1f∗(γ−1z) = z for each z ∈ Rn

Exercise 3.15
Let γ > 0. Compute the prox(γf)∗ for the following f :

1. f : Rn → R such that f(x) = 1
2x

THx+ hTx for each x ∈ Rn, where H ∈ Sn++

2. f : R → R such that f(x) = max(0, 1 + x) for each x ∈ R

3. f : R → R such that f(x) = max(0, 1− x) for each x ∈ R

Exercise 3.16
Let f : Rn → R ∪ {∞}.

1. Show that

inf
x∈Rn

f(x) = −f∗(0)
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2. Suppose that f is proper closed convex. Show that

Argmin
x∈Rn

f(x) = ∂f∗(0)

Exercise 3.17
Consider a primal problem of the form

minimize
x∈Rn

f(x) + g(x),

where f : Rn → R∪{∞} and g : Rn → R∪{∞} are proper closed convex functions and
relint dom f ∩ relint dom g 6= ∅.

1. Show that solving the primal problem is equivalent to finding x, µ ∈ Rn such
that {

x ∈ ∂f∗(µ),

x ∈ ∂g∗(−µ)

2. Show that this inclusion problem is equivalent to the following dual optimality
condition

0 ∈ ∂f∗(µ)− ∂g∗(−µ), (3.1)

that solves the dual problem

minimize
µ∈Rn

f∗(µ) + g∗(−µ)

3. Suppose you are given a solution µ⋆ to the dual condition (3.1) and a subgradient
selector function sf∗ : Rn → Rn such that

sf∗(µ) ∈ ∂f∗(µ)

for each µ ∈ Rn. Can you recover a primal solution x⋆? What if f∗ is differen-
tiable?

Exercise 3.18
Let f : Rm → R ∪ {∞} and g : Rn → R ∪ {∞} be proper closed convex functions. Let
L ∈ Rm×n. Assume that relint dom (f ◦L)∩relint dom g 6= ∅, i.e. constraint qualification
holds. Consider the primal problem of the form

minimize
x∈Rn

f(Lx) + g(x). (3.2)

Derive the Fenchel dual problem

minimize
µ∈Rm

f∗(µ) + g∗(−LTµ). (3.3)
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Exercise 3.19
Let f : Rm → R∪{∞}, g : Rn → R∪{∞} and L ∈ Rm×n. Consider the primal problem
of the form

minimize
x∈Rn

f(Lx) + g(x).

State a Fenchel dual problem and show how to recover a primal solution from a dual
solution for the following particular cases:

1.

f(y) =
λ

2
‖y‖22

for each y ∈ Rm, where λ > 0 and

g(x) =
n∑

i=1

xi + ι[−1,0](xi)

for each x = (x1, . . . , xn) ∈ Rn. Assume that L is square (i.e. m = n) and invert-
ible.

2.

f(y) = ι[−1,1](y)

for each y ∈ Rm and

g(x) =
λ

2
‖x‖22 − bTx

for each x ∈ Rn, where λ > 0 and b ∈ Rn.

Exercise 3.20 (⋆)
Let f : Rn → R ∪ {∞} be a proper function. Let x, s ∈ Rn. Fenchel-Young’s equality
states that

f∗(x) = sTx− f(s) if and only if s ∈ ∂f(x). (3.4)

Prove (3.4) via the following steps:

1. Prove Fenchel-Young’s inequality, i.e. f∗(s) ≥ sTx− f(x)

2. Suppose that s ∈ ∂f(x). Show that f∗(s) ≤ sTx− f(x)

Remark: Combining the first and second subproblems, we conclude that s ∈
∂f(x) implies f∗(s) = sTx− f(x)

3. Suppose that f∗(s) = sTx− f(x). Show that s ∈ ∂f(x)

Remark: Combining the second and third subproblems, we conclude that (3.4) holds.

Exercise 3.21 (⋆)
Let f : Rn → R ∪ {∞}. Let x, s ∈ Rn. Show that:
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1. s ∈ ∂f(x) implies x ∈ ∂f∗(s)

2. x ∈ ∂f∗(s) implies s ∈ ∂f∗∗(x)

3. Suppose that f in addition is closed convex. Then

s ∈ ∂f(x) ⇔ x ∈ ∂f∗(s)

i.e. (∂f)−1 = ∂f∗ (the inverse of the subdifferential is the subdifferential of the
conjugate)

Exercise 3.22 (⋆)
Let f : Rm → R ∪ {∞} be proper closed convex, L ∈ Rm×n and c ∈ Rm. Define
g : Rn → R ∪ {∞} such that

g(x) = f(Lx+ c)

for each x ∈ Rn. Assume that relint dom g 6= ∅ and that there exists an x∗s ∈ Rn such
that

g∗(s) = sup
x∈Rn

(
sTx− g(x)

)
= sTx∗s − g(x∗s)

for each s ∈ Rn. Show that

g∗(s) = inf
µ∈Rm

s.t. s=LTµ

(
f∗(µ)− cTµ

)
for each s ∈ Rn.

Exercise 3.23 (⋆)
In this exercise we study a type of duality in a nonconvex setting called Toland duality.
Let f, g : Rn → R∪ {∞} be two functions, where f is closed convex and dom g ⊆ dom f .
Show that

sup
x∈Rn

(f(x)− g(x))

is equal to

sup
s∈Rn

(g∗(s)− f∗(s)) .
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Hints
Hint to exercise 3.3
Note that |·|p

p is differentiable with gradient

(
∇|·|p

p

)
(x) =

{
x |x|p−2 if x 6= 0,

0 if x = 0.

Hint to exercise 3.6
Use the results from Exercise 3.1 and 3.5.

Hint to exercise 3.8
Cauchy-Schwarz inequality sTx ≤ ‖x‖2‖s‖2 holds for each x, s ∈ Rn.

Hint to exercise 3.13
The subdifferential for each function have already been computed in previous exer-
cises.

Hint to exercise 3.14
For the first subproblem, let x = proxf (z), introduce u = z − x and show that u =
proxf∗(z). To prove this, use Fermat’s rule on the definition of the prox.
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Chapter 4

Proximal gradient method -
basics

Exercise 4.1
Suppose that f : Rn → R is convex and differentiable. Consider the gradient method
with constant step-size:

• Pick some initial guess x0 ∈ Rn and step-size γ > 0.

• For k = 0, 1, 2, . . ., let

xk+1 = xk − γ∇f(xk).

Let x⋆ ∈ Rn be a fixed-point of the gradient method. Show that x⋆ is a global minimizer
of f .

Exercise 4.2
Let f : Rn → R ∪ {∞} be proper closed convex and γ > 0. Suppose that x ∈ Rn is such
that

x = proxγf (x).

Show that x is a global minimizer of f .

Exercise 4.3
Let f, g : Rn → R ∪ {∞} be proper closed convex. Assume that f is differentiable. Let
γ > 0. Suppose that x ∈ Rn is such that

x = proxγg(x− γ∇f(x)).

Show that x is a global minimizer of f + g.
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Exercise 4.4
Which of

• the gradient method, and

• the proximal gradient method

are applicable to the minimization problem

minimize
x∈Rn

h(x)

where h : Rn → R ∪ {∞} is the proper closed convex function:

1.

h(x) =
1

2
‖Ax− b‖22

for each x ∈ Rn where A ∈ Rm×n, b ∈ Rm and m < n

2.

h(x) =
1

2
xTQx+ bTx+ ‖x‖1

for each x ∈ Rn where Q ∈ Sn++

3.

h(x) =
1

2
‖Ax− b‖22 + ‖x‖22

for each x ∈ Rn where A ∈ Rm×n, b ∈ Rm and m < n

4.

h(x) =
1

2
‖Ax− b‖22 + ‖x‖2

for each x ∈ Rn where A ∈ Rm×n, b ∈ Rm and m < n

5.

h(x) = ι{z∈Rn:Az=b}(x) + ι[−1,1](x)

for each x ∈ Rn where A ∈ Rm×n, b ∈ Rm, m < n and {z ∈ Rn : Az = b} 6= ∅

6.

h(x) = e∥x−y∥42 + ι[−1,1](x)

for each x ∈ Rn where y ∈ Rn

7.

h(x) =
1

2
xTQx+ ‖Dx‖1

for each x ∈ Rn where Q ∈ Sn++ and D ∈ Rn×n is diagonal
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8.

h(x) =
1

2
xTQx+ ι[−1,1](Lx)

for each x ∈ Rn where Q ∈ Sn++ and L ∈ Rm×n

9.

h(x) = log
(
1 + e−wT x

)
+

1

2

n∑
i=1

max (0, xi)
2

for each x = (x1, . . . , xn) ∈ Rn where w ∈ Rn

Exercise 4.5
For the optimization methods and objective functions in Excercise 4.4, which are ap-
plicable to some dual formulation of the minimization problem?

Exercise 4.6
Consider the problem

minimize
x∈Rn

‖x‖1 +
1

2
xTQx

where Q ∈ Sn++. The goal of this exercise is to state a Fenchel dual problem and find
the proximal gradient update for this dual problem. Define the functions f, g : Rn → R
such that

f(x) = ‖x‖1 and g(x) = 1
2x

TQx

for each x ∈ Rn. The problem can be written as

minimize
x∈Rn

f(x) + g(x).

1. Compute f∗

2. Compute g∗

3. State a Fenchel dual problem using general f∗ and g∗

4. State a proximal gradient method step for this general dual problem. Specif-
ically, assume that f is proper closed convex and proximable, and g is proper
closed and strongly convex (which in fact is true in our particular case). Con-
struct a proximal gradient method step that is computationally reasonable based
on this information.

5. Specify the proximal gradient method step for the dual problem with our partic-
ular choice of f and g
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Exercise 4.7 (⋆)
Consider a primal problem of the form

minimize
x∈Rn

f(Lx) + g(x)

where f : Rm → R ∪ {∞} is proper closed convex and prox friendly, g : Rn → R ∪ {∞}
is proper closed and strongly convex, L ∈ Rm×n, and relint dom (f ◦L)∩ relint dom g 6= ∅.
We know that a dual problem can be written as

minimize
µ∈Rm

f∗(µ) + g∗
(
−LTµ

)
.

We also know that f∗ is proper closed convex and prox friendly and that g∗ is proper
closed convex and smooth. If γk > 0, a proximal gradient method step can be written
as

µk+1 = proxγkf∗
(
µk − γk∇

(
g∗ ◦ −LT

)
(µk)

)
.

Show that this equivalently can be written as
xk = argminx∈Rn

(
g(x) + µTkLx

)
,

vk = µk + γkLxk,

µk+1 = vk − γkproxγ−1
k f

(
γ−1
k vk

)
.

(4.1)

I.e. we can perform the proximal gradient method step for the dual problem using
only primal information (f and g).

Exercise 4.8
Consider the dual problem obtained in Exercise 4.6. For this particular choice of f
and g, explicitly evaluate the dual proximal gradient method step and show that the
resulting step is the same as the implicit step (4.1) obtained in Exercise 4.7.

Exercise 4.9 (H) (⋆)
Let f : Rn → R be a β-smooth function for some β > 0. Consider the gradient method
step

xk+1 = xk − γk∇f(xk),

for some γk ∈ (0, 1/β). Show that the gradient method is a majorization-minimization
algorithm. A majorization-minimization algorithm is an algorithm on the form

xk+1 = argmin
y∈Rn

g(y)

for some function g : Rn → R such that f ≤ g, i.e. g is a majorizer of f . Thus, the goal
is to find such a g.
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Hints
Hint to exercise 4.9
Start from the decent lemma, i.e.

f(y) ≤ f(x) +∇f(x)T (y − x) +
β

2
‖y − x‖22

for each x, y ∈ Rn and use that γk < 1/β.
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Chapter 5

Learning

Exercise 5.1
Consider the logistic regression problem

minimize
(w,b)∈Rn×R

N∑
i=1

log
(
1 + e−yi(xT

i w+b)
)

(5.1)

with data points xi ∈ Rn and class labels yi ∈ {−1, 1}, for each i = 1, . . . , N . Show that
(5.1) is equivalent to

minimize
(w,b)∈Rn×R

N∑
i=1

(
log
(
1 + ex

T
i w+b

)
− yi

(
xTi w + b

))
if the classes are labeled with yi ∈ {0, 1} instead of yi ∈ {−1, 1}.

Exercise 5.2
Consider the logistic regression problem

minimize
(w,b)∈Rn×R

N∑
i=1

(
log
(
1 + ex

T
i w+b

)
− yi

(
xTi w + b

))
(5.2)

with data points xi ∈ Rn and class labels yi ∈ {0, 1}, for each i = 1, . . . , N . Assume
that there exists (w̄, b̄) ∈ Rn × R such that{

xTi w̄ + b̄ < 0 if yi = 0

xTi w̄ + b̄ > 0 if yi = 1

for each i = 1, . . . , n. Show that the optimal value of (5.2) is 0, and that no (w, b) ∈
Rn × R exists that attains the optimal value 0.

Exercise 5.3
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Consider the univariate Lasso problem

minimize
x∈R

1

2
‖ax− b‖22 + λ |x| (5.3)

where a ∈ Rn, b ∈ Rn and λ > 0 are given.

Assume that a 6= 0 and b 6= 0, since otherwise the optimal point of (5.3) is simply x = 0.
Prove that the optimal point of (5.3) is

x =

0 if λ ≥
∣∣aT b∣∣ ,

xls −
λ

‖a‖22
sgn (xls) if λ <

∣∣aT b∣∣
where

xls =
aT b

‖a‖22

corresponds to the solution of the problem for λ = 0, i.e. the corresponding univariate
least squares problem.

Exercise 5.4
Consider the Lasso problem

minimize
x∈Rm

1

2
‖Ax− b‖22 + λ ‖x‖1 (5.4)

where A ∈ Rn×m, b ∈ Rn and λ ≥
∥∥AT b

∥∥
∞. Show x = 0 is a solution.

Exercise 5.5 (H)(⋆⋆)
Consider the following bivariate Lasso problem

minimize
x∈R2

1

2
‖Ax− b‖22 + λ ‖x‖1 (5.5)

where A ∈ Rn×2, b ∈ Rn, n ≥ 2 an integer and λ > 0. Suppose that

A =
[
a1 a2

]
has normalized columns, i.e. ‖a1‖2 = ‖a2‖2 = 1, and that A has full (column) rank.
This implies that

∣∣aT1 a2∣∣ < 1. Consider each of the four possible sparsity patterns of
x ∈ R2 in (5.5), i.e.

X0,0 =
{
(0, 0) ∈ R2

}
,

X1,1 =
{
(x1, x2) ∈ R2 : x1 6= 0, x2 6= 0

}
,

X1,0 =
{
(x, 0) ∈ R2 : x 6= 0

}
,

X0,1 =
{
(0, x) ∈ R2 : x 6= 0

}
.
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Find the set

Λi,j = {λ > 0 : x optimal point for (5.5) using λ and x ∈ Xi,j}

for each i, j ∈ {0, 1}. Verify that for a given problem the four ranges Λi,j are disjoint
and the number of zeros in the solution is nondecreasing with λ.

Exercise 5.6
Consider the SVM problem with an affine model

minimize
(w,b)∈Rm×R

n∑
i=1

max
(
0, 1− yi

(
xTi w + b

))
+
λ

2
‖w‖22 (5.6)

with data points xi ∈ Rm and class labels yi = {−1, 1} for each i = 1, . . . , n, and a
regularization parameter λ ≥ 0.

1. Consider the unregularized problem, i.e. λ = 0, and assume that examples from
both classes exists. Assume the data is fully separable, i.e. there exists a non-
zero pair of parameters (w, b) ∈ Rm × R such that{

xTi w + b < 0 if yi = −1

xTi w + b > 0 if yi = 1

for each i = 1, . . . , n. Show the optimal value of (5.6) is 0 and that the that the
optimal set, i.e. the set of all optimal points, is unbounded.

2. Consider again the unregularized problem, i.e. λ = 0, but assume that the data
only contains one class, e.g. there exists no i = 1, . . . , n such that yi = −1. Show
that an arbitrary w ∈ Rm is part of an optimal point of (5.6) and show that the
optimal set is unbounded.

3. Consider the regularized problem, i.e. λ > 0. Assume the data only consists
of one class, e.g. there exists no i = 1, . . . , n such that yi = −1. Show that
w = 0 ∈ Rm is part of an optimal point of (5.6) and show that the optimal set is
unbounded.

Exercise 5.7
FindX ∈ Rm×n and ϕ ∈ Rn such that the SVM problem (5.6) in 5.6 can be reformulated
as

minimize
(w,b)∈Rm×R

1T max
(
0,1− (XTw + bϕ)

)
+
λ

2
‖w‖22 (5.7)

where the max function is applied element-wise and 1 ∈ Rn is a vector of all ones.

Exercise 5.8(⋆)
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Consider the reformulated SVM problem (5.7) in Exercise 5.7, i.e.

minimize
(w,b)∈Rm×R

1T max
(
0,1−

(
XTw + bϕ

))︸ ︷︷ ︸
=1T max

(
0,1− L

[
w
b

])
︸ ︷︷ ︸

=f(L(w,b))

+
λ

2
‖w‖22︸ ︷︷ ︸

=g(w,b)

where f : Rn → R is given by

f(u) = 1T max (0,1− u)

for each u ∈ Rn,

L =
[
XT ϕ

]
and g : Rm × R → R is given by

g(w, b) =
λ

2
‖w‖22

for each (w, b) ∈ Rm × R. Assume that λ > 0 and that examples from both classes
exists.

1. Find the Fenchel dual problem

minimize
µ∈Rn

f∗(µ) + g∗(−LTµ)

2. Show how to recover a primal solution from a dual solution and motivate when
and why this is possible

3. A support vector for this kind of soft-margin SVM is defined as any data point
x ∈ Rm of class y ∈ {1,−1} that lies on the wrong side of the margin, i.e. 1 ≥
y(xTw + b), for a given model with parameters (w, b) ∈ Rm × R. It is easy to see
that only the support vectors contribute to the cost of the objective function (see
objective function (5.6) in Exercise 5.6), if we ignore the regularization term.

Suppose that µ∗ ∈ Rn is an optimal point for the dual problem. Show that the
nonzero elements of µ⋆ ∈ Rn corresponds to support vectors of the corresponding
model with optimal parameters (w⋆, b⋆) ∈ Rm ×R. Show that the optimal model
parameters can be recovered from the dual solution by only considering support
vectors

Exercise 5.9
Consider the typical supervised learning problem

minimize
w

n∑
i=1

L(mw(xi), yi)

where n is the number of training examples, xi ∈ Rd is a data point with corresponding
response variable yi ∈ Rl, for each i = 1, . . . , n,mw : Rd → Rk is a model parameterized
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by w we wish to train, and L : Rk × Rl → R is the loss function comparing the model
output mw(xi) with the known correct output yi.

Assume that L(·, y) is convex for each y ∈ Rl. Prove or disprove the following state-
ments:

1. The objective function

w 7→
n∑

i=1

L(mw(xi), yi)

is convex if a linear model with some feature map is used. I.e. if

mw(x) = wTϕ(x)

for each x ∈ Rd where ϕ : Rd → Rf and w ∈ Rf×k

2. The objective function

w 7→
n∑

i=1

L(mw(xi), yi)

is convex if a DNN model is used. I.e. if

mw(x) = σ1(w
T
1 σ2(w

T
2 ...σD(w

T
Dx)...))

for each x ∈ Rd where σi is an activation functions that act elements-wise, for
each i = 1, . . . , D, and

w = (w1, . . . , wD)

such that 
w1 ∈ Rf1×k

wi ∈ Rfi×fi−1 for i = 2, . . . , D − 1

wD ∈ Rd×fD−1

Hints
Hint to exercise 5.5
For x⋆ ∈ X1,0, first find the optimal x⋆1. Use this together with the optimality condition
for x⋆2 = 0 to find the bounds on λ. For x⋆ ∈ X1,1, first find the ordinary least squares
solution and show the coordinates of the Lasso solution have the same signs. Use
this, the optimality condition and x⋆ 6= 0 to find the bound on λ. Useful identities are
sgn(x) = sgn(x)−1, |x| = sgn(x)x and sgn(x) sgn(y) = sgn(xy)
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Chapter 6

Algorithm convergence

Exercise 6.1
For a given optimization problem, we used two algorithms to solve it up to a desired
precision.

1. The first algorithm, performed 5000 floating point operations in each iteration
and we ran it for 105 iterations

2. The second algorithm, performed 50 floating point operations in each iteration
and we ran it for 2× 106 iterations

Which algorithm had better performance?

Exercise 6.2
Match the following rates with the corresponding curve given in figure below. For
each rate, specify if it is linear, sublinear or superlinear.

1. O(ρk1), with 0 < ρ1 < 1

2. O(ρk2), with ρ1 < ρ2 < 1

3. O(1/ log(k))

4. O(1/k)

5. O(1/k2)
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Exercise 6.3
Let (Vk)∞k=0 be a nonnegative convergence measure.

1. Suppose that (Vk)∞k=0 has a Q-linear rate, i.e. there exists a ρ ∈ [0, 1) such that

Vk+1 ≤ ρVk

for each integer k ≥ 0. Show that (Vk)∞k=0 has a R-linear rate, i.e. there exists a
ρL ∈ [0, 1) and CL ≥ 0 such that

Vk ≤ ρkLCL

for each integer k ≥ 0

2. Suppose that (Vk)
∞
k=0 has a Q-quadratic rate, i.e. there exists a ρ ∈ [0, 1) such

that

Vk+1 ≤ ρV 2
k (6.1)

for each integer k ≥ 0. Show that there exist ρQ ≥ 0 and CQ ≥ 0 such that

Vk ≤ ρ2
k

Q CQ (6.2)

for each integer k ≥ 0

3. Suppose that (Vk)∞k=0 has a Q-quadratic rate as in (6.1). If ρQ ∈ [0, 1) in (6.2), we
say that (Vk)∞k=0 has a R-quadratic rate and can conclude that

Vk → 0 as k → ∞.

However, ρQ ∈ [0, 1) will only hold for certain initial values V0 — which?

Thus, R-quadratic rate is only achived localy, i.e. for certain initial values V0
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Exercise 6.4
Let f : Rn → R and consider the problem

inf
x∈Rn

f(x).

Suppose that some iterative descent algorithm generates a sequence (xk)
∞
k=0 in Rn,

i.e.

f(xk+1) ≤ f(xk)

for each integer k ≥ 0. We call such a sequence (xk)
∞
k=0 a descent sequence for f .

1. Give an example of a function f and descent sequence (xk)
∞
k=0 for f such that the

sequence of function values (f(xk))
∞
k=0 does not convergence

2. In addition, assume that the function f is bounded from below, i.e. there exists
a B ∈ R such that f(x) ≥ B for all x ∈ Rn. Prove that the sequence of function
values (f(xk))

∞
k=0 converges

3. Give an example of a function f that is bounded from below and descent sequence
(xk)

∞
k=0 of f such that (f(xk))∞k=0 does not converge to infx∈Rn f(x)

Exercise 6.5
Let f : R → R such that

f(x) = ex − 2x+ x2

for each x ∈ R. Consider finding a minimizer of f using the standard Newton’s method
without line search: Pick some initial point x0 ∈ R and let

xk+1 = xk −
(
∇2f(xk)

)−1∇f(xk)

for each integer k ≥ 0. Below you find the 10 first iterations for when x0 = 5.
k xk |xk − x⋆|
0 5.000000000000000 4.685076942154594
1 3.960109873126804 3.645186815281398
2 2.888130487596392 2.573207429750986
3 1.799138129515975 1.484215071670569
4 0.849076217909656 0.534153160064250
5 0.379763183818023 0.064840125972617
6 0.315791881094192 0.000868823248786
7 0.314923211324986 0.000000153479580
8 0.314923057845411 0.000000000000005
9 0.314923057845406 0.000000000000000

Calculate the ratios
|xk+1 − x⋆|
|xk − x⋆|

and
|xk+1 − x⋆|
|xk − x⋆|2

.
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Based on these ratios, estimate whether the sequence (|xk − x⋆|)∞k=0 is Q-linear or
Q-quadratic convergent and find the corresponding rate parameter.

Exercise 6.6
A sequence (Qk)

∞
k=0 in R is generated by some iterative algorithm. It is found to satisfy

the following inequality

0 ≤ Qk ≤ V

ψ1(k)
+

D

ψ2(k)

for each integer k ≥ 0, where D and V are positive constants and ψ1, ψ2 : R → R++

are functions that depend on the algorithm that generated (Qk)
∞
k=0.

1. Show that Qk → 0 as k → ∞ if{
ψ1(k) → ∞ as k → ∞,

ψ2(k) → ∞ as k → ∞

2. Let c > 0 and decide the rate of convergence for the following cases:

(a) When

ψ1(k) =

{
1 if k ≤ 0,

2c
√
k if k > 0

and ψ2(k) =

1 if k ≤ 1,√
k

c log k
if k > 1

(b) When

ψ1(k) =

1 if k ≤ 1,

2c(k1−α − 1)

1− α
if k > 1

and

ψ2(k) =

1 if k ≤ 1,

(1− 2α)(k1−α − 1)

c(1− α)(k1−2α − 2α)
if k > 1

where α ∈ (0, 0.5)

(c) When

ψ1(k) =

1 if k ≤ 1,

2c(k1−α − 1)

1− α
if k > 1

and

ψ2(k) =

1 if k ≤ 1,

(1− 2α)(k1−α − 1)

c(1− α)(k1−2α − 2α)
if k > 1

where α ∈ (0.5, 1)
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3. Which case above gives the fastest convergence rate?

Exercise 6.7
An iterative algorithm for minimizing a function f : Rn → R produces a sequence
(xk)

∞
k=0 in Rn. Suppose that x⋆ is a minimizer of f and γi > 0, for each integer i ≥ 0, are

the step-sizes used by the algorithm. A convergence analysis results in the following
inequality:

f(xk)− f(x⋆) ≤
V +D

k∑
i=0

γ2i

b
k∑

i=0

γi

for each integer k ≥ 0, where V , D and b are positive constants.

1. Show that (f(xk))∞k=0 converges to f(x⋆) if
(
γ2i
)∞
i=0

is summable and (γi)
∞
i=0 is not,

i.e. if
∞∑
i=0

γ2i <∞ and
∞∑
i=0

γi = ∞

2. Let c > 0 and estimate the convergence rates for the following step-sizes:

(a) γi = c/(i+ 1) for each integer i ≥ 0

(b) γi = c/(i+ 1)α for each integer i ≥ 0, where α ∈ (0.5, 1)

3. Which step-size γi above gives the fastest convergence rate?

Exercise 6.8
Let f : Rn → R be a β-smooth convex function for some β > 0. Let x⋆ ∈ Rn be
a minimizer of f . Consider finding a minimizer of f , not necessarily x⋆, using the
gradient descent method:

xk+1 = xk − γ∇f(xk)

for each integer k ≥ 0, where x0 ∈ Rn is some given initial point and the step-size
γ ∈ (0, 1/β] is constant. In this case, the gradient descent method can be shown to be
a descent algorithm, i.e.

f(xk+1) ≤ f(xk)

for each integer k ≥ 0. Put differently, (xk)∞k=0 is a descent sequence for f . Moreover,
the Lyapunov inequality

‖xk − x⋆‖22 ≤ ‖xk−1 − x⋆‖22 − 2γ(f(xk)− f(x⋆)) (6.3)

for each integer k ≥ 1 can be shown to hold. Show that f(xk) → f(x⋆) as k → ∞ and
find the convergence rate.
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Exercise 6.9
Consider minimizing a function f : Rn → R, with a minimizer x⋆ ∈ Rn, using a
stochastic optimization algorithm and starting at some predetermined (deterministic)
initial point x0 ∈ Rn. Analysis of the algorithm resulted in the inequality

E
[
‖xk+1 − x⋆‖22 | xk

]
≤ ‖xk − x⋆‖22 − 2γk(f(xk)− f(x⋆)) + γ2kG

2

for each integer k ≥ 0, where G is a positive constant and γk > 0 for each integer k ≥ 0
are the deterministic step-sizes of the algorithm satisfying

∞∑
k=0

γk = ∞ and
∞∑
k=0

γ2k <∞.

In particular, (xk)∞k=0 is a stochastic process.

1. Apply an expectation to the above inequality to derive a Lyapunov inequality for
the algorithm

2. Use the obtained Lyapunov inequality to show that

2

k∑
i=0

γi E[f(xi)− f(x⋆)] ≤ ‖x0 − x⋆‖22 +G2
k∑

i=0

γ2i

for each integer k ≥ 0

Exercise 6.10 (H) (⋆)
Let f : Rn → R be a β-smooth convex function, for some β > 0. Consider finding a
minimizer of f using Nesterov’s accelerated gradient descent method, i.e.yk+1 = xk −

1

β
∇f(xk),

xk+1 = (1− γk)yk+1 + γkyk

for each integer k ≥ 0, for some initial points x0 = y0 ∈ Rn, where

γk =
1− λk
λk+1

and

λk =


1 if k = 0,

1 +
√

1 + 4λ2k−1

2
otherwise

for each integer k ≥ 0. Suppose that the function f has a minimum at x⋆ ∈ Rn.
Nesterov’s accelerated gradient descent method can be shown to satisfy

Vk+1 − Vk ≤
2λ2k
β

(f(xk)− f(x⋆))−
2λ2k+1

β
(f(xk+1)− f(x⋆)) (6.4)

where

Vk = ‖(λk − 1)(xk−1 − xk)− xk + x⋆‖2

for each integer k ≥ 1.
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1. Show that f(xk) → f(x⋆) as k → ∞ and find the rate of convergence

2. Show that if the number of iterations k is as large or greater than

max

(⌈√
C

ϵ
− 2

⌉
, 2

)

where

C = 2βV1 + 4λ21(f(x1)− f(x⋆))

the methods achieves an ϵ-accurate objective value, i.e.

f(xk)− f(x⋆) ≤ ϵ

Hints
Hint to exercise 6.10
For the first part, show that

λk ≥ 1 +
k

2

for each integer k ≥ 0.
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Chapter 7

Proximal gradient based
algorithms

Exercise 7.1
Suppose that f : Rn → R is β-smooth for some β > 0. Consider the gradient method
with constant step-size:

• Pick some initial guess x0 ∈ Rn and step-size γ > 0.

• For k = 0, 1, 2, . . ., let

xk+1 = xk − γ∇f(xk). (7.1)

Suppose that x⋆ ∈ Rn is a global minimizer of f .

1. Find the Lyapunov inequality

(f(xk+1)− f(x⋆)) ≤ (f(xk)− f(x⋆))− γ

(
1− βγ

2

)
‖∇f(xk)‖22 (7.2)

2. Show that

‖∇f(xk)‖22 → 0 as k → ∞

if 0 < γ < 2
β

3. Find the convergence rate of

min
i=0,...,k

‖∇f(xi)‖22

if 0 < γ < 2
β

Exercise 7.2
Suppose that f : Rn → R is convex and β-smooth for some β > 0. Consider the gradient
method with constant step-size:

• Pick some initial guess x0 ∈ Rn and step-size γ > 0.
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• For k = 0, 1, 2, . . ., let

xk+1 = xk − γ∇f(xk). (7.3)

Restrict the step-size to 0 < γ < 2
β . Suppose that x⋆ ∈ Rn is a global minimizer of f .

1. Show that the iterates satisfy

‖xk+1 − x⋆‖22 ≤ ‖xk − x⋆‖22 − 2γ(f(xk+1)− f(x⋆)) + γ2(βγ − 1) ‖∇f(xk)‖22 . (7.4)

Do this by

• expanding the square ‖xk+1 − x⋆‖22,

• using the first order condition for convexity, and

• using the Lyapunov inequality (7.2) from Exercise 7.1

2. Show that

f(xk) → f(x⋆) as k → ∞

and find the rate of convergence. Note that
∑∞

i=0 ‖∇f(xk)‖
2
2 was shown to be

bounded in Exercise 7.1.

Exercise 7.3
Suppose that f : Rn → R is σ-strongly convex and β-smooth for some β ≥ σ > 0.
Consider the gradient method with constant step-size:

• Pick some initial guess x0 ∈ Rn and step-size γ > 0.

• For k = 0, 1, 2, . . ., let

xk+1 = xk − γ∇f(xk).

Suppose that x⋆ ∈ Rn is the global minimizer of f .

1. Suppose that γ ∈ (0, 1/β]. Show that the iterates satisfy the inequality

‖xk+1 − x⋆‖22 ≤ (1− σγ) ‖xk − x⋆‖22 .

Use the same technique as in Exercise 7.2.1, but replace the first order condition
for convexity with the first order condition for strong convexity.

Which step-size γ gives the fastest convergence rate?

2. In the lectures a different approach is used to analyze the convergence. There it
is shown that

‖xk+1 − x⋆‖2 ≤ max(1− σγ, βγ − 1) ‖xk − x⋆‖2

holds if γ ∈ (0, 2/β). What is the best step-size γ according to this inequality?

3. Which approach gives the faster convergence rate?
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Exercise 7.4
Consider the minimization problem

minimize
x∈Rn

1

2
xTQx+ qTx

where Q ∈ Sn++ and q ∈ Rn. We use the gradient method with constant step-size:

• Pick some initial guess x0 ∈ Rn and step-size γ > 0.

• For k = 0, 1, 2, . . ., let

xk+1 = xk − γ∇f(xk).

Suppose that x⋆ ∈ Rn is the global minimizer of f . Moreover, let γ ∈ (0, 2/β) where

β = ‖Q‖2 .

1. Show that

‖xk+1 − x∗‖2 ≤ ‖I − γQ‖2 ‖xk − x∗‖2

and that

‖I − γQ‖2 < 1

2. Let γ = 1/β and find an expression of

‖I − γQ‖2

in terms of the eigenvalues of Q

Let the linear convergence rate ρ ∈ [0, 1) be defined as the smallest ρ so that

‖xk − x∗‖ ≤ ρk ‖x0 − x∗‖

holds for each integer k ≥ 0.

3. Let γ = 1/β and let

Q =

[
ϵ 0
0 1

]
where 0 < ϵ < 1. What is the worst case linear convergence rate ρ we can expect
given the result above?

Let q = 0. Can you find an initial point x0 that achives this worst case conver-
gence rate?

4. Let

Q =

[
ϵ ϵ

10
ϵ
10 1

]
.

where 0 < ϵ < 1 and assume that ϵ is much smallar than 1. The eigenvalues of
this matrix are approximately 1 and ϵ. Gradient method will therefore be slow
on this problem also.
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To improve the convergence rate, we want to find a variable change y = Ax for
some invertible matrix A ∈ Rn×n so that the equivalent problem

minimize
y∈Rn

1

2
yTATQAy + qTAy

has better properties. This is often called preconditioning. Find a diagonal ma-
trix V so that the diagonal elements in V TQV are 1.

5. What are the eigenvalues of the new matrix V TQV ? What can we expect in
terms of convergence rate of ‖yk − y∗‖?

6. When we have a problem where the proximal gradient method is needed instead
of just gradient descent, why do we usually have to limit ourselves to diagonal
scalings V ?

Exercise 7.5
Let f : Rn → R be closed and convex. Consider the poximal point method:

• Pick some initial guess x0 ∈ Rn and γ > 0.

• For k = 0, 1, 2, . . ., let

xk+1 = proxγf (xk).

1. Show that (f(xk))∞k=0 is a nonincreasing sequence by showing that

f(xk+1) ≤ f(xk)−
1

2γ
‖xk+1 − xk‖22

2. Assume that f is lower bounded by B ∈ R, i.e.

f(x) ≥ B

for each x ∈ Rn. Show that

‖xk+1 − xk‖22 → 0 as k → ∞.

3. Show that

‖xk+1 − xk‖22 → 0 as k → ∞.

implies that

dist∂f(xk)(0) → 0 as k → ∞.

where

dist∂f(x)(y) = inf
s∈∂f(x)

‖s− y‖2

for each x, y ∈ Rn. I.e. show that if the reisdual convergence to zero, then the
distance between the subdifferential and zero convergence to zero.
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4. In addition, assume that f is σ-strongly convex for some σ > 0. Let

x∗ = argmin
x∈Rn

f(x).

Show that

xk → x∗ as k → ∞.

Remark: A note about the last point. There exist conditions weaker than strong con-
vexity so that the sequence to converges to an optimal point, but strong convexity is
arguably the simplest.

Exercise 7.6
Let f : Rn → R be convex and β-smooth for some β > 0. Let g : Rn → R ∪ {∞} be
proper, closed and convex. Consider the proximal gradient method:

• Pick some initial guess x0 ∈ Rn and γ > 0.

• For k = 0, 1, 2, . . ., let

xk+1 = proxγg(xk − γ∇f(xk)).

Here we restict the step-size such that γ ∈ (0, 1/β]. Suppose that

x∗ ∈ Argmin
x∈Rn

f(x) + g(x).

A procedure for proving convergence in function value of the method is given below.
However, some of the steps are missing. Fill in the gaps marked by . . . to complete
the procedure.

1. The goal is to get a Lyapunov inequality on the form

Vk+1 ≤ Vk −Qk

for each integer k ≥ 0, where (Qk)
∞
k=0 is some nonnegative convergence measure

and

Vk = ‖xk − x⋆‖22

for each integer k ≥ 0. We further define the residual mapping R : Rn → Rn

such that

Rx = x− proxγg(x− γ∇f(x))

for each x ∈ Rn. The proximal gradient update can then be written as

xk+1 = xk −Rxk. (7.5)

We can use this to relate Vk+1 to Vk by

Vk+1 = Vk + . . . (7.6)
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2. Next, we wish to upper bound the quantity −2(xk − x⋆)T (Rxk) + ‖Rxk‖22. We
start by using (7.5) to rewrite it as

−2(xk − x⋆)T (Rxk) + ‖Rxk‖22 = −2(xk+1 − x⋆)T (Rxk) + . . . (7.7)

3. We now turn to bounding −2(xk+1 − x⋆)T (Rxk). Using Fermat’s rule on the
proximal gradient update gives that

0 ∈ ∂g(xk+1) +
1

γ
(xk+1 − (xk − γ∇f(xk)))

which is equivalent to that

γ−1Rxk −∇f(xk) ∈ ∂g(xk+1)

The definition of a subgradient then gives that

g(x⋆) ≥ g(xk+1) + (γ−1Rxk −∇f(xk))T (x⋆ − xk+1)

which implies that

−2(xk+1 − x⋆)T (Rxk) ≤ . . . (7.8)

4. We continue to bound−2γ∇f(xk)T (xk+1−x⋆). Using the definition of β-smoothness
of f and the first-order condition of convexity on f gives the two following inequal-
ities:

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) +
β

2
‖xk+1 − xk‖22

= f(xk) +∇f(xk)T (xk+1 − xk) +
β

2
‖Rxk‖22

f(x⋆) ≥ f(xk) +∇f(xk)T (x⋆ − xk).

Adding these two together and rearranging gives that

f(xk+1) ≤ f(x⋆) +∇f(xk)T (xk+1 − x⋆) +
β

2
‖Rxk‖22

which implies that
−2γ∇f(xk)T (xk+1 − x⋆) ≤ . . . (7.9)

5. Inserting (7.9) into (7.8), (7.8) into (7.7), and (7.7) into (7.6) gives that

Vk+1 ≤ Vk + . . .

6. Using the assumption γ < β−1 gives that

Vk+1 = Vk −Qk

where

Qk = . . .

which is nonnegative since γ > 0 and . . . ≥ . . . by assumption on x⋆.
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7. Since Vk ≥ 0 and Qk ≥ 0 we we know that

Qk → 0 as k → ∞

which implies that

. . . → . . . as k → ∞.

Exercise 7.7
Consider the problem

min
x∈Rn

f(x) + g(x) (7.10)

where f : Rn → R is σf -strongly convex and β-smooth, and g : Rn → R∪{∞} is proper,
closed and σg-strongly convex, for some 0 ≤ σf < β and σg ≥ 0. The problem can then
be solved using the proximal gradient method:

• Pick some initial guess x0 ∈ Rn and γ > 0.

• For k = 0, 1, 2, . . ., let

xk+1 = proxγg(xk − γ∇f(xk)).

Let

x∗ = argmin
x∈Rn

f(x) + g(x).

1. Show that the proximal gradient method satisfy

‖xk+1 − x⋆‖22 ≤
max(1− σfγ, βγ − 1)2

1 + σgγ
‖xk − x⋆‖22

by inserting the definition of xk+1 in ‖xk+1 − x⋆‖22 and then use the following:

• The minimum x⋆ is a fixed point to the proximal gradient step.

• The proximal operator of a σ-strongly convex function is 1
1+σγ -Lipschitz con-

tinuous.

• The gradient of f satisfies

(∇f(x)−∇f(y))T (x− y) ≥ 1

β + σf
‖∇f(x)−∇f(y)‖22 +

βσf
β + σf

‖x− y‖22

for each x, y ∈ Rn, since it is σf -strongly convex and β-smooth.

• Then, in two different cases, use that

– ∇f is β-Lipschitz continuous, and that

– the inequality

‖∇f(x)−∇f(y)‖2 ≥ σf ‖x− y‖2

holds for each x, y ∈ Rn, since f is differentiable and σf -strongly convex
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2. For which step-sizes γ and combinations of σf ≥ 0 and σg ≥ 0 does our analysis
give that the proximal gradient method converge linearly?

3. Note that it is possible to “move” the strong convexity between f and g in some
sense. In particular, consider the following problem

min
x∈Rn

h(x) + ϕ(x) +
σ

2
‖x‖22

where h : Rn → R is L-smooth and convex, ϕ : Rn → R ∪ {∞} is proper, closed
and convex, and σ,L > 0. This can be written as a problem of the form (7.10) by
choosing any δ ∈ [0, 1] and forming

f = h+ δ
σ

2
‖·‖22 and g = ϕ+ (1− δ)

σ

2
‖·‖22 .

The objective function f + g will always be the same and will remain σ-strongly
convex, regardless of the choice of δ. However, the individual strong convexity of
f and g, and the smoothness of f , will depend on δ. Therefore, the same holds for
the linear convergence rate of the proximal gradient method that we can prove.

Compare the convergence rates for the best choice of step-size γ when all strong
convexity is put in the gradient step, i.e. δ = 1, and when all is put in the
proximal operator, i.e. δ = 0.

Hints
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Solutions to chapter 1

Solution 1.1

1. Figures b. and d. represent convex sets since the straight line connecting any
two points with the sets are contained within the sets.

Figures a. and c. represent nonconvex sets since the lines drawn below between
two points in the respective sets are partially outside the sets.

a. b.

c. d.

2. Figures b. and d. are convex so there exist supporting hyperplanes at the entire
boundary.

a. b.

c. d.
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3. Figures b. and d. are convex so the convex hull is the set itself.

a. b.

c. d.

Solution 1.2

1. Let x, y ∈ S and θ ∈ [0, 1]. Then Ax = b and Ay = b. Therefore,

A(θx+ (1− θ)y) = θAx+ (1− θ)Ay = θb+ (1− θ)b = b

and we conclude that

θx+ (1− θ)y ∈ S.

Since, x, y ∈ S and θ ∈ [0, 1] are arbitrary, the set S is convex. (This is an affine
subspace/intersection of hyperplanes.)

2. Let x, y ∈ S and θ ∈ [0, 1]. Then Ax ≤ b and Ay ≤ b. Since θ and (1 − θ) are
nonnegative, we have that

A(θx+ (1− θ)y) = θAx+ (1− θ)Ay ≤ θb+ (1− θ)b = b

and we conclude that

θx+ (1− θ)y ∈ S.

Hence, the set S is convex. (This is a polytope /intersection of halfspaces.)

3. Let x, y ∈ S and θ ∈ [0, 1]. Then x ≥ 0 and y ≥ 0. Therefore, since θ and (1 − θ)
are nonnegative,

θx+ (1− θ)y ≥ 0

and we conclude that

θx+ (1− θ)y ∈ S.

Hence, the set S is convex. (This is the non-negative orthant.)
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4. Let x, y ∈ S and θ ∈ [0, 1]. Then l ≤ x ≤ u and l ≤ y ≤ u. Since θ and (1− θ) are
nonnegative, we have that

θx+ (1− θ)y ≤ θu+ (1− θ)u = u

and

θx+ (1− θ)y ≥ θl + (1− θ)l = l.

In particular,

l ≤ θx+ (1− θ)y ≤ u

and we conclude that

θx+ (1− θ)y ∈ S.

Hence, the set S is convex. (The constraints that defines the set are called box-
constraints.)

5. Let x, y ∈ S and θ ∈ [0, 1]. Then ‖x‖2 ≤ 1 and ‖x‖2 ≤ 1. Since θ and (1 − θ) are
nonnegative, we have that

‖θx+ (1− θ)y‖2 ≤ ‖θx‖2 + ‖(1− θ)y‖2
= θ ‖x‖2 + (1− θ) ‖y‖2
≤ θ + (1− θ)

= 1

and we conclude that

θx+ (1− θ)y ∈ S.

Hence, the set S is convex. (This is the unit 2-norm ball, i.e. all points with
distance to the origin less than one.)

6. The set S is not convex. We prove this by finding a counter example to the defi-
nition of convexity. Let x = e1 and y = −e1. Then −‖x‖2 ≤ −1 and −‖y‖2 ≤ −1.
In particular, x, y ∈ S. However, for the convex combination (1/2)x + (1/2)y we
have that ∥∥∥∥12x+

1

2
y

∥∥∥∥ = 0

and therefore
1

2
x+

1

2
y /∈ S.

This show that (1/2)x+(1/2)y is a counter example to the definition of convexity,
and therefore, we conclude that the set S is not convex, as desired.

7. The condition −‖x‖2 ≤ 1 holds for each x ∈ Rn. Hence S = Rn, which is convex.

8. Let (x, tx), (y, ty) ∈ S and θ ∈ [0, 1]. Then ‖x‖2 ≤ tx and ‖y‖2 ≤ ty. Since θ and
(1− θ) are nonnegative, we have that

‖θx+ (1− θ)y‖2 ≤ θ‖x‖2 + (1− θ)‖y‖2
≤ θtx + (1− θ)ty
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and therefore

(θx+ (1− θ)y, θtx + (1− θ)ty) ∈ S.

However,

θ(x, tx) + (1− θ)(y, ty) = (θx+ (1− θ)y, θtx + (1− θ)ty)

and we conclude that

θ(x, tx) + (1− θ)(y, ty) ∈ S.

Hence, the set S is convex. (This set is called a second-order cone or Lorentz cone
and is shaped like an ice cream cone.)

9. Let X,Y ∈ S and θ ∈ [0, 1]. Note that θX + (1 − θ)Y is symmetric since X and
Y are. Also, xTXx ≥ 0 and xTY x ≥ 0, for each x ∈ Rn. Since θ and (1 − θ) are
nonnegative, we have that

xT (θX + (1− θ)Y )x = θxTXx+ (1− θ)xTY x ≥ 0

for each x ∈ Rn, and therefore

θX + (1− θ)Y � 0

or

θX + (1− θ)Y ∈ S.

Hence, the set S is convex.

10. Note that S = {a}, i.e. a singleton. Let x, y ∈ S and θ ∈ [0, 1]. Then x = a, y = a.
Note that

θx+ (1− θ)y = a

and therefore

θx+ (1− θ)y ∈ S.

Hence, the set S is convex. (In particular, all singletons are convex.)

11. Note that S = {a, b}. The set S is not convex. We prove this by finding a counter
example to the definition of convexity. Let x = a and y = b. Since a 6= b, there
exists an index i = 1, . . . , n such that ai 6= bi. Suppose without loss of generality
that ai < bi. Create the convex combination

z =
1

2
x+

1

2
y.

Then ai < zi < bi. Thus, z 6= a and z 6= b. In particular,

z /∈ S.

This show that z is a counter example to the definition of convexity, and therefore,
we conclude that the set S is not convex, as desired.
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Solution 1.3

1. Note that V = {a}, i.e. a singleton. The set V is affine. Let x, y ∈ V . Then
x = y = a and

αx+ (1− α)y = a ∈ V

for each α ∈ R. Therefore, the set V is affine. (In particular, all singletons are
affine.)

2. The set V is not affine. We prove this by finding a counter example to the defi-
nition of affine set. Note that a, b ∈ V . Since by assumption a 6= b, there exists
an index i = 1, . . . , n such that ai 6= bi. Suppose without loss of generality that
ai < bi. But then

xi ≤ bi

for each x ∈ V . Create the affine combination

z = (−1)a+ (1− (−1))b = −a+ 2b.

But it holds that bi < −ai + 2bi = zi. In particular, we must have that

z /∈ V.

This show that z is a counter example to the definition of affine set, and therefore,
we conclude that the set V is not an affine set, as desired.

3. The set V is affine. Let x, y ∈ V . But then there exists α1, α2 ∈ R such that

x = α1a+ (1− α1)b

y = α2a+ (1− α2)b.

Note that

αx+ (1− α)y = (αα1 + (1− α)α2)a+ (α(1− α1) + (1− α)(1− α2))b

= (αα1 + (1− α)α2)a+ (1− (αα1 + (1− α)α2))b

= βαa+ (1− βα)b ∈ V

where βα = αα1 + (1− α)α2, for each α ∈ R. Thus, V is an affine set.

Solution 1.4
Figures (a), (b), and (d) are cones. Figures (a), (b) and (c) are convex.

Solution 1.5
All the sets in this exercises are in Exercise 1.2 and were shown to be convex. It
remains to decide which of them are cones.
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1. Let x ∈ S, i.e., Ax = 0. Then A(αx) = αAx = 0 for each α ≥ 0. Hence, αx ∈ S for
each α ≥ 0 and S is a cone.

2. Let x ∈ S, i.e., Ax = b 6= 0. Then A(αx) = αAx = αb 6= b for each α 6= 1 (unless
b = 0), and therefore αx 6∈ S. Hence S is not a cone.

3. Let x ∈ S, i.e., Ax ≤ 0. Then A(αx) = αAx ≤ 0 for each α ≥ 0. Hence αx ∈ S for
each α ≥ 0 and S is a cone.

4. The inequality Ax ≤ b consists of m scalar inequalities aTi x ≤ bi that all must
hold. Here, ai is the ith row of the matrixA and bi is the ith element of the vector
b. Let x ∈ S be such that aTj x = bj (such x always exists by assumption on j).
Now, aTj (αx) = αaTj x = αbj for each α ≥ 0.

If bj > 0 and α > 1, then aTj (αx) = αbj > bj and αx 6∈ S.

If bj < 0 and α ∈ [0, 1), then aTj (αx) = αbj > bj and αx 6∈ S.

Hence, S is not a cone.

5. Let x ∈ S, i.e., x ≥ 0. Then αx ≥ 0 for each α ≥ 0. Hence, αx ∈ S for each α ≥ 0
and S is a cone.

6. Let (x, t) ∈ S, i.e., ‖x‖2 ≤ t. Then ‖αx‖2 = α ‖x‖2 ≤ αt for each α ≥ 0. Hence
(αx, αt) ∈ S for each α ≥ 0 and S is a cone.

7. Let X ∈ S, i.e., X is symmetric and xTXx ≥ 0 holds for each x ∈ Rn. Scaling
X by α does not destroy symmetry. Also, xT (αX)x = αxTXx ≥ 0 for each α ≥ 0
and for each x ∈ Rn. Hence, αX ∈ S for each α ≥ 0 and S is a cone.

Solution 1.6

1. Intersection. Take x, y ∈ C. Then x, y ∈ C1 and x, y ∈ C2. Therefore, by convexity
ofC1 andC2, we have for each θ ∈ [0, 1] that θx+(1−θ)y ∈ C1 and θx+(1−θ)y ∈ C2.
Hence, θx+ (1− θ)y ∈ C, which shows that C is convex.

2. Union. Take C1 = {0} and C2 = {e1}. Then C = {0, e1}. This is not convex since,
e.g., 0.5e1 6∈ C.

Solution 1.7
Let x, y ∈

⋂
j∈J Cj and let θ ∈ [0, 1]. Then

θx+ (1− θ)y ∈ Cj

by convexity of Cj , for each j ∈ J . Therefore,

θx+ (1− θ)y ∈
⋂
j∈J

Cj .

We conclude that the set
⋂

j∈J Cj is convex.
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Solution 1.8

1. Let x, y ∈ hs,r and let θ ∈ [0, 1]. Note that

sT (θx+ (1− θ)y) = θsTx+ (1− θ)sT y = θr + (1− θ)r = r.

Therefore, θx+ (1− θ)y ∈ hs,r. We conclude that hs,r is convex.

2. Let x, y ∈ Hs,r and let θ ∈ [0, 1]. Note that

sT (θx+ (1− θ)y) = θsTx+ (1− θ)sT y ≤ θr + (1− θ)r = r

Therefore, θx+ (1− θ)y ∈ Hs,r. We conclude that Hs,r is convex.

3. Note that the set C can be written as an intersection of affine hyperplanes and
halfspaces:

C =

 ⋂
i∈{1,...,m}

hsi,ri

⋂ ⋂
i∈{m+1,...,p}

Hsi,ri

 .

In particular, we see that the set C is given by an intersection of convex sets, and
is therefore itself convex.

Solution 1.9
All of the sets are polytopes and therefore convex.

Solution 1.10

1. Let y1, y2 ∈ f(C) = {Ax + b : x ∈ C} and let θ ∈ [0, 1]. There exists x1, x2 ∈ C
such that

y1 = Ax1 + b and y2 = Ax2 + b.

We have θx1 + (1− θ)x2 ∈ C since C is convex. Note that

θy1 + (1− θ)y2 = A(θx1 + (1− θ)x2) + b ∈ f(C).

We conclude that f(C) is convex.

2. Let x1, x2 ∈ f−1(D) = {x : Ax+ b ∈ D} and let θ ∈ [0, 1]. We know that

Ax1 + b ∈ D and Ax2 + b ∈ D.

By convexity of D we get that

θ(Ax1 + b) + (1− θ)(Ax2 + b) = A(θx1 + (1− θ)x2) + b ∈ D.

In particular, we note that θx1 + (1− θ)x2 ∈ f−1(D). We conclude that f−1(D) is
convex.
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Solution 1.11
Let x, y ∈ domf and θ ∈ [0, 1]. Then, by definition of convexity of f , we have that

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) <∞.

This implies that

θx+ (1− θ)y ∈ domf.

We conclude that domf is convex.

Solution 1.12

1. The function is convex. We need to prove that

ιC(θx+ (1− θ)y) ≤ θιC(x) + (1− θ)ιC(y) (7.11)

for each x, y ∈ Rn and for each θ ∈ [0, 1]. Moreover, recall that we are using
arithmetics in the extended real numbers. In particular, we use the convention
that

0 · ∞ = 0

a · ∞ = ∞ for each a > 0

a+∞ = ∞+ a = ∞ for each a ∈ R
∞+∞ = ∞
a ≤ ∞ for each a ∈ R ∪ {∞}

• Suppose that x, y ∈ C. Then the lefthand side of (7.11) is 0 since θx + (1 −
θ)y ∈ C by convexity of C, and the righthand side of (7.11) is 0 since θ0 +
(1− θ)0 = 0. Thus, (7.11) holds in this case.

• Suppose that x 6∈ C or y 6∈ C. If θ ∈ (0, 1) then both θ and 1− θ are positive,
and the righthand side is∞, which is always greater or equal to the lefthand
side. Thus, (7.11) holds in this case. If θ ∈ {0, 1} then at least of one of θ
and 1 − θ is positive, and the righthand side is ∞, which is always greater
or equal to the lefthand side. Thus, (7.11) holds in this case.

This covers all cases. Therefore, (7.11) always holds, and we conclude that the
function f is a convex function.

2. The function is convex. Note that

f(θx+ (1− θ)y) = ‖θx+ (1− θ)y‖
≤ ‖θx‖+ ‖(1− θ)y‖
≤ θ ‖x‖+ (1− θ) ‖y‖
= θf(x) + (1− θ)f(y)

for each x, y ∈ Rn and for each θ ∈ [0, 1]. Therefore, f is a convex function.
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3. The function is not convex. We will find x, y ∈ Rn and θ ∈ [0, 1] such that

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (7.12)

fails. Indeed, pick x = −y 6= 0 and θ = 1/2. Then

f(θx+ (1− θ)y) = −‖0‖ = 0

and

θf(x) + (1− θ)f(y) = −1

2
‖x‖ − 1

2
‖−x‖ = −‖x‖ < 0.

This example violates (7.12). Therefore, f is not a convex function.

4. The function is not convex. The function f is twice differentiable with Hessian

∇2f(x, y) =

[
0 1
1 0

]
.

for each (x, y) ∈ R2. Note that the Hessian is not positive semidefinite (it is sym-
metric but has eigenvalues 1 and −1). Therefore, by the second-order condition
for convexity, we conclude that f is not a convex function.

5. The function convex. Note that

f(θx+ (1− θ)y) = aT (θx+ (1− θ)y) + b

= θ(aTx+ b) + (1− θ)(aT y + b)

= θf(x) + (1− θ)f(y)

for each x, y ∈ Rn and for each θ ∈ [0, 1]. Therefore, the convexity definition holds
with equality, and we conclude that f is a convex function.

6. The function is convex. Indeed, the function f is twice differentiable with Hes-
sian ∇2f(x) = Q � 0 for each x ∈ Rn. Therefore, by the second-order condition
for convexity, we conclude that f is a convex function.

7. The function is convex. Note that

(x, y) 7→ ιC(y)

is convex by Exercise 1.12.1 (and by Exercise 1.19) and that

(x, y) 7→ ‖x− y‖

is convex by Exercise 1.12.2 and the composition rule with a linear mapping.
Therefore,

(x, y) 7→ ‖x− y‖+ ιC(y) = h(x, y)

is a convex function since it is the sum of convex functions. Note that

f(x) = inf
y∈C

h(x, y) = inf
y∈C

‖x− y‖

is convex by the convexity under partial minimization rule, establishing the de-
sired result.
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Solution 1.13

f(x) = |x| f(x) = x2

f(x) = |x|+ x2 f(x) = max(|x|, x2)

f(x) = min(|x|, x2)

Solution 1.14
The epigraph of f is

epif = {(x, r) ∈ Rn × R : f(x) ≤ r}
= {(x, r) ∈ Rn × R : aTx+ b ≤ r}

= {(x, r) ∈ Rn × R : [aT ,−1]

[
x
r

]
≤ −b}

which is a halfspace in Rn+1.

Solution 1.15
Suppose that f is convex. Let (x1, r1), (x2, r2) ∈ epif and let θ ∈ [0, 1]. By convexity of
f , we get that

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)

≤ θr1 + (1− θ)r2
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since θ and 1− θ are nonnegative. This implies that

θ(x1, r1) + (1− θ)(x2, r2) = (θx1 + (1− θ)x2, θr1 + (1− θ)r2) ∈ epif.

Thus, epif is convex.

Conversely, suppose that epif is convex. The condition defining convexity is that

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2) (7.13)

for each x1, x2 ∈ Rn and for each θ ∈ [0, 1]. If x1 /∈ domf or x1 /∈ domf , condition (7.13)
holds trivially for each θ ∈ [0, 1]. Thus, consider the case when x1, x2 ∈ domf . But
then (x1, f(x1)), (x2, f(x2)) ∈ epif . Thus, by convexity of epif , we get that

(θx1 + (1− θ)x2, θf(x1) + (1− θ)f(x2)) = θ(x1, f(x1)) + (1− θ)(x2, f(x2)) ∈ epif

for each θ ∈ [0, 1]. This implies that

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)

for each θ ∈ [0, 1], i.e. condition (7.13) holds. This covers all cases and we conclude
that f is convex.

Solution 1.16

1. Note that

f(θx+ (1− θ)y) =

m∑
i=1

αifi(θx+ (1− θ)y)

≤
m∑
i=1

αi [θfi(x) + (1− θ)fi(y)]

= θ

m∑
i=1

αifi(x) + (1− θ)

m∑
i=1

αifi(y)

= θf(x) + (1− θ)f(y).

for each x, y ∈ Rn and for each θ ∈ [0, 1]. We conclude that f is convex.

2. Recall that a function is convex if and only if the epigraph is convex (see Exercise
1.15). Thus, epifi is convex for each i = 1, . . . ,m, by assumption. Note that

epif = {(x, r) ∈ Rn × R : f(x) ≤ r}

=

{
(x, r) ∈ Rn × R : max

i=1,...,m
fi(x) ≤ r

}
= {(x, r) ∈ Rn × R : f1(x) ≤ r and f2(x) ≤ r . . . and fm(x) ≤ r}

=
⋂

i=1,...,m

{(x, r) ∈ Rn × R : fi(x) ≤ r}

=
⋂

i=1,...,m

epifi.

Therefore, epif is convex since it is the intersection of convex sets (see Exercise
1.7). We conclude that f is convex.
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Solution 1.17

1. We know that ‖x‖ is convex. Define

h(y) =

{
yp if y > 0

0 otherwise

Since h is a non-decreasing and convex, the composition h(‖x‖) = ‖x‖p is convex.

2. The function

z 7→ ‖z‖22

is convex by the previous subproblem and

x 7→ ‖Ax− b‖22

is convex since it is a composition of a convex function with an affine mapping.
The function

x 7→ ‖x‖1

is convex since norms are convex. Therefore, the function

x 7→ ‖Ax− b‖22 + ‖x‖1 = f(x)

is convex since it is a sum of convex functions.

3. All norms in the max expression are convex. The max operation preserves con-
vexity.

4. The function

x 7→ max(0, 1 + xi) (7.14)

is convex since it is the maximum of two convex functions, and this holds for each
i = 1 . . . , n. The function

x 7→
n∑

i=1

max(0, 1 + xi) (7.15)

is convex since it is the sum of convex functions. We have already established
that

x 7→ ‖x‖22

is a convex function. Therefore, the function

x 7→
n∑

i=1

max(0, 1 + xi) + ‖x‖22 = f(x)

is convex since it is a sum of convex functions.
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5. Suppose that y ∈ Rn is fixed. The function

x 7→ xT y − g(y)

is an affine function and therefore also convex. Recall that the supremum of
convex functions is convex. However, f is nothing but a supremum of convex
functions, i.e.

f(x) = sup
y∈Rn

(xT y − g(y))

where Rn is the index set. We conclude that f is a convex function.

Solution 1.18

1. The set Cα is nonempty since x̄ ∈ Cα. Let x1 ∈ Cα and x2 ∈ Cα. Then, g(x1) ≤ α
and g(x2) ≤ α. By convexity of g, we have that

g(θx1 + (1− θ)x2) ≤ θg(x1) + (1− θ)g(x2)

≤ θα+ (1− θ)α

= α

and therefore

θx1 + (1− θ)x2 ∈ Cα

for each θ ∈ [0, 1]. We conclude that Cα is convex.

2. Let g be as follows:

g(x)

0

3. Let g be as follows:

g(x)

0

Solution 1.19
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Consider any (x1, y1), (x2, y2) ∈ Rn1 × Rn2 and any θ ∈ [0, 1]. Note that

g(θx1 + (1− θ)x2, θy1 + (1− θ)y2) = f(θx1 + (1− θ)x2)

≤ θf(x1) + (1− θ)f(x2)

= θg(x1, y1) + (1− θ)g(x2, y2)

due to convexity of f . We conclude that g is convex.

Solution 1.20

1. The set is a sublevel set of a norm and norms are convex. We conclude that the
set is convex.

2. The norm ‖x‖2 is convex in (x, y) and −t is convex in (x, t). Therefore, their sum
‖x‖2 − t is convex in (x, t). But the set is nothing but a sublevel set of the convex
function ‖x‖2 − t, and therefore a convex set.

Alternatively, the set is equal to the epigraph of the convex function x 7→ ‖x‖2
and is therefore a convex set.

Solution 1.21
We proceed by a proof by contradiction. Assume on the contrary that x∗ is not a global
minimum (but still a local minimum with parameter δ). This means that there exists
x̄ ∈ Rn \ {x∗} such that

f(x̄) < f(x∗).

By convexity of f , we have

f((1− θ)x∗ + θx̄) ≤ (1− θ)f(x∗) + θf(x̄) < (1− θ)f(x∗) + θf(x∗) = f(x∗)

or simply

f((1− θ)x∗ + θx̄) < f(x∗) (7.16)

for each θ ∈ (0, 1] (note that we must exclude the case θ = 0 for the inequality above to
hold). Now, let

x = (1− θ)x∗ + θx̄

for some θ ∈ (0, 1] small enough (for instance, θ = min
(
1, δ

∥x∗−x̄∥

)
will suffice here).

Note that

‖x− x∗‖ = ‖(1− θ)x∗ + θx̄− x∗‖ = θ ‖x∗ − x̄‖ ≤ δ

or simply

‖x− x∗‖ ≤ δ.

68



However, note that (7.16) mush hold for this x, i.e.

f(x) < f(x∗).

But this is a contradiction to the fact that x∗ is a local minimum of f (with parameter
δ). Therefore, x∗ must be a global minimum.

Solution 1.22

1. Since f is proper, we know that there exists a y ∈ Rn such that

f(y) <∞.

By (1.1), we get that

f(x⋆) ≤ f(y) <∞.

This implies that x⋆ ∈ domf . Next, we prove that x⋆ is the unique minimizer of
f via a proof by contradiction. Assume on the contrary that there exists another
minimizers x ∈ Rn of f , i.e., x 6= x∗ and f(x) = f(x∗). This implies that x ∈ domf .
Then, by strict convexity of f , we have that

f

(
1

2
x+

1

2
x∗
)
<

1

2
(f(x) + f(x∗)) = f(x∗)

which is a contradiction. Hence, at most one minimizer can exist.

2. Consider the strictly convex function f : R → R ∪ {∞} such that

f(x) =


1

x
if x > 0,

∞ otherwise.

Clearly,

inf
x∈R

f(x) = 0.

However, there exists no x ∈ R such that f(x) = 0. See the figure below.

Solution 1.23
See figure below.
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1. 2.

3. 4.

5. 6.

7. 8.

1. • Not smooth: The function does not have full effective domain. Hence, it can
not be smooth.

• Strictly convex: It is strictly convex since it has no flat regions.

• Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

2. • Not smooth: The function does not have full effective domain, hence it can
not be smooth.

• Strictly convex: It is strictly convex since it has no flat regions.

• Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

3. • Smooth: The function is smooth since it has quadratic upper bounds every-
where.

• Not strictly convex: It is not strictly convex since it has flat regions.

• Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

4. • Smooth: The function is smooth since it has quadratic upper bounds every-
where.
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• Strictly convex: It is strictly convex since it has no flat regions.

• Strongly convex: It is strongly convex since there is quadratic lower bounds
everywhere.

5. • Not smooth: The function is not differentiable 0. Hence, it can not be
smooth.

• Not strictly convex: It is not strictly convex since it has flat regions.

• Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

6. • Smooth: The function is smooth since it has quadratic upper bounds every-
where.

• Not strictly convex: It is not strictly convex since it has flat regions.

• Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

7. • Not smooth: The function is not smooth since it has no quadratic upper
bounds.

• Strictly convex: It is strictly convex since it has no flat regions.

• Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

8. • Not smooth: The function is not smooth since it has no quadratic upper
bounds.

• Strictly convex: It is strictly convex since it has no flat regions.

• Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

Solution 1.24

1. See the figure below. The graph a valid function must lie within the dark shaded
areas. The dashed lines are examples of valid functions f . Note that smoothness
always requires differentiability. The example in the convex case can therefore
not be used in the smooth case even though it lies within the shaded region.

1

1

Convex

1

1

Convex and Smooth

1

1

Strongly Convex and Smooth
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Solution 1.25

1. See the following figure. The graph a valid function must lie within the shaded
areas. The dashed lines is are possible functions f .

1

1

Strictly Convex
1

1

Strictly Convex and Smooth
1

1

Strongly Convex and Smooth

Solution 1.26
If a = 0 or b = 0 the statement is obvious. Assume that a, b > 0. Let f : R → R such
that

f(x) = exp(x)

for each x ∈ R. Note that

f ′′(x) = exp(x) > 0

for each x ∈ R. By the second-order condition for convex functions we conclude that f
is convex. Note that

ab = exp

(
1

p
p ln a+

1

q
q ln b

)
convexity of exp

≤ 1

p
exp(p ln a) +

1

q
exp(q ln b)

=
ap

p
+
bq

q

as desired.

Solution 1.27

1. Suppose that f is convex. Let x, y ∈ Rn. By the convexity of f , we have that

f(x+ θ(y − x)) ≤ (1− θ)f(x) + θf(y)

for each θ ∈ (0, 1]. This can be written as

θf(y) ≥ θf(x) + f(x+ θ(y − x))− f(x)

for each θ ∈ (0, 1]. If we divide both sides by θ and take the limit as θ ↘ 0, we
obtain

f(y) ≥ f(x) + lim
θ↘0

f(x+ θ(y − x))− f(x)

θ

= f(x) +∇f(x)T (y − x),
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where the equality follows from the hint. In particular, (1.3) holds.

Conversely, suppose that (1.3) holds. Let x, y ∈ Rn, θ ∈ [0, 1], and let z = θx +
(1− θ)y. Then

f(x) ≥ f(z) +∇f(z)T (x− z) = f(z) + (1− θ)∇f(z)T (x− y),

f(y) ≥ f(z) +∇f(z)T (y − z) = f(z)− θ∇f(z)T (x− y)

Multiplying the first inequality by θ, the second by 1− θ, and adding them gives

θf(x) + (1− θ)f(y) ≥ f(z) = f(θx+ (1− θ)y)

since θ ∈ [0, 1]. We conclude that f is convex.

2. Consider the following function f and point x:

f

x

Solution 1.28
By Exercise 1.27 we know that

f(y) ≥ f(x) +∇f(x)T (y − x) = f(x)

for each y ∈ Rn. We see that x is a global minimizer of f .

Solution 1.29
Suppose that f is strictly convex. We know from Exercise 1.27 that we must have that

f(y) ≥ f(x) +∇f(x)T (y − x)

for each x, y ∈ Rn. Suppose towards a contradiction that (1.4) does not hold, i.e. there
exists x, y ∈ Rn, x 6= y such that

f(y) = f(x) +∇f(x)T (y − x). (7.17)

Define the function ϕ : R → R such that

ϕ(t) = f(x+ t(y − x))− f(x)− t∇f(x)T (y − x)

for each t ∈ R. Note that (7.17) can be written as

ϕ(0) = ϕ(1). (7.18)
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It not hard to show that ϕ is strictly convex and differentiable. Note that

ϕ′(0) = 0.

By Exercise 1.28 we see that 0 is a minimizer of ϕ. But (7.18) gives that 1 is a minimizer
of ϕ too. However, since ϕ is strictly convex, this gives a contradiction by Exercise 1.22
— strictly convex functions can only have an unique minimizer.

Conversely, suppose that (1.4) holds. Let x, y ∈ Rn such that x 6= y, θ ∈ (0, 1), and let
z = θx+ (1− θ)y. Then

f(x) > f(z) +∇f(z)T (x− z) = f(z) + (1− θ)∇f(z)T (x− y),

f(y) > f(z) +∇f(z)T (y − z) = f(z)− θ∇f(z)T (x− y)

Multiplying the first inequality by θ, the second by 1− θ, and adding them gives

θf(x) + (1− θ)f(y) > f(z) = f(θx+ (1− θ)y)

since θ ∈ (0, 1). We conclude that f is strictly convex.

Solution 1.30
Suppose that f is σ-strongly i.e. f − σ

2 ‖·‖
2
2 is convex. The derivative of f − σ

2 ‖·‖
2
2 is

∇f(x)− σx

for each x ∈ R. Exercies 1.27 gives that f − σ
2 ‖·‖

2
2 is convex if and only if

f(y)− σ

2
‖y‖22 ≥ f(x)− σ

2
‖x‖22 + (∇f(x)− σx)T (y − x)

for each x, y ∈ Rn. This is equivalent to that

f(y) ≥ f(x) +∇f(x)T (y − x) +
σ

2
‖y‖22 −

σ

2
‖x‖22 − σxT (y − x)

= f(x) +∇f(x)T (y − x) +
σ

2
‖y‖22 +

σ

2
‖x‖22 − σxT y

= f(x) +∇f(x)T (y − x) +
σ

2
‖x− y‖22

for each x, y ∈ Rn. But this is (1.5). This completes the proof.

Solution 1.31

1. Consider the case x ∈ C. Then Ax− b = 0 and we get that

sup
µ∈Rm

µT (Kx− b)︸ ︷︷ ︸
=0

= 0 = ιC(x).

Next, consider the case x /∈ C. Then Ax − b 6= 0. Consider µ = t(Kx − b) where
t ∈ R. Then

µT (Kx− b) = t ‖Kx− b‖2︸ ︷︷ ︸
>0

→ ∞ as t→ ∞.
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In particular,

sup
µ∈Rm

µT (Kx− b) = ∞ = ιC(x).

2. Consider the case x ∈ C. Then g(x) ≤ 0 and we have that

µT g(x) ≤ 0

for each µ ∈ Rm
+ . Moreover,

µT g(x) = 0

for µ = 0. Therefore,

sup
µ∈Rm

+

µT g(x) = 0 = ιC(x).

Next, consider the case x /∈ C. Then there exists an index i ∈ {1, . . . ,m} such
that (g(x))i > 0. Consider µ = tei ∈ Rn

+ where t ≥ 0. Then

µT g(x) = t (g(x))i︸ ︷︷ ︸
>0

→ ∞ as t→ ∞.

In particular,

sup
µ∈Rm

+

µT g(x) = ∞ = ιC(x).

Solution 1.32

1. We want to show that

h(θx+ (1− θ)y) ≤ θh(x) + (1− θ)h(y) (7.19)

for each x, y ∈ R and for each θ ∈ [0, 1]. If x = y or θ = 0 or θ = 1, inequality
(7.19) holds trivially. Thus, assume that x 6= y and θ ∈ (0, 1). We may without
loss of generality assume that x < y. Then we have that

x < θx+ (1− θ)y < y.

By the mean value theorem, there exists ξ1, ξ2 ∈ R such that

h(θx+ (1− θ)y)− h(x)

(1− θ)(y − x)
=
h(θx+ (1− θ)y)− h(x)

(θx+ (1− θ)y)− x
= h′(ξ1),

h(y)− h(θx+ (1− θ))

θ(y − x)
=
h(y)− h(θx+ (1− θ))

y − (θx+ (1− θ)y)
= h′(ξ2)

and

x < ξ1 < θx+ (1− θ)y < ξ2 < y.
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Multiplying the first equality by −θ(1 − θ)(y − x), the second equality by θ(1 −
θ)(y − x) and noting that h′(ξ1) ≤ h′(ξ2) gives that

−θ(h(θx+ (1− θ)y)− h(x)) = −θ(1− θ)(y − x)h′(ξ1) ≥ −θ(1− θ)(y − x)h′(ξ2),

(1− θ)(h(y)− h(θx+ (1− θ))) = θ(1− θ)(y − x)h′(ξ2)

Summing these and rearranging gives (7.19). We conclude that h is convex.

2. Suppose that p = 1. Then

h(x) =

{
x if x ≥ 0

0 otherwise.

Note that h is not differentiable. However, it is trivial to check that h is nonde-
creasing and convex using the definitions. Next, suppose that p > 1. Then h is
differentiable and

h′(x) =

{
pxp−1 if x ≥ 0

0 otherwise.

Since h′ ≥ 0, we conclude that h is nondecreasing. If we can show that h′ is
nondecreasing, we know that h is convex by the previous subproblem. Thus, let
x < y. If x < y ≤ 0 or x ≤ 0 < y it is trivial to show that h′(x) ≤ h′(y). Therefore,
assume that 0 < x < y. But then

lnx < ln y

⇔
(p− 1) lnx < (p− 1) ln y

⇔
exp((p− 1) lnx) < exp((p− 1) ln y)

⇔
h′(x) = pxp−1 = p exp((p− 1) lnx) < p exp((p− 1) ln y) = pyp−1 = h′(y).

This shows that h′ is nondecreasing and thus, h is convex. This concludes the
proof.

Solution 1.33
We proceed by induction on n. In the base case n = 1, inequality (1.6) holds trivially.
For the inductive step, assume that inequality (1.6) holds for n = k, where k ∈ N. We
need to prove that inequality (1.6) holds for n = k+1. In the case θk+1 = 1, inequality
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(1.6) holds trivially. Therefore, assume that θk+1 < 1. Note that

f

(
k+1∑
i=1

θixi

)
= f

(
k∑

i=1

θixi + θk+1xk+1

)

= f

(
(1− θk+1)

(
k∑

i=1

θi
1− θk+1

xi

)
+ θk+1xk+1

)
convexity of f

≤ (1− θk+1)f

(
k∑

i=1

θi
1− θk+1

xi

)
+ θk+1f(xk+1)

inductive assumption
≤ (1− θk+1)

k∑
i=1

θi
1− θk+1

f(xi) + θk+1f(xk+1)

=

k+1∑
i=1

θif(xi).

Thus, inequality (1.6) holds true for n = k + 1, establishing the inductive step. By
mathematical induction, inequality (1.6) holds true for each n ∈ N.

Solution 1.34
First, we recall some definitions. The function f is called affine if the function

x 7→ f(x)− f(0) (7.20)

is linear. Moreover, the function f is called concave if −f is convex. Thus, f is concave
if and only if

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)

for each x, y ∈ Rn and for each θ ∈ [0, 1].

First, suppose that f is affine. We then know that the function (7.20) is linear. Let
x, y ∈ Rn and θ ∈ [0, 1]. Then

f(θx+ (1− θ)y)− f(0) = θ(f(x)− f(0)) + (1− θ)(f(y)− f(0))

= θf(x) + (1− θ)f(y)− f(0)

which implies that

f(θx+ (1− θ)y) = θf(x) + (1− θ)f(y).

In particular,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

and

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)

holds, and we conclude that f is both convex and concave.
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Conversely, suppose that f is concave and convex. Define the function g : Rn → R such
that

g(x) = f(x)− f(0)

for each x ∈ Rn. We need to show that g is linear. Note that g is concave and convex.
This implies that

g(θx+ (1− θ)y) = θg(x) + (1− θ)g(y)

for each x, y ∈ Rn and for each θ ∈ [0, 1]. Moreover, note that g(0) = 0. Let x ∈ Rn.
Then

0 = g(0)

= g

(
1

2
x+

1

2
(−x)

)
=

1

2
g(x) +

1

2
g(−x)

which shows that g is an odd function, i.e.
g(−x) = −g(x).

We have the following two facts:

• Claim: The function g is homogeneous of degree 1, i.e.
g(αx) = αg(x)

for each x ∈ Rn and for each α ∈ R.

Proof: Let x ∈ Rn. The cases α = 0 or α = 1 hold trivially. Suppose that α ∈ (0, 1).
Then

g(αx) = g(αx+ (1− α)0)

= αg(x) + (1− α)g(0)

= αg(x) + (1− α)0

= αg(x).

Suppose that α > 1. Then

g(x) = g

(
1

α
(αx) +

(
1− 1

α

)
0

)
=

1

α
g(αx) +

(
1− 1

α

)
g(0)

=
1

α
g(αx)

which implies that
g(αx) = αg(x).

Suppose that α < 0. Then
g(αx) = g((−α)(−x))

= (−α)g(−x)
= (−α)(−g(x))
= αg(x).

This covers all cases.
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• Claim: The function g is addative with respect to addition, i.e.

g(x+ y) = g(x) + g(y)

for each x, y ∈ Rn.

Proof: Let x, y ∈ Rn. Then

g(x+ y) = g

(
1

2
(2x) +

1

2
(2y)

)
=

1

2
g(2x) +

1

2
g(2y)

=
1

2
(2g(x)) +

1

2
(2g(y))

= g(x) + g(y).

This proves the claim.

These two facts give that

g(αx+ βy) = αg(x) + βg(y)

for each x, y ∈ Rn and each α, β ∈ R, i.e. g is linear. Thus, we conclude that f is affine.

Solution 1.35
Assume that f is σ-strongly convex, i.e. f(x) − σ

2 ‖x‖
2
2 is convex. By definition, this

means that

f(z)− σ
2 ‖z‖

2
2 ≤ θ(f(x)− σ

2 ‖x‖
2
2) + (1− θ)(f(y)− σ

2 ‖y‖
2
2) (7.21)

where z = θx+(1−θ)y, for each x, y ∈ Rn and for each θ ∈ [0, 1]. But (7.21) is equivalent
to

f(z) ≤ θf(x) + (1− θ)f(y) + σ
2 (‖z‖

2
2 − θ‖x‖22 − (1− θ)‖y‖22) (7.22)

for each x, y ∈ Rn and for each θ ∈ [0, 1]. Note that

‖z‖22 − θ‖x‖22 − (1− θ)‖y‖22
= ‖θ x+ (1− θ)y‖22 − θ‖x‖22 − (1− θ)‖y‖22
= (θ2 − θ)‖x‖22 + ((1− θ)2 − (1− θ))‖y‖22 + 2θ(1− θ)xT y

= (θ(1− θ))(−‖x‖22 − ‖y‖22 + 2xT y)

= −(θ(1− θ))(‖x− y‖22). (7.23)

Inserting (7.23) into (7.22) gives (1.7). This proves the equivalence.

Solution 1.36
Recall that the spectral norm ‖A‖2 of A is defined such that

‖A‖2 = max {‖Ax‖2 : x ∈ Rm, ‖x‖2 ≤ 1} .
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This definition implies that
‖Ax‖2 ≤ ‖A‖2 ‖x‖2

for each x ∈ Rm. We have that
∇g(x) = AT∇f(Ax− b)

for each x ∈ Rm. Let x, y ∈ Rm. Note that
‖∇g(x)−∇g(x)‖2 =

∥∥AT∇f(Ax− b)−AT∇f(Ay − b)
∥∥
2

=
∥∥AT (∇f(Ax− b)−∇f(Ay − b))

∥∥
2

=
∥∥AT

∥∥
2
‖(∇f(Ax− b)−∇f(Ay − b))‖2

= β
∥∥AT

∥∥
2
‖(Ax− b)− (Ay − b)‖2

= β
∥∥AT

∥∥
2
‖A(x− y)‖2

= β
∥∥AT

∥∥
2
‖A‖2 ‖x− y‖2

= β ‖A‖22 ‖x− y‖2 .

This shows that ∇g is β ‖A‖22-Lipschitz continuous. We conclude that g is β ‖A‖22-
smooth, as desired.

Solution 1.37
We first prove the equivalence in the simple case when β = 0. Property I) is equivalent
to f being affine. Moreover, property II)-IV) simply give that f is convex and concave.
But this holds if and only if f is affine. Therefore, I)-IV) are equivalent.

Next, we consider the case when β > 0.

I) ⇒ II): Assume that I) holds. Note that for x, y ∈ Rn and t ∈ R,
∂

∂t
f(x+ t(y − x)) = ∇f(x+ t(y − x))T (y − x).

This gives that

f(y)− f(x) =

∫ 1

0
∇f(x+ t(y − x))T (y − x)dt (7.24)

for each x, y ∈ Rn. Subtracting ∇f(x)T (y − x) from the expression above and taking
absolute value yields∣∣f(y)− f(x)−∇f(x)T (y − x)

∣∣
=

∣∣∣∣∫ 1

0
(∇f(x+ t(y − x))−∇f(x))T (y − x)dt

∣∣∣∣
≤
∫ 1

0

∣∣(∇f(x+ t(y − x))−∇f(x))T (y − x)
∣∣ dt

Cauchy-Schwartz
≤

∫ 1

0
‖∇f(x+ t(y − x))−∇f(x)‖2‖y − x‖2dt

I)
≤
∫ 1

0
tβ‖y − x‖22dt

=
β

2
‖y − x‖22.
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I.e. II) holds.

II) ⇒ I): Assume that II) holds. Consider any x, y, z ∈ Rn. In II), insert z for y in the
first inequality, and insert y for x and z for y in the second inequality. I.e.{

f(z) ≤ f(x) +∇f(x)T (z − x) + β
2 ‖x− z‖22,

f(z) ≥ f(y) +∇f(y)T (z − y)− β
2 ‖y − z‖22,

or {
f(z) ≤ f(x) +∇f(x)T (z − x) + β

2 ‖x− z‖22,
f(y) ≤ f(z)−∇f(y)T (z − y) + β

2 ‖y − z‖22.

Adding this pair of inequalities yields

f(y) ≤ f(x) +∇f(x)T (z − x)−∇f(y)T (z − y) +
β

2
‖x− z‖22 +

β

2
‖y − z‖22

= f(x)−∇f(x)Tx+∇f(y)T y + β

2
‖x‖22 +

β

2
‖y‖22 + β‖z‖22 + zT (∇f(x)−∇f(y)− βx− βy)

= f(x)−∇f(x)Tx+∇f(y)T y + β

2
‖x‖22 +

β

2
‖y‖22

+ β‖z + 1

2β
(∇f(x)−∇f(y)− βx− βy)‖22 − β‖ 1

2β
(∇f(x)−∇f(y)− βx− βy)‖22.

We are free to choose z = − 1
2β (∇f(x)−∇f(y)− βx− βy). This gives

f(y) ≤ f(x)−∇f(x)Tx+∇f(y)T y + β

2
‖x‖22 +

β

2
‖y‖22 −

1

4β
‖∇f(x)−∇f(y)− βx− βy‖22

= f(x)− 1

4β
‖(∇f(x)−∇f(y)‖22

+
β

2
‖x‖22 +

β

2
‖y‖22 −

β

4
‖x+ y‖22 −∇f(x)Tx+∇f(y)T y + 1

2
(∇f(x)−∇f(y))T (x+ y)

= f(x)− 1

4β
‖∇f(x)−∇f(y)‖22 +

β

4
‖x− y‖22 +

1

2
(∇f(x) +∇f(y))T (y − x).

We may insert x for y and y for x in the in inequality above. This yields the pair of
inequalities{

f(y) ≤ f(x)− 1
4β‖∇f(x)−∇f(y)‖22 +

β
4 ‖x− y‖22 + 1

2(∇f(x) +∇f(y))T (y − x),

f(x) ≤ f(y)− 1
4β‖∇f(y)−∇f(x)‖22 +

β
4 ‖y − x‖22 + 1

2(∇f(y) +∇f(x))T (x− y).

Adding the pair of inequalities gives

0 ≤ − 1

2β
‖∇f(y)−∇f(x)‖22 +

β

2
‖y − x‖22,

i.e. I) holds.

II) ⇔ III): Note that the gradient of β
2 ‖x‖

2
2 − f(x) and f(x) + β

2 ‖x‖
2
2 are βx − ∇f(x)

and ∇f(x) + βx, respectively. By the first-order condition for convexity, we get that
β
2 ‖x‖

2
2 − f(x) and f(x) + β

2 ‖x‖
2
2 are convex if and only if{

β
2 ‖y‖

2
2 − f(y) ≥ β

2 ‖x‖
2
2 − f(x) + (βx−∇f(x))T (y − x),

f(y) + β
2 ‖y‖

2
2 ≥ f(x) + β

2 ‖x‖
2
2 + (∇f(x) + βx)T (y − x),

81



or {
f(y) ≤ f(x) +∇f(x)T (y − x) + β

2 ‖x− y‖22,
f(y) ≥ f(x) +∇f(x)T (y − x)− β

2 ‖x− y‖22,

holds for each x, y ∈ Rn. But this is II).

III) ⇔ IV): Applying Exercise 1.35 (the statement in Exercise 1.35 generalizes to all
σ ∈ R and the proof remains exactly the same) to β

2 ‖x‖
2
2 − f(x) and f(x)+ β

2 ‖x‖
2
2 gives

the result immediately.

Solution 1.38
By Exercise 1.37 we get that I) is equivalent to that β

2 ‖x‖
2
2−f(x) and f(x)+ β

2 ‖x‖
2
2 are

convex function. However, by the second-order condition for convex functions, this is
equivalent to

βI −∇2f(x) � 0 and ∇2f(x) + βI � 0, for each x ∈ Rn,

respectively. This is simply II). This establishes the desired equivalence.
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Solutions to chapter 2

Solution 2.1

1. The function is convex, finite-valued and differentiable with ∇f(x) = x. There-
fore, ∂f(x) = {∇f(x)} = {x}.

2. The function is convex, finite-valued and differentiable with ∇f(x) = Hx + h.
Therefore, ∂f(x) = {∇f(x)} = {Hx+ h}.

3. The function is convex, finite-valued and differentiable except at x = 0.

• For x < 0, the function is f(x) = −x and differentiable with gradient
∇f(x) = −1. Therefore, ∂f(x) = {∇f(x)} = {−1} in this case.

• For x > 0, the function is f(x) = x and differentiable with gradient ∇f(x) =
1. Therefore, ∂f(x) = {∇f(x)} = {1} in this case.

• At x = 0, all elements in [−1, 1] are subgradients. See the figure below.
Therefore, ∂f(x) = [−1, 1] in this case.

Thus,

∂f(x) =


{−1} if x < 0,

[−1, 1] if x = 0,

{1} if x > 0.

(−1,−1)

(−1,−1)

(0,−1)

(1,−1)

(1,−1)

|x|
∂f

x

4. The function is convex.

• For x < −1 or x > 1, we have that x /∈ domf . Therefore, ∂f(x) = ∅ in this
case.

• For x ∈ (−1, 1) ⊆ relintdomf , the function is f(x) = 0 and differentiable
with gradient ∇f(x) = 0. Therefore, ∂f(x) = {∇f(x)} = {0} in this case.

• For x = 1, each s ≥ 0 is a subgradient. See the figure below. Therefore,
∂f(x) = [0,∞) in this case.
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• For x = −1, each s ≤ 0 is a subgradient. See the figure below. Therefore,
∂f(x) = (−∞, 0] in this case.

Thus,

∂f(x) =


[−∞, 0] if x = −1,

{0} if x ∈ (−1, 1),

[0,∞] if x = 1,

∅ otherwise.

Remark: Note that this subdifferential is the inverse of the subdifferential of |x|.

(0,−1)
(1,−1)

(∞,−1)

(0,−1)
(−1,−1)

(−∞,−1)

∂f

x

5. The function is convex and finite-valued.

• For x < −1, the function is f(x) = 0 and differentiable with gradient
∇f(x) = 0. Therefore, ∂f(x) = {∇f(x)} = {0} in this case.

• For x > −1, the function is f(x) = 1 + x and differentiable with gradient
∇f(x) = 1. Therefore, ∂f(x) = {∇f(x)} = {1} in this case.

• For x = −1, each s ∈ [0, 1] is a subgradient. See the figure below. Therefore,
∂f(x) = [0, 1] in this case.

Thus,

∂f(x) =


{0} if x < −1,

[0, 1] if x = −1,

{1} if x > −1.

(0,−1)

(1,−1)

(0.5,−1)

x

f(x)
∂f

x

6. The function is convex and finite-valued.

• For x < 1, the function is f(x) = 1 − x and differentiable with gradient
∇f(x) = −1. Therefore, ∂f(x) = {∇f(x)} = {−1} in this case.
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• For x > 1, the function is f(x) = 0 and differentiable with gradient ∇f(x) =
0. Therefore, ∂f(x) = {∇f(x)} = {0} in this case.

• For x = 1, each s ∈ [−1, 0] is a subgradient. See the figure below. Therefore,
∂f(x) = [−1, 0] in this case.

Thus,

∂f(x) =


{−1} if x < 1,

[−1, 0] if x = 1,

{0} if x > 1.

(0,−1)

(−1,−1)

(−0.5,−1)

x

f(x) ∂f

x

Solution 2.2

1. See figure below.

x1: There is one affine minorizor to f at x1 with slope −3. Hence, ∂f(x1) =
{−3}. The function f is also differentiable at x1 with gradient −3. Hence,
∇f(x1) = −3.

x2: There is no affine minorizor to f at x2. Hence, ∂f(x) = ∅. However, f is
differentiable at x2 with gradient ∇f(x2) = 0.

x3: There are several affine minorizors to f and x3. Their slopes range from 0
to 3. Hence, ∂f(x3) = [0, 3]. However, f is not differentiable at x3.

f(x)

x
x1

(−3,−1)

x2

x3

(0,−1)

(3,−1)

(1,−1)

2. Fermat’s rule 0 ∈ ∂f(x) holds for x3 but not for x1 and x2. Therefore, x3 is a
global minimum to the nonconvex function f .
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Solution 2.3

1. Since ∂f(x) and ∂g(y) are subsets of R2, a reasonable domain for both f and g
is R2. I.e., we have that f : R2 → R and g : R2 → R. Also, we must have that
x, y ∈ R2.

2. Yes, since 0 ∈ ∂f(x).

3. No, since 0 6∈ ∂g(y).

4. No, since the subdifferential not a singleton (unique) at x.

5. No, since the subdifferential not a singleton (unique) at y.

6. See examples below.

Solution 2.4

1. The following function (which is the absolute value |x|) is a lower bound to the
function f :

−y

(−1,−1) (1,−1)

y

(0, 0)

2. Since the function above is a lower bound to f , its minimum 0 is a lower bound
to the minimum of f .

3. An example of function f is given below. The function is f(x) = 1
2(x

2 + 1).

−y

(−1,−1) (1,−1)

y

(0, 0)

Solution 2.5

• From the definition of monotonicity, we know that the minimum slope is 0 and
maximum is ∞. Therefore a. and b. are monotone while c. and d. are not.
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• We rule out c. and d. since they are not monotone. Since operators A : R → 2R

for Figures a. and b. are monotone, there exist functions f such that A = ∂f .
The subdifferential in a. is maximally monotone. Hence, a. is a subdifferential
of a closed convex function. The subdifferential in b. is not maximally monotone
Hence, b. is not a subdifferential of a closed convex function.

Solution 2.6
Suppose that A− σI is monotone, i.e

((sx − σx)− (sy − σy))T (x− y) ≥ 0

for each x, y ∈ domA, for each sx ∈ Ax and for each sy ∈ Ay. However, this inequality
is equivalent to that

(sx − sy)
T (x− y) ≥ σ‖x− y‖22

for each x, y ∈ domA, for each sx ∈ Ax and for each sy ∈ Ay. But this is the definition
of A being σ-strongly monotone. This proves the equivalence.

Solution 2.7
We know that we need to consider n ≥ 2, since for n = 1, each monotone operator is a
subdifferential of some function. Therefore, let n = 2 and let A : R2 → R2 be a linear
single-valued operator such that

A(x1, x2) = (x2,−x1)

for each (x1, x2) ∈ R2. With some notation overloading, A can be represented by the
matrix

A =

[
0 1
−1 0

]
.

Then A = −AT (i.e. A is skew symmetric) and

(Ax−Ay)T (x− y) = (x− y)TAT (x− y)

= −(x− y)T (Ax−Ay)

= −(Ax−Ay)T (x− y).

Hence (Ax−Ay)T (x− y) = 0 and monotonicity holds with equality.

However, A is not the gradient of a function since the matrix A would be the Hessian,
but it is not symmetric.

Solution 2.8
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1. Assume that I) holds. Let x, y ∈ Rn. Write I) and I) with x and y swapped,{
f(y) ≥ f(x) +∇f(x)T (y − x),

f(x) ≥ f(y) +∇f(y)T (x− y).

Adding these gives

(∇f(y)−∇f(x))T (y − x) ≥ 0

i.e. II).

2. Assume that II) holds. Let x, y ∈ Rn. Using the hint we get that

f(y)− f(x)−∇f(x)T (y − x)

=

∫ 1

0
t−1 (∇f(x+ t(y − x))−∇f(x))T ((x+ t(y − x))− x)︸ ︷︷ ︸

≥0 by II)

dt

≥ 0.

But this is I).

Solution 2.9

1. a. Since ∂f is maximally monotone, f is closed and convex.

b. Since ∂f is not maximally monotone, f is not closed and convex.

2. An optimal point x∗ satisfies 0 ∈ ∂f(x∗) by Fermat’s rule. Hence, the minimizing
x∗ are the x where the graph crosses the x-axis for both a. and b.

3. No, since a constant offset of f is not visible in ∂f .

4. Below are example plots of f .

a. b.

It is linear to the left of the minimum and quadratic to the right.

Solution 2.10
Since f is σ-strongly convex and closed, the function g : Rn → R ∪ {∞} such that

g(x) = f(x)− σ

2
‖x‖22
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for each x ∈ Rn is convex and closed. By the subdifferential sum rule, we have that

∂f(x) = ∂
(
f − σ

2
‖·‖22 +

σ

2
‖·‖22

)
(x)

= ∂
(
g +

σ

2
‖·‖22

)
(x)

= ∂g(x) + ∂
(σ
2
‖·‖22

)
(x)

= ∂g(x) + σx

for each x ∈ Rn, which is equivalent to that

∂g(x) = ∂f(x)− σx (7.25)

for each x ∈ Rn. This implies that

dom∂f = dom∂g.

Let x ∈ dom∂f and sf ∈ ∂f(x). Then (7.25) implies that there exists an sg ∈ ∂g(x)
such that

sg = sf − σx.

Let y ∈ Rn. Note that

f(y)− σ

2
‖y‖22 = g(y)

sg∈∂g(x)
≥ g(x) + sTg (y − x)

= f(x)− σ

2
‖x‖22 + sTg (y − x)

= f(x)− σ

2
‖x‖22 + (sf − σx)T (y − x)

= f(x) + sTf (y − x)− σ

2
‖x‖22 + σxT (y − x).

Now, since ‖y‖22 − ‖x‖22 − 2xT (y − x) = ‖x− y‖22, this is implies that

f(y) ≥ f(x) + sTf (y − x) + σ
2 ‖x− y‖22

i.e. the desired result.

Solution 2.11

(a) – The function f is not differentiable as ∂f is multivalued at 0.

– Since f is not differentiable, f does not have a Lipschitz continuous gradi-
ent.

– The subdifferential ∂f not strongly monotone since it has minimum slope 0.
Hence, f is not strongly convex.

(b) – The function f is differentiable as ∂f is a singleton everywhere.
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– The subdifferential ∂f has maximum slope 1. Hence, ∇f is 1-Lipschitz.

– The subdifferential ∂f is not strongly monotone since it has minimum slope
0. Hence, f is not strongly convex.

(c) – The function f is differentiable as ∂f is a singleton everywhere.

– The subdifferential ∂f has maximum slope 1. Hence, ∇f is 1-Lipschitz.

– The subdifferential ∂f is not strongly monotone since it has minimum slope
0. Hence, f is not strongly convex.

(d) – The function f is differentiable as ∂f is a singleton everywhere.

– The subdifferential ∂f has maximum slope 1. Hence, ∇f is 1-Lipschitz.

– The subdifferential ∂f is 1/2-strongly monotone since it has minimum slope
1/2. Hence, f is 1/2-strongly convex.

Solution 2.12
Assume that s ∈ ∂g(x). Then

n∑
i=1

gi(yi) = g(y)

≥ g(x) + sT (x− y)

=

n∑
i=1

(gi(xi) + si(yi − xi)). (7.26)

for each y = (y1, . . . , yn) ∈ Rn. Let j ∈ {1, . . . , n} and let y = (y1, . . . , yn) ∈ Rn such that
yi = xi for each i = 1, . . . , n and i 6= j. Using this y in (7.26) gives that

gj(yj) ≥ gj(xj) + sj(yj − xj),

for each yj ∈ R. This implies that

sj ∈ ∂gj(xj). (7.27)

However, since j ∈ {1, . . . , n} is arbitrary, we get that (7.27) holds for each j = 1, . . . , n.

Conversely, assume that si ∈ ∂gi(xi) for each i = 1, . . . , n. But then

gi(yi) ≥ gi(xi) + si(yi − xi) (7.28)

holds for each yi ∈ R and for each i = 1, . . . , n. Summing (7.28) over i = 1, . . . , n gives
that

g(y) =
n∑

i=1

gi(yi) ≥
n∑

i=1

(gi(xi) + si(yi − xi)) = g(x) + sT (y − x)

for each y = (y1, . . . , yn) ∈ Rn. In partial, s ∈ ∂g(x) holds.

This proves the equivalence.
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Solution 2.13
For x /∈ domf , subgradients s ∈ ∂f(x) must satisfy

f(y) ≥ f(x) + sT (y − x) for each y ∈ Rn.

Since there exists y ∈ Rn such that f(y) < ∞ and f(x) = ∞, we see that ∂f(x) must
by empty.

Solution 2.14
Recall that the normal cone to C at x ∈ Rn is given by

NC(x) =

{{
s ∈ Rn : ∀y ∈ C, sT (y − x) ≤ 0

}
if x ∈ C

∅ if x /∈ C.

Let x ∈ Rn. We have that s ∈ ∂ιC(x) if and only if

ιC(y) ≥ ιC(x) + sT (y − x)

for each y ∈ Rn, by definition.

• First, assume that x ∈ C and s ∈ ∂ιC(x). Then ιC(y) ≥ sT (y− x) for each y ∈ Rn,
which is equivalent to that sT (y − x) ≤ 0 for each y ∈ C, since C is nonempty.

• Next, assume that x 6∈ C and s ∈ ∂ιC(x). Consider y ∈ C. Then 0 ≥ ∞+sT (y−x),
which is impossible. Hence, ιC(x) = ∅ in this case.

We conclude that

∂ιC(x) = NC(x)

for each x ∈ Rn.

Solution 2.15
Recall that Fermat’s rule gives that x = proxγf (z) if and only if 0 ∈ ∂f(x)+ γ−1(x− z).
We will use this multiple times throughout.

1. Let z ∈ Rn, γ > 0 and x = proxγf (z). We have

∂f(x) = {x}.

Therefore, we get that 0 = γx+ (x− z) or x = (1 + γ)−1z, and conclude that

proxγf (z) = (1 + γ)−1z.

2. Let z ∈ Rn, γ > 0 and x = proxγf (z). We have

∂f(x) = {Hx+ h}.

Therefore, we get that 0 = γ(Hx + h) + (x − z) or (I + γH)x = z − γh or x =
(I + γH)−1(z − γh), and conclude that

proxγf (z) = (I + γH)−1(z − γh).
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3. Let z ∈ R, γ > 0 and x = proxγf (z). We have

∂f(x) =


{−1} if x < 0,

[−1, 1] if x = 0,

{1} if x > 0.

• For x < 0, we have ∂f(x) = {−1}. Therefore, we get that 0 = −γ+(x− z) or
x = γ + z. Note that z < −γ implies the condition x < 0.

• For x > 0, we have ∂f(x) = {1}. Therefore, we get that 0 = γ + (x − z) or
x = z − γ. Note that z > γ implies the condition x > 0.

• For x = 0, we have ∂f(x) = [−1, 1]. Therefore, we get that 0 ∈ [−γ, γ]− z or
z ∈ [−γ, γ].

Thus,

proxγf (z) =


z + γ if z < −γ,
0 if z ∈ [−γ, γ],
z − γ if z > γ.

4. Let z ∈ R, γ > 0 and x = proxγf (z). Here, f is the indicator function of the set
[−1, 1]. Recall that proxγf (z) then reduces to the projection onto [−1, 1].

• If z ≤ −1, the projection is point is −1.

• If z ∈ [−1, 1], the projection point is z, since z ∈ [−1, 1].

• If z ≥ 1, the projection point is 1.

Thus,

proxγf =


−1 if z < −1,

z if z ∈ [−1, 1],

1 if z > 1.

5. Let z ∈ R, γ > 0 and x = proxγf (z). We have

∂f(x) =


{0} if x < −1,

[0, 1] if x = −1,

{1} if x > −1.

• For x < −1, we have ∂f(x) = {0}. Therefore, we get that 0 = x− z or x = z.
Note that z < −1 implies the condition x < −1.

• For x > −1, we have ∂f(x) = {1}. Therefore, we get that 0 = γ + (x− z) or
x = z − γ. Note that z > γ − 1 implies the condition x > −1.

• For x = −1, we have ∂f(x) = [0, 1]. Therefore, we get that 0 ∈ [0, γ]+(−1−z)
or z ∈ [−1, γ − 1].

Thus,

proxγf =


z if z < −1,

−1 if z ∈ [−1, γ − 1],

z − γ if z > γ − 1.
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6. Let z ∈ R, γ > 0 and x = proxγf (z). We have

∂f(x) =


{−1} if x < 1,

[−1, 0] if x = 1,

{0} if x > 1.

• For x < 1, we have ∂f(x) = {−1}. Therefore, we get that 0 = −γ+(x− z) or
x = z + γ. Note that z < 1− γ implies the condition x < 1.

• For x > 1, we have ∂f(x) = {0}. Therefore, we get that 0 = 0 + (x − z) or
x = z. Note that z > 1 implies the condition x > 1.

• For x = 1, we have ∂f(x) = [−1, 0]. Therefore, we get that 0 ∈ [−γ, 0]+(1−z)
or z ∈ [1− γ, 1].

Thus,

proxγf =


z + γ if z < 1− γ,

1 if z ∈ [1− γ, 1],

z if z > 1.

Solution 2.16
One can show that gi : R → R ∪ {∞} must be proper, closed and convex, for each
i = 1, . . . , n. However, we may assume this without proof. We have that

proxγg(z) = argmin
x∈Rn

(
g(x) +

1

2γ
‖x− z‖22

)
= argmin

x∈Rn

(
n∑

i=1

gi(xi) +
1

2γ

n∑
i=1

(xi − zi)
2

)

= argmin
x∈Rn

(
n∑

i=1

gi(xi) +
1

2γ
(xi − zi)

2

)

=


argminx1∈R

(
g1(x1) +

1
2γ (x1 − z1)

2
)

...
argminxn∈R

(
gn(xn) +

1
2γ (xn − zn)

2
2

)


=

proxγg1(z1)...
proxγgn(zn)

 .
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Solutions to chapter 3

Solution 3.1
Recall that the conjugate function of a function f : Rn → R∪{∞} is denoted as f∗ and
given by

f∗(s) = sup
x∈Rn

(
sTx− f(x)

)
for each s ∈ Rn.

1. We have

f∗(s) = sup
x∈Rn

(
sTx− 1

2 ‖x‖
2
2

)
= − inf

x∈Rn

(
−sTx+ 1

2 ‖x‖
2
2

)
︸ ︷︷ ︸

=g(x)

for each s ∈ Rn. Fermat’s rule gives that x ∈ Rn is an optimal solution to the
optimization problem above if and only if

0 ∈ ∂g(x). (7.29)

Since g is finite-valued, convex and differentiable, we know that ∂g(x) = {∇g(x)}.
Thus, (7.29) is equivalent to that

0 = −s+ x or x = s.

Therefore,

f∗(s) = sT s− 1
2 ‖s‖

2
2

= 1
2 ‖s‖

2
2

for each s ∈ Rn.

2. We have

f∗(s) = sup
x∈Rn

(
sTx− 1

2x
THx− hTx

)
= − inf

x∈Rn

(
−sTx+ 1

2x
THx+ hTx

)︸ ︷︷ ︸
=g(x)

for each s ∈ Rn. Fermat’s rule gives that x ∈ Rn is an optimal solution to the
optimization problem above if and only if

0 ∈ ∂g(x). (7.30)
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Since g is finite-valued, convex and differentiable, we know that ∂g(x) = {∇g(x)}.
Thus, (7.29) is equivalent to that

0 = −s+Hx+ h or x = H−1(s− h)

since H invertible. Therefore,

f∗(s) = sT (H−1(s− h))− 1
2(s− h)TH−1HH−1(s− h)− hTH−1(s− h)

= 1
2(s− h)TH−1(s− h).

for each s ∈ Rn.

3. We have

f∗(s) = sup
x∈[−1,1]

sx

for each s ∈ R.

If s ≤ 0, an optimal solution to the optimization problem above is x = −1 and
get that f∗(s) = −s.

If s ≥ 0, an optimal solution to the optimization problem above is x = 1 and get
that f∗(s) = s.

Therefore,

f∗(s) = |s|

for each s ∈ R.

4. Alterative 1: Since ι[−1,1] is proper, closed and convex, we have that

ι∗∗[−1,1] = ι[−1,1].

Recall from above that

ι∗[−1,1] = | · |.

Therefore,

f∗ = | · |∗

= (ι∗[−1,1])
∗

= ι∗∗[−1,1]

= ι[−1,1].

Alterative 2: We have

f∗(s) = sup
x∈R

(sx− |x|)

for each s ∈ R.

Next, we consider three different cases.
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• Suppose that s < −1. Let x ≤ 0. Then

f∗(s) ≥ sx+ x

= (s+ 1)︸ ︷︷ ︸
<0

x→ ∞ as x→ −∞.

Thus, f∗(s) = ∞ in this case.

• Suppose that s > 1. Let x ≥ 0. Then

f∗(s) ≥ sx− x

= (s− 1)︸ ︷︷ ︸
>0

x→ ∞ as x→ ∞.

Thus, f∗(s) = ∞ in this case.

• Suppose that s ∈ [−1, 1]. Note that

f∗(s) ≥ s0− |0|
= 0.

By the Cauchy-schwarz inequality we have that

sx ≤ |x||s| ≤ |x|

for each x ∈ R, since |s| ≤ 1. Therefore,

f∗(s) ≤ sup
x∈R

(|x| − |x|)

= 0.

Thus, f∗(s) = 0 for each s ∈ [−1, 1].

We conclude that

f∗ = ι[−1,1].

5. Recall Fenchel-Young equality, i.e.

f∗(s) = sx− f(x)

if and only if

s ∈ ∂f(x).

Recall from Exercise 2.1-5 that

∂f(x) =


{0} if x < −1,

[0, 1] if x = −1,

{1} if x > −1.

Next, we consider different cases.
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• Suppose that x < −1. Then s = 0. Therefore,

f∗(s) = 0x− f(x)︸︷︷︸
=0 since x<−1

= 0.

• Suppose that x > −1. Then s = 1. Therefore,

f∗(s) = x− f(x)︸︷︷︸
=1+x since x>−1

= −1.

• Suppose that x = −1. Then s ∈ [0, 1]. Therefore,

f∗(s) = −s− f(x)︸︷︷︸
=0 since x=−1

= −s.

• Suppose that s < 0. Let x ≤ −1. Then

f∗(s) ≥ sx→ ∞ as x→ −∞.

Therefore, f∗(s) = ∞ for each s < 0.

• Suppose that s > 1. Let x ≥ −1. Then

f∗(s) ≥ sx− (1 + x)

= (s− 1)︸ ︷︷ ︸
>0

x− 1 → ∞ as x→ −∞.

Therefore, f∗(s) = ∞ for each s > 1.

We conclude that

f∗(s) =

{
−s if s ∈ [0, 1],

∞ otherwise.

6. Recall Fenchel-Young equality, i.e.

f∗(s) = sx− f(x)

if and only if

s ∈ ∂f(x).

Recall from Exercise 2.1-6 that

∂f(x) =


{−1} if x < 1,

[−1, 0] if x = 1,

{0} if x > 1.

Next, we consider different cases.
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• Suppose that x < 1. Then s = −1. Therefore,

f∗(s) = −x− f(x)︸︷︷︸
=1−x since x<1

= −1.

• Suppose that x > 1. Then s = 0. Therefore,

f∗(s) = 0x− f(x)︸︷︷︸
=0 since x>1

= 0.

• Suppose that x = 1. Then s ∈ [−1, 0]. Therefore,

f∗(s) = s− f(x)︸︷︷︸
=0 since x=1

= s.

• Suppose that s < −1. Let x ≤ 1. Then

f∗(s) ≥ sx− (1− x)

= (s+ 1)︸ ︷︷ ︸
<0

x− 1 → ∞ as x→ −∞.

Therefore, f∗(s) = ∞ for each s < −1.

• Suppose that s > 0. Let x ≥ 1. Then

f∗(s) ≥ sx→ ∞ as x→ ∞.

Therefore, f∗(s) = ∞ for each s > 0.

We conclude that

f∗(s) =

{
s if s ∈ [−1, 0],

∞ otherwise.

Solution 3.2

1. Note that

f∗(s) = sup
z∈Rn

(
sT z − f(z)

)
≥ sTx− f(x)

for each s, x ∈ Rn. This implies that

f(x) ≥ sTx− f∗(s)
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for each s, x ∈ Rn. This implies that

f(x) ≥ sup
s∈Rn

(
sTx− f∗(s)

)
= f∗∗(x)

for each x ∈ Rn or simply

f∗∗ ≤ f

as desired.

2. Assume that f ≤ g, i.e.

f(x) ≤ g(x),

for each x ∈ Rn. Then

sTx− f(x) ≥ sTx− g(x),

for each s, x ∈ Rn. In particular,

f∗(s) = sup
x∈Rn

(
sTx− f(x)

)
≥ sup

x∈Rn

(
sTx− g(x)

)
= g∗(s),

for each s ∈ Rn. We conclude that f∗ ≥ g∗.

3. Assume that f ≤ g. From the previous subproblem we get that f∗ ≥ g∗, i.e.

f∗(s) ≥ g∗(s),

for each s ∈ Rn. Then

xT s− f∗(s) ≤ xT s− g∗(s),

for each s, x ∈ Rn. In particular,

f∗∗(x) = sup
s∈Rn

(
xT s− f∗(s)

)
≤ sup

s∈Rn

(
xT s− g∗(s)

)
= g∗∗(x),

for each x ∈ Rn. We conclude that f∗∗ ≤ g∗∗.

4. Suppose that f = 1
2‖·‖

2
2. From Exercise 3.1-1 we know that f∗ = 1

2‖·‖
2
2. Therefore,

f = f∗.

Conversely, suppose that f = f∗. Note that

f(x) + f(s) = f(x) + f∗(s) ≥ xT s,

for each s, x ∈ Rn, by Fenchel-Young’s inequality. If we pick s = x, we get that

f(x) ≥ 1

2
‖x‖22,

for each x ∈ Rn, i.e.

f ≥ 1

2
‖ · ‖22.

However, we know from the second subproblem above that this implies that

f = f∗ ≤ (
1

2
‖ · ‖22)∗ =

1

2
‖ · ‖22.

We conclude that f = 1
2‖ · ‖

2
2.

This completes the proof.
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Solution 3.3
The hint gives that (

∇|·|p

p

)
(x) =

{
x |x|p−2 if x 6= 0,

0 if x = 0.

By definition, (
|·|p

p

)∗
(s) = sup

x∈R

(
sx− |x|p

p

)
= − inf

x∈R

(
−sx+

|x|p

p

)
︸ ︷︷ ︸

=g(x)

for each s ∈ R. Fermat’s rule gives that x ∈ Rn is an optimal solution to the optimiza-
tion problem above if and only if

0 ∈ ∂g(x). (7.31)

Since g is finite-valued, convex and differentiable, we know that ∂g(x) = {∇g(x)}.
Thus, (7.31) is equivalent to that

0 = −s+

{
x |x|p−2 if x 6= 0,

0 if x = 0
or s =

{
x |x|p−2 if x 6= 0,

0 if x = 0.
.

Let x 6= 0, then s = x |x|p−2, and(
|·|p

p

)∗
(s) = sx− |x|p

p

= x |x|p−2 x− |x|p

p

=

(
1− 1

p

)
|x|p

=
|x|p

q

=
|x|(p−1)q

q

=

∣∣∣x |x|p−2
∣∣∣q

q

=
|s|q

q
.

Let x = 0, then s = 0, and (
|·|p

p

)∗
(0) = 0 =

|0|q

q
.

This covers all cases for s ∈ R. We conclude that(
|·|p

p

)∗
=

(
|·|q

q

)
,
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as desired.

Solution 3.4
Note that

(αf + (1− α)g)∗(s) = sup
x∈Rn

(
sTx− (αf(x) + (1− α)g(x))

)
= sup

x∈Rn

(
α
(
sTx− f(x)

)
+ (1− α)

(
sTx− g(x)

))
≤ sup

x∈Rn

(
α
(
sTx− f(x)

))
+ sup

x∈Rn

(
(1− α)

(
sTx− g(x)

))
= α sup

x∈Rn

(
sTx− f(x)

)
+ (1− α) sup

x∈Rn

(
sTx− g(x)

)
= αf∗(s) + (1− α)g∗(s),

for every s ∈ Rn, i.e.

(αf + (1− α)g)∗ ≤ αf∗ + (1− α)g∗

as desired.

Solution 3.5
We have

f∗(s) = sup
x∈Rn

(
xT s− f(x)

)
= sup

x∈Rn

(
n∑

i=1

xisi − fi(xi)

)

=
n∑

i=1

sup
xi∈R

(xisi − fi(xi))

=
n∑

i=1

f∗i (si).

for each s = (s1, . . . , sn) ∈ Rn.

Solution 3.6

1. The function f can be written as

f(x) = ‖x‖1

=

n∑
i=1

|xi|
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for each x = (x1, . . . , xn) ∈ Rn. Therefore, by Exercise 3.5 and Exercise 3.1-4, we
have that

f∗(s) =
n∑

i=1

(| · |)∗(si)

=
n∑

i=1

ι[−1,1](si)

= ι[−1,1](s)

for each s = (s1, . . . , sn) ∈ Rn.

2. The function f can be written as

f(x) = ι[−1,1](x)

=

n∑
i=1

ι[−1,1](xi)

for each x = (x1, . . . , xn) ∈ Rn. Therefore, by Exercise 3.5 and Exercise 3.1-3, we
have that

f∗(s) =
n∑

i=1

ι∗[−1,1](si)

=
n∑

i=1

|si|

= ‖s‖1

for each s = (s1, . . . , sn) ∈ Rn.

Solution 3.7

1. Since f is only defined in four points, the conjugate is

f∗(s) = sup
x∈R

(sx− f(x)) = max (−s− 0,−1, s+ 1, 2s)

for each s ∈ R.

(-1,0)

(0,1)

(1,-1)

(2,0)
x

f(x)

-1
-s

s+1
2s

s

f∗(s)

102



2. The biconjugate f∗∗ is the convex envelope of f . See the figure below.

(-1,0)

(0,1)

(1,-1)

(2,0)
x

f(x)

(-1,0)

(0,1)

(1,-1)

(2,0)
x

f(x)

Solution 3.8

1. We have that

f∗(s) = sup
x∈Rn

(
sTx− ‖x‖2

)
for each s ∈ Rn.

(a) Note that

f∗(s) ≥ sT 0− ‖0‖2
= 0

for each s ∈ Rn.

(b) By the Cauchy-Schwarz inequality, we have

f∗(s) ≤ sup
x∈Rn

(‖s‖2‖x‖2 − ‖x‖2)

= sup
x∈Rn

(‖s‖2 − 1)︸ ︷︷ ︸
≤0

‖x‖2


≤ 0

for each s ∈ Rn such that ‖s‖2 ≤ 1. Combined with the previous sub-
exercise, we see that f∗(s) = 0 for each s ∈ Rn such that ‖s‖2 ≤ 1.

(c) Suppose that s ∈ Rn such that ‖s‖2 > 1. Let x = ts for some t ≥ 0. Then

f∗(s) = sup
x∈R

(sTx− ‖x‖2)

≥ t‖s‖22 − t‖s‖2
= t ‖s‖2︸︷︷︸

>1

(‖s‖2 − 1)︸ ︷︷ ︸
>0

→ ∞ as t→ ∞.

Thus,

f∗(s) = ∞

for each s ∈ Rn such that ‖s‖2 > 1.
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(d) To summarize, we have

f∗(s) =

{
0 if ‖s‖2 ≤ 1,

∞ otherwise

for each s ∈ Rn.

2. Since f is closed and convex, the subdifferential of f satisfies

∂f(x) = Argmax
s∈Rn

(sTx− f∗(s))

= Argmax
s∈Rn:∥s∥2≤1

sTx.

for each x ∈ Rn.

• For x = 0, the objective is 0 and all feasible points are optimal, i.e.,

∂f(x) = {s ∈ Rn : ‖s‖2 ≤ 1}
= B(0, 1).

• For x 6= 0, note that

max
s∈Rn:∥s∥2≤1

sTx ≤ max
s∈Rn:∥s∥2≤1

‖s‖2 ‖x‖2

= ‖x‖2

with equality if and only if s = x/‖x‖2, by the Cauchy-Schwarz inequality.
Therefore,

∂f(x) =

{
x

‖x‖2

}
.

We conclude that

∂f(x) =

{
B(0, 1) if x = 0,{

x
∥x∥2

}
otherwise

for each x ∈ Rn.

Solution 3.9

1. We have that

f∗(s) = sup
x∈∆

sTx

for each s ∈ Rn. The exercise claims that

f∗(s) = max
i=1,...,n

si
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for each s = (s1, . . . , sn) ∈ Rn. Let s ∈ Rn. Let j be any index such that

sj = max
i=1,...,n

si.

First, note that

f∗(s) ≥ sT ej︸︷︷︸
∈∆

= sj

Next, let x ∈ ∆ such that x 6= ej . Then

sTx =

n∑
i=1

sixi

= sjxj +

n∑
i=0
i ̸=j

si xi︸︷︷︸
≥0

≤ sjxj +

n∑
i=0
i ̸=j

sjxi

= sjxj + sj

n∑
i=0
i ̸=j

xi

= sj

n∑
i=1

xi︸ ︷︷ ︸
=1

= sj .

Hence, all points x ∈ ∆ \ {ej} satisfy sTx ≤ sj and the point ej ∈ ∆ satisfy
sT ej = sj . Therefore,

f∗(s) = sup
x∈∆

sTx

= max
i=1,...,n

si,

for each s = (s1, . . . , sn) ∈ Rn, as desired.

2. The function f is proper, closed and convex. Therefore,

f∗∗ = f = ι∆.

3. We have that

g∗(s) = sup
x∈D

sTx

for each s ∈ Rn. The exercise claims that

g∗(s) = max

(
0, max

i=1,...,n
si

)
for each s = (s1, . . . , sn) ∈ Rn. Let s ∈ Rn.
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• Suppose that s < 0. Then

sTx ≤ 0

for each x ∈ D and with equality for x = 0 ∈ D. Therefore,

g∗(s) = 0

in this case.

• Suppose that s < 0 does not hold, i.e. the vector s has at least one nonneg-
ative element. Let j be any index such that

sj = max
i=1,...,n

si

and sj ≥ 0. First, note that

g∗(s) ≥ sT ej︸︷︷︸
∈D

= sj

Next, let x ∈ D such that x 6= ej . Then

sTx =
n∑

i=1

sixi

= sjxj +
n∑

i=0
i ̸=j

si xi︸︷︷︸
≥0

≤ sjxj +

n∑
i=0
i ̸=j

sjxi

= sjxj + sj

n∑
i=0
i ̸=j

xi

= sj︸︷︷︸
≥0

n∑
i=1

xi︸ ︷︷ ︸
≤1

≤ sj .

Hence, all points x ∈ D \ {ej} satisfy sTx ≤ sj and the point ej ∈ D satisfy
sT ej = sj . Therefore,

g∗(s) = max
i=1,...,n

si

in this case.

We conclude that

g∗(s) = sup
x∈D

sTx

= max

(
0, max

i=1,...,n
si

)
,

for each s = (s1, . . . , sn) ∈ Rn, as desired.
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4. The function g is proper, closed and convex. Therefore,

g∗∗ = g = ιD.

Solution 3.10

1. See the figure below. Since we are dealing with set valued mappings it is no prob-
lem if the inverses are set valued, i.e. we do not need to care about surjectivity
and injectivity. The axis of the graphs are simply flipped.

2. Only a. and b. are functions. The other are set-valued.

3. Only the inverses of operators a. and c. are functions. The other are set-valued.

a. b.

c. d.

Solution 3.11
Since ∂f∗ = (∂f)−1, we can flip the figures as follows:
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x

∂f(x)

−1

1

c.

∂f∗(s)

s
1

−1

x

∂f(x)

a.

s

∂f∗(s)

x

∂f(x)

b.

s

∂f∗(s)

x

∂f(x)

−1

1

d.

∂f∗(s)

s
1

−1
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Solution 3.12
Recall that

proxγf (z) = argmin
x∈Rn

(
f(x) +

1

2γ
‖x− z‖22

)
for each z ∈ Rn. Let z ∈ Rn. By Fermat’s rule, x = proxγf (z) if and only if

0 ∈ ∂f(x) + γ−1(x− z)

⇔
z ∈ (I + γ∂f)(x)

⇔
(I + γ∂f)−1(z) = x.

We have equality in the last step since we know that the prox is single-valued for
proper closed convex functions. Therefore,

proxγf (z) = (I + γ∂f)−1(z)

for each z ∈ Rn, as desired.

Solution 3.13

1. We will solve this graphically. Left plot shows I + γ∂f and the right shows (I +
γ∂f)−1 = proxγf . Therefore,

proxγf (x) =


x+ γ if x ≤ −γ,
0 if x ∈ [−γ, γ],
x− γ if x ≥ γ.

γ

−γ

(I + γ∂f)

x
γ

−γ

(I + γ∂f)−1

x

2. We will solve this graphically. Left plot shows I + γ∂f and the right shows (I +
γ∂f)−1 = proxγf . The prox does not depend on γ (since it is actually a projection).
Therefore,

proxγf (x) =


−1 if x ≤ −1

x if x ∈ [−1, 1]

1 if x ≥ 1
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1

−1

(I + γ∂f)

x
1

−1

(I + γ∂f)−1

x

3. We will solve this graphically. Left plot shows I + γ∂f and the right shows (I +
γ∂f)−1 = proxγf . Therefore,

proxγf (x) =


x if x ≤ −1,

−1 if x ∈ [−1, γ − 1],

x− γ if x ≥ γ − 1.

γ − 1

−1

(I + γ∂f)

x
γ − 1−1

(I + γ∂f)−1

x

4. We will solve this graphically. Left plot shows I + γ∂f and the right shows (I +
γ∂f)−1 = proxγf . Therefore,

proxγf (x) =


x+ γ if x ≤ 1− γ,

1 if x ∈ [1− γ, 1],

x if x ≥ 1.

1− γ

−γ

(I + γ∂f)

x
1− γ

−γ

(I + γ∂f)−1

x

Solution 3.14
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1. Recall that

proxγf (z) = argmin
x∈Rn

(
f(x) +

1

2γ
‖x− z‖22

)
for each z ∈ Rn. Let z ∈ Rn and set x = proxf (z). Let u = z − x. By Fermat’s
rule, x = proxf (z) is equivalent to that

0 ∈ ∂f(x) + x− z ⇔ z − x ∈ ∂f(x) [subdifferential calculus rules]
⇔ x ∈ ∂f∗(z − x) [f is proper closed convex]
⇔ z − u ∈ ∂f∗(u)

⇔ 0 ∈ ∂f∗(u) + u− z

⇔ u = proxf∗(z). [By Fermat’s rule for proxf∗(z)]

Therefore,

z = x+ u

= proxf (z) + proxf∗(z)

as desired.

2. We have

(γf∗)(s) = sup
x∈Rn

(
sTx− γf(x)

)
= γ sup

x∈Rn

(
(γ−1s)Tx− f(x)

)
= γf∗(γ−1s)

for each s ∈ Rn.

3. Let z ∈ Rn and set u = prox(γf)∗(z). Note that u = prox(γf)∗(z) is equivalent to
that

u = argmin
s∈Rn

(
(γf)∗(s) +

1

2
‖s− z‖22

)
= argmin

s∈Rn

(
γf∗(γ−1s) +

1

2
‖s− z‖22

)
= γ argmin

v∈Rn

(
γf∗(v) +

1

2
‖γv − z‖22

)
= γ argmin

v∈Rn

(
γf∗(v) +

γ2

2
‖v − γ−1z‖22

)
= γ argmin

v∈Rn

(
γ−1f∗(v) +

1

2
‖v − (γ−1z)‖22

)
= γproxγ−1f∗(γ−1z)

as desired.

4. Combine first and third subproblems.

Solution 3.15
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Recall that the Moreau decomposition gives that

prox(γf)∗(z) = z − proxγf (z).

See Exercise 3.14.

1. Exercise 2.15-1 gives that the prox of γf is given by

proxγf (z) = (I + γH)−1(z − γh)

for each z ∈ Rn, which by the Moreau decomposition implies that

prox(γf)∗(z) = z − (I + γH)−1(z − γh)

for each z ∈ Rn.

2. Exercise 2.15-5 gives that the prox of γf is given by

proxγf (z) =


z if z < −1,

−1 if z ∈ [−1, γ − 1],

z − γ if z > γ − 1

which by the Moreau decomposition implies that

prox(γf)∗(z) =


0 if z < −1,

z + 1 if z ∈ [−1, γ − 1],

γ if z > γ − 1.

3. Exercise 2.15-6 gives that the prox of γf is given by

proxγf =


z + γ if z < 1− γ,

1 if z ∈ [1− γ, 1],

z if z > 1

which by the Moreau decomposition implies that

prox(γf)∗(z) =


−γ if z < 1− γ,

z − 1 if z ∈ [1− γ, 1],

0 if z > 1.

Solution 3.16

1. Note that

−f∗(0) = − sup
x∈Rn

(
0Tx− f(x)

)
= − sup

x∈Rn
(−f(x))

= inf
x∈Rn

f(x).
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2. Note that f∗∗ = f , since f is proper closed convex. By the subdifferential formula
for f∗, we have that

∂f∗(0) = Argmax
x∈Rn

(0Tx− f∗∗(x))

= Argmax
x∈Rn

(−f(x))

= Argmin
x∈Rn

f(x).

Solution 3.17

1. The functions are proper closed convex and constraint qualification holds. There-
fore, by Fermat’s rule, x ∈ Rn is an optimal solution to the primal problem if and
only if

0 ∈ ∂f(x) + ∂g(x)

⇔{
µ ∈ ∂f(x)

−µ ∈ ∂g(x)

⇔{
x ∈ ∂f∗(µ)

x ∈ ∂g∗(−µ).

where µ ∈ Rn.

2. Eliminating x in the subproblem above gives that{
x ∈ ∂f∗(µ)

x ∈ ∂g∗(−µ)
⇔

0 ∈ ∂f∗(µ)− ∂g∗(−µ).

3. In general no. Inspired by the condition

x ∈ ∂f∗(µ)

you could use the subgradient selector sf∗ to generate a candidate solution

x̂ = sf∗(µ⋆) ∈ ∂f∗(µ).

However, the full condition {
x ∈ ∂f∗(µ⋆)

x ∈ ∂g∗(−µ⋆)
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need not necessarily hold for each x ∈ ∂f∗(µ⋆). I.e.

x̂ ∈ ∂f∗(µ⋆) ⇏ x̂ ∈ ∂g∗(−µ⋆).

If f∗ is differentiable, we have that ∂f∗(µ) = {∇f∗(µ)} for each µ ∈ Rn, since
f∗ is proper closed convex. This means that for every solution µ⋆ to the dual
condition (3.1), x⋆ is the unique point such that{

x⋆ = ∇f∗(µ⋆)
x⋆ ∈ ∂g∗(−µ⋆).

In this case, the subgradient selector is the gradient and x̂ = sf∗(µ⋆) = ∇f∗(µ⋆) =
x⋆ will recover the solution.

Solution 3.18
Fermat’s rule gives that x ∈ Rn is an optimal solution to the primal problem (3.2) if
and only if

0 ∈ ∂(f ◦ L+ g)(x). (7.32)

Since f ◦ L and g are closed convex and relint dom (f ◦ L) ∩ relint dom g 6= ∅, the subdif-
ferential sum rule gives that (7.32) is equivalent to

0 ∈ ∂(f ◦ L)(x) + ∂g(x). (7.33)

Moreover, since f is closed convex and relint dom (f ◦ L) 6= ∅, the subdifferential com-
position rule gives that (7.33) is equivalent to

0 ∈ LT∂f(Lx) + ∂g(x).

This is equivalent to that there exits a point µ ∈ Rm such that{
µ ∈ ∂f(Lx)

−LTµ ∈ ∂g(x).
(7.34)

Since f and g are closed convex, we know that

(∂f)−1 = ∂f∗ and (∂g)−1 = ∂g∗.

where f∗ and g∗ are the conjugate functions of f and g, respectively. Thus, (7.34) is
equivalent to that {

Lx ∈ ∂f∗(µ)

x ∈ ∂g∗(−LTµ).

This in turn is equivalent to that

0 ∈ ∂f∗(µ)− L∂g∗(−LTµ). (7.35)

Note that it always holds that

−L∂g∗(−LTµ) ⊆ ∂(g∗ ◦ −LT )(µ)
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and

f∗(µ) + ∂(g∗ ◦ −LT )(µ) ⊆ ∂(f∗ + g∗ ◦ −LT )(µ).

This combined with (7.35), this implies that

0 ∈ ∂(f∗ + g∗ ◦ −LT )(µ).

However, Fermat’s rule gives that it is equivalent to that µ is an optimal solution to
the optimization problem

minimize
µ∈Rm

f∗(µ) + g∗(−LTµ).

This is the Fenchel dual problem (3.3) we wanted to derive.

Solution 3.19
For the primal problem

minimize
x∈Rn

f(Lx) + g(x)

a Fenchel dual problem is

minimize
µ∈Rm

f∗(µ) + g∗(−LTµ). (7.36)

1. Note that f and g are proper closed convex and constraint qualification holds,
i.e.

relint dom (f ◦ L) ∩ relint dom g 6= ∅

for this particular case. Using Exercise 3.1-1 and 3.14-2, we have that

f∗(µ) =
1

2λ
‖µ‖22

for each µ ∈ Rm. Exercise 3.1-6 gives that

(max(0, 1− ·))∗(xi) = xi + ι[−1,0](xi)

for each xi ∈ R. However, since max(0, 1 − ·) is proper closed convex, we know
that

(I + ι[−1,0])
∗(νi) = (max(0, 1− ·))∗∗(νi)

= (max(0, 1− ·))(νi)
= max(0, 1− νi)

for each νi ∈ R. Combining this with Exercise 3.5, we have that

g∗(ν) =
n∑

i=1

max(0, 1− νi)

for each ν = (ν1, . . . , νn) ∈ Rn.

115



Therefore, (7.36) becomes

minimize
µ∈Rm

1

2λ
‖µ‖22 +

n∑
i=1

max
(
0, 1 +

(
LTµ

)
i

)
(7.37)

in this case.

Note that f∗ and g∗ are proper closed convex, and that constraint qualification
holds for (7.37), i.e.

relint dom (f∗) ∩ relint dom g∗ ◦ −LT 6= ∅.

Therefore, if µ ∈ Rm is an optimal solution to (7.37), we can recover an optimal
solution x ∈ Rn to the primal problem by considering any one of the primal dual
necessary and sufficient optimality conditions. In particular, it must holds that{

Lx ∈ ∂f∗(µ)

x ∈ ∂g∗
(
−LTµ

)
.

(7.38)

Note that f∗ is differentiable with gradient

∇f∗ = 1

λ
I

Therefore, the first condition in (7.38) uniquely determines x, i.e.

x =
1

λ
L−1µ

since ∂f∗(µ) = {∇f∗(µ)} and this x must then automatically fulfill the second
condition in (7.38).

2. Note that f and g are proper closed convex and constraint qualification holds,
i.e.

relint dom (f ◦ L) ∩ relint dom g 6= ∅

for this particular case. Using Exercise 3.6, we have that

f∗(µ) = ‖µ‖1

for each µ ∈ Rm. Using Exercise 3.1-2, we have that

g∗(ν) =
1

2λ
‖ν + b‖22

for each ν ∈ Rn.

Therefore, (7.36) becomes

minimize
µ∈Rm

‖µ‖1 +
1

2λ

∥∥−LT ν + b
∥∥2
2

(7.39)

in this case.

Note that f∗ and g∗ are proper closed convex, and that constraint qualification
holds for (7.39), i.e.

relint dom (f∗) ∩ relint dom g∗ ◦ −LT 6= ∅.
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Therefore, if µ ∈ Rm is an optimal solution to (7.39), we can recover an optimal
solution x ∈ Rn to the primal problem by considering any one of the primal dual
necessary and sufficient optimality conditions. In particular, it must holds that{

Lx ∈ ∂f∗(µ)

x ∈ ∂g∗
(
−LTµ

)
.

(7.40)

Note that g∗ is differentiable with gradient

∇g∗(ν) = 1

λ
(ν + b)

for each ν ∈ Rn. Therefore, the second condition in (7.40) uniquely determines
x, i.e.

x =
1

λ
(−LTµ+ b)

since ∂g∗(−LTµ) = {∇g∗(−LTµ)} and this x must then automatically fulfill the
first condition in (7.40).

Solution 3.20

1. By definition, we have

f∗(s) = sup
z∈Rn

(
sT z − f(z)

)
≥ sTx− f(x)

as desired.

2. Suppose that s ∈ ∂f(x). This implies that f(x) <∞. We have that

s ∈ ∂f(x)

⇔
f(y) ≥ f(x) + sT (y − x) for each y ∈ Rn

⇔
sTx− f(x) ≥ sT y − f(y) for each y ∈ Rn

⇔
sTx− f(x) ≥ sup

y∈Rn

(
sT y − f(y)

)
⇔

sTx− f(x) ≥ f∗(s)

⇔
f∗(s) ≤ sTx− f(x)

as desired.

3. Suppose that f∗(s) = sTx− f(x). This implies that f∗(s) ≤ sTx− f(x). However,
the above sequence of equivalences gives that s ∈ ∂f(x), as as desired.
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Solution 3.21

1. Suppose that s ∈ ∂f(x). The function f is then proper. Fenchel-Young’s equality
(see Exercise 3.20) gives that

f∗(s) = sTx− f(x).

We know that f∗∗ ≤ f (see Exercise 3.2). We get that

0 = f∗(s) + f(x)− sTx ≥ f∗(s) + f∗∗(x)− sTx ≥ 0,

where the last inequality follows from Fenchel Young’s inequality (see Exercise
3.20-1). Thus,

f∗∗(x) = sTx− f∗(s),

which is equivalent to x ∈ ∂f∗(s) by Fenchel-Young’s equality.

2. Apply the previous result to f∗.

3. Combine the above the results and that f∗∗ = f for proper closed convex f .

Solution 3.22
Define h : Rm → R ∪ {∞} such that

h(y) = f(y + c)

for each y ∈ Rm. Then g = h ◦ L. Let s ∈ Rn. We have that

g∗(s) = sup
x∈Rn

(
sTx− h(Lx)

)
= − inf

x∈Rn
(h(Lx) + ls(x)), (7.41)

where ls : Rn → R is given by

ls(x) = −sTx

for each x ∈ Rn. Note that

h∗(µ) = sup
y∈Rm

(
µT y − f(y + c)

)
= sup

v∈Rm

(
µT (v − c)− f(v)

)
= sup

v∈Rm

(
µT v − f(v)

)
− µT c

= f∗(µ)− µT c

for each µ ∈ Rm, and

l∗s(ν) = sup
x∈Rn

(
νTx+ sTx

)
= sup

x∈Rn

(
(ν + s)Tx

)
= ι{0}(ν + s).
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for each µ ∈ Rn.

Consider the minimize problem in (7.41). We have that h and ls are proper closed
convex and that constraint qualification is satisfied since

relint domh ◦ L ∩ relint dom ls = relint dom g ∩ relintRn

= relint dom g ∩ Rn

= relint dom g

6= ∅.

Moreover, by assumption, we know that there is an xs ∈ Rn that achieves the infimum
in (7.41). Therefore, strong duality must hold, and we get

g∗(s) = − inf
x∈Rn

(h(Lx) + ls(x))

= − sup
µ∈Rm

(
−h∗(µ)− l∗s

(
−LTµ

))
= inf

µ∈Rm

(
h∗(µ) + l∗s

(
−LTµ

))
= inf

µ∈Rm

s.t. s=LTµ

(
f∗(µ)− cTµ

)
.

Solution 3.23
Since f is closed convex, we have that f(x) = f∗∗(x) = sups∈Rn

(
xT s− f∗(s)

)
for each

x ∈ Rn. Therefore,

sup
x∈Rn

(f(x)− g(x)) ,

is equal to

sup
x∈Rn

sup
s∈Rn

(
xT s− f∗(s)− g(x)

)
.

However, we may switch the supremums to get the equal problem

sup
s∈Rn

sup
x∈Rn

(
xT s− g(x)− f∗(s)

)
.

But this is equal to

sup
s∈Rn

(g∗(s)− f∗(s)) ,

since g∗(s) = supx∈Rn

(
xT s− g(x)

)
for each s ∈ Rn. This completes the proof.
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Solutions to chapter 4

Solution 4.1
That x⋆ is a fixed-point means that

x⋆ = x⋆ − γ∇f(x⋆).

This is equivalent to that

0 = ∇f(x⋆).

Exercise 1.28 gives that x⋆ is a global minimizer of f .

Solution 4.2
Note that

z := proxγf (x)

= argmin
y∈Rn

(
f(y) +

1

2γ
‖y − x‖22

)
.

Fermat’s rule and subdifferential calculus rules give that z satisfies

0 ∈ ∂f(z) + γ−1(z − x).

The fixed-point assumption z = x gives that

0 ∈ ∂f(x).

Fermat’s rule gives that x is a global minimizer of f .

Solution 4.3
Note that

z : = proxγg(x− γ∇f(x))

= argmin
z∈Rn

(
g(z) +

1

2γ
‖z − (x− γ∇f(x))‖22

)
.

Fermat’s rule and subdifferential calculus rules give that z satisfies

0 ∈ ∂g(z) +
1

γ
(z − (x− γ∇f(x))) .
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The fixed-point assumption z = x gives that

0 ∈ ∂g(x) +∇f(x). (7.42)

The subdifferential sum rule gives that

∂g(x) +∇f(x) = ∂g(x) + ∂f(x)

= ∂(g + f)(x)

since ∂f(x) = {∇f(x)}. This combined with (7.42) gives that

0 ∈ ∂(g + f)(x).

Fermat’s rule gives that x is a global minimizer of f + g.

Solution 4.4

1. The function is smooth so the gradient method works. No need to use the proxi-
mal gradient method.

2. The first two parts are smooth. The third part is not smooth but is separable
and therefore prox friendly. Thus, the proximal gradient method works but the
gradient method does not.

3. Both parts are smooth and the second part is separable and therefore prox friendly.
Thus, the gradient method and the proximal gradient method both work.

4. First part is smooth. The second part is prox friendly but not smooth. Thus, the
proximal gradient method works but not the gradient method.

5. Neither of the functions are differentiable, so none of the methods work.

6. The first part is differentible, but not smooth (it grows too quick for large x), and
the second is prox friendly but not differentiable. Thus, none of the methods
work.

7. First part is smooth. The second part is not smooth but is separable and there-
fore prox friendly. Thus, the proximal gradient method works but not the gradi-
ent method.

8. The second part is neither smooth nor prox friendly. Thus, none of the methods
work.

9. Both parts are smooth and the second part is separable and therefore prox friendly.
Thus, the gradient method and the proximal gradient method both work.

Solution 4.5
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1. The part ‖Ax − b‖22 is strongly convex if and only if ATA is invertible. Since
A ∈ Rm×n with m < n, ATA has at most rank m and is therefore not invertible.
Therefore, the primal objective is not strongly convex. The dual objective will
therefore not be smooth. Thus, neither of the methods work.

2. The part 1
2x

TQx + bTx is strongly convex since Q ∈ S+++, and therefore has a
smooth conjugate. The conjugate of ‖x‖1 is prox friendly but not smooth. Thus,
the proximal gradient method works but not the gradient method.

3. The first part is not strongly convex and will therefore have a nonsmooth con-
jugate. The conjugate of the first part is not prox friendly. However, if we let
f(y) = 1

2‖y − b‖22 and g(x) = ‖x‖22, the problem can be written as

min
x∈Rn

f(Ax) + g(x)

and a dual can be written

min
µ∈Rm

f∗(µ) + g∗(−ATµ).

The function f∗ is convex, smooth, separable and therefore prox friendly. The
function µ 7→ g∗(−ATµ) is smooth. Thus, the gradient method and the proximal
gradient method both work.

4. The first part is not strongly convex and will therefore have a nonsmooth conju-
gate. The conjugate of the first part is not prox friendly. Doing the same trick
as for the previous problem does not work since ‖x‖2 is not strongly convex and
therefore it has a nonsmooth conjugate. Thus, neither of the methods work.

5. Neither part is strongly convex, therefore neither of the conjugates are smooth.
Thus, neither of the methods work.

6. Neither part is strongly convex (e∥x∥4 ≈ 1 + ‖x4‖ for small x), therefore neither
of the conjugates are smooth. Thus, neither of the methods work.

7. The first part is strongly convex and will therefore have a smooth conjugate. The
second part is proximable, and therefore the same is true for the dual. However,
the second part is not strongly convex and will therefore have a nonsmooth con-
jugate. Thus, the proximal gradient method works but not the gradient method.

8. With f = ι[−1,1] and g(x) = 1
2x

TQx, the primal problem can written as

min
x∈Rn

f(Lx) + g(x)

and has a dual

min
µ∈Rm

f∗(µ) + g∗(−LTµ)

where g∗(µ) = 1
2x

TQ−1x. Note that µ 7→ g∗(−Lµ) is smooth. The function f∗ is
prox friendly but not smooth. Thus, the proximal gradient method works but not
the gradient method.

9. Neither part is strongly convex, therefore neither of the conjugates are smooth.
Thus, neither of the methods work.
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Solution 4.6

1. Exercise 3.6-1 gives that

f∗ = ι[−1,1]

2. Exercise 3.1-1 gives that

g∗(µ) = 1
2µ

TQ−1µ

for each µ ∈ Rn.

3. One possible dual problem is given by

minimize
µ∈Rn

f∗(µ) + g∗(−µ)

(e.g., let L = I in Exercise 3.18). Similarly, another dual problem is given by

minimize
µ∈Rn

f∗(−µ) + g∗(µ).

In the remainder of the exercise, we will only consider the first dual problem.

4. Under the assumptions on f and g, we know that f∗ is closed, convex and prox-
imable, and g∗ is closed convex and smooth. Therefore, for the dual problem

minimize
µ∈Rn

f∗(µ) + g∗(−µ),

we get, for some appropriate γk > 0, that

µk+1 = proxγkf∗ (µk − γk∇(g∗ ◦ −I)(µk)) ,

is a computationally reasonable step for the proximal gradient method.

5. Consider our particular choice of f∗ and g∗. Differentiation yields

∇(g∗ ◦ −I)(µk) = −∇g∗(−µk) = Q−1µk.

By definition, the proximal operator of f∗ is

proxγkf∗(z) = argmin
µ∈Rn

(
ι[−1,1](µ) +

1

2γk
‖µ− z‖22

)
= argmin

µ∈[−1,1]
‖µ− z‖22

= argmin
µ∈[−1,1]

n∑
i=1

(µi − zi)
2

for each z = (z1, . . . , zn) ∈ Rn. Note that both the constraint set and the objective
function of this argmin-problem are separable, yielding

proxγkf∗(z) =

argminµ1∈[−1,1](µ1 − z1)
2

...
argminµ1∈[−1,1](µ1 − z1)

2


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for each z = (z1, . . . , zn) ∈ Rn. Note that

argmin
µi∈[−1,1]

(µi − zi)
2 =


1 if zi > 1

−1 if zi < −1

zi otherwise

for each zi ∈ R and each i = 1, . . . , n. Thus, the proximal gradient method step
for the dual problem becomes

vk = µk − γkQ
−1µk

(µk+1)i =


1 if (vk)i > 1,

−1 if (vk)i < −1,

(vk)i otherwise,
∀i ∈ {1, . . . , n}.

Solution 4.7
We start with

µk+1 = proxγkf∗
(
µk − γk∇(g∗ ◦ −LT )(µk)

)
.

Note that∇(g∗◦−LT )(µk) = −L∇g∗(−LTµk). Therefore, the proximal gradient method
step can be rewritten as 

xk = ∇g∗(−LTµk),

vk = µk + γkLxk,

µk+1 = proxγkf∗ (vk) .

Using Moreau decomposition, we have

proxγkf∗(z) = z − γkproxγ−1
k f∗∗(γ

−1
k z) = z − γkproxγ−1

k f (γ
−1
k z).

for each z ∈ Rm. The last equality holds since f = f∗∗, by closed convexity of the
proper function f . Using this, we can write the proximal gradient method step as

xk = ∇g∗(−LTµk),

vk = µk + γkLxk,

µk+1 = vk − γkproxγ−1
k f (γ

−1
k vk).

Recall the subdifferential formula for g∗, i.e.

∂g∗(µ) = Argmax
x∈Rn

(
µTx− g∗∗(x)

)
= Argmax

x∈Rn

(
µTx− g(x)

)
for each µ ∈ Rn. The last equality holds since g = g∗∗, by closed convexity of the
proper function g. However, we know that g∗ is smooth and convex, and therefore,
∂g∗(µ) = {∇g∗(µ)}. Using this, we get that

∇g∗(µ) = argmax
x∈Rn

(
µTx− g(x)

)
= argmin

x∈Rn

(
g(x)− µTx

)
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for each µ ∈ Rn. This lets us write the proximal gradient method step as
xk = argminx∈Rn

(
g(x) + µTkLx

)
,

vk = µk + γkLxk,

µk+1 = vk − γkproxγ−1
k f (γ

−1
k vk),

as desired.

Solution 4.8
Recall that Exercise 4.6 gives the dual proximal gradient method step

vk = µk − γkQ
−1µk

(µk+1)i =


1 if (vk)i > 1,

−1 if (vk)i < −1,

(vk)i otherwise,
∀i ∈ {1, . . . , n}.

(7.43)

We must verify that 
xk = argminx

(
g(x) + µTk x

)
,

vk = µk + γkxk,

µk+1 = vk − γkproxγ−1
k f (γ

−1
k vk),

(7.44)

gives the same step when f, g : Rn → R are given as

f(x) = ‖x‖1 =
n∑

i=1

|xi| and g(x) =
1

2
xTQx

for each x = (x1, . . . , xn) ∈ Rn. To verify correctness, note that

argmin
x∈Rn

(
g(x) + µTk x

)
= argmin

x∈Rn

(
1

2
xTQx+ xTµk

)
= −Q−1µk.

Thus, we can write (7.44) as{
vk = µk − γkQ

−1µk,

µk+1 = vk − γkproxγ−1
k f (γ

−1
k vk).

(7.45)

Since f is separable, so is proxγf , see Exercise 2.16. From Exercise 2.15-3 we get that

(
proxγf (z)

)
i
=


zi + γ if zi < −γ,
0 if − γ ≤ zi ≤ γ,

zi − γ if zi > γ,

∀i ∈ {1, . . . , n}.
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We can then calculate µk+1 in (7.45) as

(µk+1)i = (vk)i − γk

(
proxγ−1

k f

(
γ−1
k vk

))
i

= (vk)i − γk


γ−1
k (vk)i + γ−1

k if γ−1
k (vk)i < −γ−1

k ,

0 if − γ−1
k ≤ γ−1

k (vk)i ≤ γ−1
k ,

γ−1
k (vk)i − γ−1

k if γ−1
k (vk)i > γ−1

k ,

= (vk)i −


(vk)i + 1 if (vk)i < −1,

0 if − 1 ≤ (vk)i ≤ 1,

(vk)i − 1 if (vk)i > 1,

=


−1 if (vk)i < −1,

(vk)i if − 1 ≤ (vk)i ≤ 1,

1 if (vk)i > 1,

∀i ∈ {1, . . . , n}.

This establishes the desired equality.

Solution 4.9
Using the hint with x = xk we get that

f(y) ≤ f(xk) +∇f(xk)T (y − xk) +
β

2
‖y − xk‖22

< f(xk) +∇f(xk)T (y − xk) +
1

2γk
‖y − xk‖22

for each y ∈ Rn. The function g : Rn → R ∪ {∞} given by

g(y) = f(xk) +∇f(xk)T (y − xk) +
1

2γk
‖y − xk‖22

for each y ∈ Rn is then a majorizer to f , i.e., f ≤ g. What remain to be shown is that

xk+1 = argmin
y∈Rn

g(y).

By Fermat’s rule and convex differentiability of g, we know this holds if and only if

∇g(xk+1) = 0.

Straight forward calculations show that this is equivalent to

xk+1 = xk − γk∇f(xk)

as desired.
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Solutions to chapter 5

Solution 5.1
Rearranging the objective function in (5.1) yields

N∑
i=1

log
(
1 + e−yi(xT

i w+b)
)

=

N∑
i=1

s.t. yi=−1

log
(
1 + ex

T
i w+b

)
+

N∑
i=1

s.t. yi=1

log
(
1 + e−(x

T
i w+b)

)

=
N∑
i=1

s.t. yi=−1

log
(
1 + ew

T xi+b
)
+

N∑
i=1

s.t. yi=1

log

(
1 + ew

T xi+b

ewT xi+b

)

=
N∑
i=1

s.t. yi=−1

log
(
1 + ew

T xi+b
)
+

N∑
i=1

s.t. yi=1

log
(
1 + ew

T xi+b
)
−

N∑
i=1

s.t. yi=1

log
(
ew

T xi+b
)

=
N∑
i=1

log
(
1 + ew

T xi+b
)
−

N∑
i=1

s.t. yi=1

log
(
ew

T xi+b
)

=

N∑
i=1

log
(
1 + ew

T xi+b
)
−

N∑
i=1

s.t. yi=1

wTxi + b.

From here, we can go over to the new labels, yi = 1 → ŷi = 1 and yi = −1 → ŷi = 0.
We get that

N∑
i=1

log
(
1 + ew

T xi+b
)
−

N∑
i=1

s.t. yi=1

wTxi + b

=

N∑
i=1

log
(
1 + ew

T xi+b
)
−

N∑
i=1

ŷi
(
wTxi + b

)
=

N∑
i=1

(
log
(
1 + ew

T xi+b
)
− ŷi

(
wTxi + b

))
as desired.

Solution 5.2
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Note that each term in the sum in (5.2) is positive for each (w, b) ∈ Rn × R. Why is
this true? Well, let (w, b) ∈ Rn × R, i = 1, . . . , N and ui = xTi w + b. Then

log
(
1 + ex

T
i w+b

)
− yi

(
xTi w + b

)
= log (1 + eui)− yiui (7.46)

For yi = 0, (7.46) becomes

log (1 + eui) > 0

since 1 + eui > 1. For yi = 1, (7.46) becomes

log (1 + eui)− ui = log

(
1 + eui

eui

)
> 0

since 1+eui
eui > 1.

Therefore, the objective function in (5.2) is positive for each (w, b) ∈ Rn ×R, since it is
a sum of positive terms.

Let (w, b) = t(w̄, b̄) for some t ∈ R. Suppose that i = 1, . . . , N is such that yi = 0. Then

log
(
1 + ex

T
i w+b

)
− yi

(
xTi w + b

)
= log

(
1 + et(x

T
i w̄+b̄)

)
= log

(
1 +

(
ex

T
i w̄+b̄

)t)
→ 0 as t→ ∞.

The limit above follows from ex
T
i w̄+b̄ ∈ (0, 1), since xTi w̄ + b̄ < 0 by assumption on i.

Suppose instead that i = 1, . . . , N is such that yi = 1. Then

log
(
1 + ex

T
i w+b

)
− yi

(
xTi w + b

)
= log

(
1 + et(x

T
i w̄+b̄)

)
− t
(
xTi w̄ + b̄

)
= log

(
1 + et(x

T
i w̄+b̄)

et(x
T
i w̄+b̄)

)
= log

(
1 + e−t(xT

i w̄+b̄)
)

= log

(
1 +

(
e−(x

T
i w̄+b̄)

)t)
→ 0 as t→ ∞.

The limit above follows from e−(x
T
i w̄+b̄) ∈ (0, 1), since xTi w̄ + b̄ > 0 by assumption on i.

In either case, the term goes to zero.

We conclude that the optimal value of (5.2) is 0, which is not attained, since the objec-
tive function is positive for each (w, b) ∈ Rn × R.

Solution 5.3
First, consider the case when λ = 0. Then (5.3) becomes

minimize
x∈R

1

2
‖ax− b‖22 .

By Fermat’s rule, we get that the optimal point in this case is

0 = aT (axls − b) or xls =
aT b

‖a‖22
.
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Now, consider the case when λ > 0. Using Fermat’s rule and the subdifferential cal-
culus rules (CQ holds since both functions have full effective domain), the optimality
condition for (5.3) is given by

0 ∈ ‖a‖22x− aT b+ λ

{
sgn(x) if x 6= 0,

[−1, 1] if x = 0.

Thus, x = 0 is an optimal point if and only if aT b ∈ [−λ, λ] or equivalently λ ≥
∣∣aT b∣∣.

It remains to consider the case λ <
∣∣aT b∣∣. But then x 6= 0 by necessity, and x is an

optimal point if and only if

0 = ‖a‖22x− aT b+ λ sgn(x) or x =
aT b

‖a‖22
− λ

‖a‖22
sgn(x).

However, since
∣∣aT b∣∣ > λ by assumption, sgn(x) = sgn(aT b) = sgn(xls) must hold by

necessity. Therefore, the solution in this case is given by

x = xls −
λ

‖a‖22
sgn(xls).

This concludes the proof.

Solution 5.4

• Alternative 1:
Optimality conditions for (5.4) are given by

0 ∈ AT (Ax− b) + λ

 g(x1)...
g(xm)


where

g(xi) =


{−1} if xi < 0,

[−1, 1] if xi = 0,

{1} if xi > 0.

Thus, the optimality conditions above give that x = 0 is an optimal point to (5.4)
if

0 ∈ −AT b+ λ[−1, 1]m.

This holds if and only if

λ ≥ max
i=1,...,m

∣∣(AT b)i
∣∣

=
∥∥AT b

∥∥
∞ .
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• Alternative 2:
Let f : Rm → R such that

f(x) =
1

2
‖Ax− b‖22 + λ ‖x‖1

for each x ∈ Rm. Using Hölder’s inequality, we get the lower bound

f(x) ≥ 1

2
‖Ax− b‖22 +

∥∥AT b
∥∥
∞ ‖x‖1

≥ 1

2
‖Ax− b‖22 +

∥∥bTAx∥∥
1

≥ 1

2
‖Ax− b‖22 + bTAx

=
1

2
‖Ax‖22 +

1

2
‖b‖22

≥ 1

2
‖b‖22

for each x ∈ Rm. Furthermore, the lower bound is attained at x = 0, i.e. f(0) =
1
2 ‖b‖

2
2. Therefore, x = 0 is an optimal point to (5.4).

Solution 5.5
CQ holds since both functions in (5.5) have full domain. Fermat’s rule then gives that
x = (x1, x2) ∈ R2 is an optimal point of (5.5) if and only if

0 ∈ ATAx−AT b+ λ∂(‖·‖1)(x)
⇔

0 ∈
2∑

j=1

aTi ajxj − aTi b+ λ∂(| · |)(xi), ∀i ∈ {1, 2}.

The equivalence hold since ‖x‖1 = |x1|+ |x2|. Inserting the subdifferential of | · | gives
0 ∈ x1 + aT1 a2x2 − aT1 b+ λ

{
sgn(x1) if x1 6= 0

[−1, 1] if x1 = 0

0 ∈ aT2 a1x1 + x2 − aT2 b+ λ

{
sgn(x2) if x2 6= 0

[−1, 1] if x2 = 0

(7.47)

where the assumption ‖a1‖2 = ‖a2‖2 = 1 was used. With the optimality conditions in
place, we can now look at the four cases.

• Assume that x ∈ X0,0. Then (7.47) is equivalent to{
aT1 b ∈ λ[−1, 1]

aT2 b ∈ λ[−1, 1].

This in turn is equivalent to

λ ≥ max
i=1,2

∣∣aTi b∣∣
=
∥∥AT b

∥∥
∞ .
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We conclude that

Λ0,0 =

{
λ > 0 : λ ≥ max

i=1,2

∣∣aTi b∣∣} .
• Assume that x ∈ X1,0. Then (7.47) is equivalent to{

0 = x1 − aT1 b+ λ sgn(x1)

0 ∈ aT2 a1x1 − aT2 b+ λ[−1, 1].

If aT1 b = 0 the first condition can’t be satisfied since x1 6= 0 by assumption. We
conclude that

Λ1,0 = ∅

if aT1 b = 0.

From here on, we assume aT1 b 6= 0. The first condition can be re-written as

0 = sgn(x1) |x1| − aT1 b+ λ sgn(x1)

⇔
aT1 b

sgn(x1)
− |x1| = λ.

Since λ > 0, we get that sgn(x1) = sgn
(
aT1 b
)

and

0 < λ =
∣∣aT1 b∣∣− |x1| <

∣∣aT1 b∣∣
since x1 6= 0 by assumption. Multiplying both rows in the original condition with
sgn(x1) = sgn

(
aT1 b
)
=

|aT1 b|
aT1 b

gives
|x1| =

∣∣aT1 b∣∣− λ

0 ∈ aT2 a1 |x1| −
∣∣aT1 b∣∣ aT2 baT1 b

+ λ[−1, 1]

⇒ 0 ∈
∣∣aT1 b∣∣ (aT2 a1 − aT2 b

aT1 b

)
− λ

(
aT2 a1 + [−1, 1]

)
.

The last inclusion can be written as

λ
(
aT2 a1 − 1

)
≤
∣∣aT1 b∣∣ (aT2 a1 − aT2 b

aT1 b

)
≤ λ

(
aT2 a1 + 1

)
This implies that

∣∣∣aT2 b

aT1 b

∣∣∣ < 1, since 0 < λ <
∣∣aT1 b∣∣ and aT1 b 6= 0. Thus, if

∣∣∣aT2 b

aT1 b

∣∣∣ ≥ 1,
we must have Λ1,0 = ∅.

We can re-formulate these conditions as

∣∣aT1 b∣∣ aT2 a1 −
aT2 b

aT1 b

aT2 a1 + sgn

(
aT2 a1 −

aT2 b

aT1 b

) ≤ λ
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Further simplification and including the λ <
∣∣aT1 b∣∣ condition give

∣∣aT1 b∣∣ ∣∣∣∣aT2 baT1 b
− aT1 a2

∣∣∣∣
1− aT1 a2 sgn

(
aT2 b

aT1 b
− aT1 a2

) ≤ λ <
∣∣aT1 b∣∣ . (7.48)

To summarize this case, we have

Λ1,0 =

{
∅ if

∣∣aT2 b∣∣ ≥ ∣∣aT1 b∣∣
{λ > 0 : (7.48) is satisfied} otherwise.

Note that if aT1 b = 0 then
∣∣aT2 b∣∣ ≥ ∣∣aT1 b∣∣, therefore, this cases is implicitly included

above.

• By symmetry, the set Λ0,1 is the same as Λ1,0, but with the indices 1 and 2
swapped I.e. if ∣∣aT2 b∣∣ ∣∣∣∣aT1 baT2 b

− aT1 a2

∣∣∣∣
1− aT1 a2 sgn

(
aT1 b

aT2 b
− aT1 a2

) ≤ λ <
∣∣aT2 b∣∣ (7.49)

then

Λ0,1 =

{
∅ if

∣∣aT1 b∣∣ ≥ ∣∣aT2 b∣∣
{λ > 0 : (7.49) is satisfied} otherwise.

• Assume that x ∈ X1,1. Then (7.47) is equivalent to the condition

0 = ATAx−AT b+ λ

[
sgn(x1)
sgn(x2)

]
where matrix ATA and its inverse is given by

ATA =

[
1 aT1 a2

aT1 a2 1

]
, (ATA)−1 =

1

1−
(
aT1 a2

)2 [ 1 −aT1 a2
−aT1 a2 1

]
.

The inverse exists by assumption since
∣∣aT1 a2∣∣ < 1. Multiplying the condition

from the left with (ATA)−1 gives

x = (ATA)−1AT b− λ(ATA)−1

[
sgn(x1)
sgn(x2)

]
.

Define the matrix

S =

[
sgn(x1) 0

0 sgn(x2)

]
.

Multiply with S from the left gives

0 <

[
|x1|
|x2|

]
= S(ATA)−1AT b− λS(ATA)−1

[
sgn(x1)
sgn(x2)

]
.
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The last term is

S(ATA)−1

[
sgn(x1)
sgn(x2)

]
=

1

1−
(
aT1 a2

)2 [sgn(x1) 0
0 sgn(x2)

] [
1 −aT1 a2

−aT1 a2 1

] [
sgn(x1)
sgn(x2)

]
=

1− aT1 a2 sgn(x1x2)

1−
(
aT1 a2

)2 1

> 0

since
∣∣aT1 a2∣∣ < 1. In order for the condition to have a solution we need

S(ATA)−1AT b > 0

In other words, sgn(xi) = sgn (x̂i) for i = 1, 2 where x̂ = (ATA)−1AT b is the leasts
squares solution. Inserting this back into the condition yields

0 <

[
|x̂1|
|x̂2|

]
− λ

1− aT1 a2 sgn (x̂1x̂2)

1−
(
aT1 a2

)2 1.

To summarize this case, we have

Λ1,1 =

{
λ > 0 : λ <

1−
(
aT1 a2

)2
1− aT1 a2 sgn (x̂1x̂2)

min (|x̂1| , |x̂2|) , x̂ = (ATA)−1AT b

}
.

In order to show the statement that the sets Λi,j are disjoint and that the amount of
sparsity is nondecreasing with λ, we need to consider different cases with respect to
the data A and b. The case AT b = 0 gives that Λ0,0 = R++ and Λ1,0 = Λ0,1 = Λ1,1 = ∅
and statement holds. Thus, we consider AT b 6= 0 in the following. We can further
divide into the cases∣∣aT1 b∣∣ > ∣∣aT2 b∣∣ , ∣∣aT2 b∣∣ > ∣∣aT1 b∣∣ and

∣∣aT1 b∣∣ = ∣∣aT2 b∣∣ .
• One of Λ1,0 and Λ0,1 is empty since

∣∣aT1 b∣∣ > ∣∣aT2 b∣∣ and
∣∣aT2 b∣∣ > ∣∣aT1 b∣∣ can not hold

at the same time. By symmetry, it is enough to consider only one of these cases.
Here we consider the case

∣∣aT1 b∣∣ > ∣∣aT2 b∣∣.
Note that Λ1,0 is nonempty and

∣∣aT1 b∣∣ > 0. Let λ0,0 ∈ Λ0,0, λ1,0 ∈ Λ1,0 and λ1,1 ∈
Λ1,1. If we can show that

λ1,1 < λ1,0 < λ0,0

we can conclude that the sets Λi,j are disjoint and the amount of sparsity is
nondecreasing with λ. Since λ1,0 < |aT1 b| and |aT1 b| ≤ λ0,0 we have λ1,0 < λ0,0. For
λ1,1 and λ1,0 we have

λ1,1 <
1−

(
aT1 a2

)2
1− aT1 a2 sgn (x̂1x̂2)

min (|x̂1| , |x̂2|) ,

∣∣aT1 b∣∣ ∣∣∣∣aT2 baT1 b
− aT1 a2

∣∣∣∣
1− aT1 a2 sgn

(
aT2 b

aT1 b
− aT1 a2

) ≤ λ1,0

and we will show that the upper bound of λ1,1 and the lower bound of λ1,0 are
equal, proving that λ1,1 < λ1,0. We start by showing that min (|x̂1| , |x̂2|) = |x̂2|,

133



i.e., |x̂2| ≤ |x̂1|. Using the definition of x̂, we have that

x̂ = (ATA)−1AT b

=
1

1−
(
aT1 a2

)2 [aT1 b− aT1 a2a
T
2 b

aT2 b− aT1 a2a
T
1 b

]
.

This implies that |x̂2| ≤ |x̂1| is equivalent to∣∣aT2 b− aT1 a2a
T
1 b
∣∣ ≤ ∣∣aT1 b− aT1 a2a

T
2 b
∣∣

⇔∣∣∣∣aT2 baT1 b
− aT1 a2

∣∣∣∣ ≤ ∣∣∣∣1− aT1 a2
aT2 b

aT1 b

∣∣∣∣ = 1− aT1 a2
aT2 b

aT1 b
.

The last equality holds since
∣∣aT1 a2∣∣ < 1 and

∣∣∣aT2 b

aT1 b

∣∣∣ < 1 by assumption. The last
inequality can equivalently be written as

aT2 b

aT1 b
− aT1 a2 ≤ 1− aT1 a2

aT2 b

aT1 b

aT1 a2 −
aT2 b

aT1 b
≤ 1− aT1 a2

aT2 b

aT1 b

⇔
0 ≤ 1 + aT1 a2 − aT1 a2

aT2 b

aT1 b
− aT2 b

aT1 b
=
(
1 + aT1 a2

)(
1− aT2 b

aT1 b

)
0 ≤ 1− aT1 a2 − aT1 a2

aT2 b

aT1 b
+
aT2 b

aT1 b
=
(
1− aT1 a2

)(
1 +

aT2 b

aT1 b

) .

But this holds since
∣∣aT1 a2∣∣ < 1 and

∣∣∣aT2 b

aT1 b

∣∣∣ < 1 by assumption. The upper bound
on λ1,1 can now be written as

1−
(
aT1 a2

)2
1− aT1 a2 sgn (x̂1x̂2)

|x̂2| =

∣∣aT1 b∣∣ ∣∣∣∣aT2 baT1 b
− aT1 a2

∣∣∣∣
1− aT1 a2 sgn (x̂1x̂2)

.

This is the same as the lower bound on λ1,0 since

sgn (x̂1x̂1) = sgn
((
aT1 b− aT1 a2a

T
2 b
) (
aT2 b− aT1 a2a

T
1 b
))

= sgn

((
1− aT1 a2

aT2 b

aT1 b

)(
aT2 b

aT1 b
− aT1 a2

))
= sgn

(
aT2 b

aT1 b
− aT1 a2

)
since

∣∣aT1 a2∣∣ < 1 and
∣∣∣aT2 b

aT1 b

∣∣∣ < 1 by assumption. This concludes the proof for the
case when

∣∣aT1 b∣∣ > ∣∣aT2 b∣∣.
• Next, we consider the case

∣∣aT1 b∣∣ = ∣∣aT2 b∣∣. Then
∣∣aT1 b∣∣ = ∣∣aT2 b∣∣ > 0 since AT b 6= 0.

Moreover, Λ1,0 = Λ0,1 = ∅. Let λ0,0 ∈ Λ0,0 and λ1,1 ∈ Λ1,1. We want to show that

λ1,1 <︸︷︷︸
known

1−
(
aT1 a2

)2
1− aT1 a2 sgn (x̂1x̂2)

min (|x̂1| , |x̂2|) =︸︷︷︸
unknown

∣∣aT1 b∣∣ = ∣∣aT2 b∣∣ ≤︸︷︷︸
known

λ0,0.
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We know that

1

1− aT1 a2 sgn (x̂1x̂2)
|x̂1| =

1

1− aT1 a2 sgn (x̂1x̂2)

∣∣aT2 b∣∣ ∣∣∣∣aT1 baT2 b
− aT1 a2

∣∣∣∣
=

sgn

(
aT1 b

aT2 b
− aT1 a2

)
1− aT1 a2 sgn (x̂1x̂2)

∣∣aT2 b∣∣ (aT1 baT2 b
− aT1 a2

)
=

1

sgn

(
aT1 b

aT2 b
− aT1 a2

)
− aT1 a2

∣∣aT2 b∣∣ (aT1 baT2 b
− aT1 a2

)

where it was used that sgn (x̂1x̂2) = sgn
(
aT1 b

aT2 b
− aT1 a2

)
. We now note that aT1 b

aT2 b
=

sgn
(
aT1 b

aT2 b

)
since

∣∣aT1 b∣∣ = ∣∣aT2 b∣∣. Furthermore, we then also have

sgn

(
aT1 b

aT2 b
− aT1 a2

)
= sgn

(
sgn

(
aT1 b

aT2 b

)
− aT1 a2

)
= sgn

(
sgn

(
aT1 b

aT2 b

))
= sgn

(
aT1 b

aT2 b

)
since

∣∣aT1 a2∣∣ < 1. This yields

1

1− aT1 a2 sgn (x̂1x̂2)
|x̂1| =

1

sgn

(
aT1 b

aT2 b

)
− aT1 a2

∣∣aT2 b∣∣ (sgn(aT1 baT2 b

)
− aT1 a2

)

=
∣∣aT2 b∣∣ .

By symmetry, the analogue holds for 1
1−aT1 a2 sgn(x̂1x̂2)

|x̂2|, i.e.

1

1− aT1 a2 sgn (x̂1x̂2)
|x̂2| =

∣∣aT1 b∣∣ .
This gives us the desired inequality

λ1,1 < λ0,0.

This concludes the proof for the
∣∣aT1 b∣∣ = ∣∣aT2 b∣∣.

We have now covered all cases.

Note that, in all cases, the distances |λ1,0−λ0,0| and |λ1,1−λ1,0| can be made arbitrary
small. This is expected since otherwise there would be λ for which no solution exists.
Since problem (5.5) is strongly convex for all λ > 0, we know that this is not possible.

Solution 5.6
Note that (5.6) is always bounded below by zero.
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1. Let t > 0. Then t(w, b) also separates the data. Inserting this into the cost
function of (5.6) gives that

n∑
i=1

max
(
0, 1− tyi

(
xTi w + b

))
=

n∑
i=1

max
(
0, 1− t

∣∣xTi w + b
∣∣) .

Choosing any

t ≥ 1

mini=1,...,n

∣∣xTi w + b
∣∣

gives a cost of 0 and therefore t(w, b) must be an optimal point. The set of
optimal points is unbounded since ‖t(w, b)‖2 = t‖(w, b)‖2, ‖(w, b)‖2 > 0 and
t ≥ (mini |xTi w + b|)−1 can be made arbitrary large.

2. Choosing an arbitrary w ∈ Rm and inserting into the cost function of (5.6) gives
n∑

i=1

max
(
0, 1− yi

(
xTi w + b

))
=

n∑
i=1

max
(
0, 1− xTi w − b

)
.

Choosing

b ≥ 1− min
i=1,...,n

xTi w

gives a cost of 0 and therefore (w, b) is an optimal point. The set of optimal points
is unbounded since ‖(w, b)‖22 = ‖w‖22 + |b|2, where b ≥ 1−mini=1,...,n x

T
i w, can be

made arbitrary large.

3. Letting w = 0 and inserting into the cost function of (5.6) gives
n∑

i=1

max
(
0, 1− yi(x

T
i w + b)

)
+
λ

2
‖w‖22 =

n∑
i=1

max (0, 1− b) ≥ 0.

Any b ≥ 1 yields a cost of 0 and (w, b) is therefore an optimal point. The set
of optimal points is unbounded since ‖(w, b)‖2 = |b|, where b ≥ 1, can be made
arbitrary large.

Solution 5.7
Note that the regularization term is the same. Woking with the sum of hinge-losses
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we get that

n∑
i=1

max
(
0, 1− yi

(
xTi w + b

))
= 1T

max
(
0, 1− y1

(
xT1 w + b

))
...

max
(
0, 1− yn

(
xTnw + b

))


= 1T max

0,

1− y1
(
xT1 w + b

)
...

1− yn
(
xTnw + b

)



= 1T max

0,1−

y1
(
xT1 w + b

)
...

yn
(
xTnw + b

)



= 1T max

0,1−


y1x

T
1 w
...

ynx
T
nw

+

y1b...
ynb





= 1T max

0,1−


y1x

T
1

...
ynx

T
n

w + b

y1...
yn



 .

We can now identify

X =
[
y1x1 · · · ynxn

]
and ϕ =

y1...
yn

 .

Solution 5.8

1. The function f is a sum of hinge-losses and in particular separable, i.e.

f(u) =
n∑

i=1

max(0, 1− ui)

for each u = (u1, . . . , un) ∈ Rn. Using Exercises 3.1 and 3.5, we get that

f∗(µ) =

n∑
i=1

(max(0, 1− ·))∗ (µi)

=

n∑
i=1

µi + ι[−1,0](µi)

= 1Tµ+ ι[−1,0](µ)

for each µ = (µ1, . . . , µn) ∈ Rn. Using Exercise 3.1, we get that the conjugate of
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g is

g∗ (νw, νb) = sup
(w,b)∈Rm×R

(
(νw, νb)

T (w, b)− λ

2
‖w‖22

)
= sup

w∈Rm

(
νTww − λ

2
‖w‖22

)
+ sup

b∈R
(νbb)

=
1

2λ
‖νw‖22 + ι{0}(νb).

for each (νw, νb) ∈ Rm × R. Note that

g∗
(
−LTµ

)
= g∗

(
−
[
X
ϕT

]
µ

)
=

1

2λ
‖−Xµ‖22 + ι{0}

(
−ϕTµ

)
=

1

2λ
‖Xµ‖22 + ι{0}

(
ϕTµ

)
for each µ ∈ Rn. Thus, the dual problem

minimize
µ∈Rn

f∗(µ) + g∗(−LTµ)

becomes

minimize
µ∈Rn

1Tµ+
1

2λ
‖Xµ‖22 + ι[−1,0](µ) + ι{0}

(
ϕTµ

)
or written differently

minimize
µ∈Rn

1Tµ+
1

2λ
µTXTXµ

subject to − 1 ≤ µ ≤ 0,

ϕTµ = 0.

2. We claim that CQ holds for the dual problem, i.e.

relint dom f∗ ∩ relint dom g∗ ◦ −LT 6= ∅. (7.50)

Indeed, we have that

relint dom f∗ = (−1, 0).

Since we have examples from both classes, we know that

ϕ =

y1...
yn

 .
has both 1 and −1 as elements. Thus, pick indices i, j = 1, . . . , n, i 6= j such that
ϕi = 1 and ϕj = −1. Note that

{µ ∈ Rn : µi = µj , µl = 0 for l ∈ {1, . . . , n} \ {i, j}} ⊆ dom g∗ ◦ −LT
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and therefore

{µ ∈ Rn : µi = µj , µl = 0 for l ∈ {1, . . . , n} \ {i, j}} ⊆ relint dom g∗ ◦ −LT .

This show that the intersection in (7.50) is nonempty, as claimed.

Suppose that µ ∈ Rn is an optimal point for the dual problem. By Fermat’s rule,
closed convexity of f and g, and since CQ holds for the dual problem, we know
that

0 ∈ ∂f∗(µ)− L∂g∗(−LTµ)

⇔{
L(w, b) ∈ ∂f∗(µ)

(w, b) ∈ ∂g∗(−LTµ)

⇔{
µ ∈ ∂f(L(w, b))

−LTµ ∈ ∂g(w, b)

⇔
0 ∈ LT∂f(L(w, b)) + ∂g(w, b)

⇒
0 ∈ ∂(f ◦ L+ g)(w, b).

(The last implication and be strengthened to an equivalence since CQ clearly
holds for the primal problem, but the implication suffices to show what follows.)
Hence, such a point (w, b) ∈ Rm × R must be an optimal point to the primal
problem.

We can recover w from the second condition of{
L(w, b) ∈ ∂f∗(µ)

(w, b) ∈ ∂g∗(−LTµ).
(7.51)

Indeed, note that

∂ι{0}(ν) =

{
R if ν = 0

∅ if ν = R \ {0}

Therefore,

∂g∗ (νw, νb) =

{[
sw
sb

]
: sw ∈ ∂

(
1

2λ
‖·‖22

)
(νw), sb ∈ ∂ι{0}(νb)

}

=


{[

1
λνw

a

]
: a ∈ R

}
if (νw, νb) ∈ Rm × {0}

∅ if (νw, νb) ∈ Rm × (R \ {0})

Moreover, note that

−LTµ =

[
−Xµ
−ϕTµ

]
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where we must have that −ϕTµ = 0 since µ is assumed to be an optimal point
for the dual problem. Thus, we have that

∂g∗(−LTµ) =

{[
− 1

λXµ
a

]
: a ∈ R

}
and using the second condition of (7.51) we can uniquely determine w as

w = − 1

λ
Xµ.

However, this does not allow us to uniquely determine b.

Next, we determine b. Note that

(∂f∗(µ))i =



∅ if µi < −1

[−∞, 1] if µi = −1,

{1} if − 1 < µi < 0,

[1,∞] if µi = 0,

∅ if µi > 0

for each µ ∈ Rn and each i = 1, . . . , n. The first condition of (7.51) gives the
requirement

XTw + bϕ ∈ ∂f∗(µ), (7.52)

Recall that

X =
[
y1x1 · · · ynxn

]
and ϕ =

y1...
yn

 .
Thus, under the condition that there exists an index i = 1, . . . , n such that −1 <
µi < 0, we can uniquely determine b from

yix
T
i w + byi = 1 ⇐⇒ b = y−1

i − xTi w = yi − xTi w.

3. Suppose that µ∗ ∈ Rn is an optimal point for the dual problem and that (w⋆, b⋆) ∈
Rm × R in an extracted optimal point for the primal problem. Clearly, it must
hold that −1 ≤ µ∗ ≤ 0.

First, we show that if i = 1, . . . , n is an index such that −1 ≤ µ∗i < 0, then xi
must be a support vector. Thus, let i be such an index. We repeat (7.52):

XTw∗ + b∗ϕ ∈ ∂f∗(µ∗).

The ith coordinate of this inclusion is

yi(x
T
i w

∗ + b∗) ∈



∅ if µ∗i < −1

[−∞, 1] if µ∗i = −1,

{1} if − 1 < µ∗i < 0,

[1,∞] if µ∗i = 0,

∅ if µ∗i > 0

140



Since −1 ≤ µ∗i < 0, we get that

yi(x
T
i w

∗ + b∗) ≤ 1

or equivalently

0 ≤ 1− yi(x
T
i w

∗ + b∗)

and we conclude that xi is a support vector.

Second, we show that we can recover (w⋆, b⋆) ∈ Rm×R only using support vectors.
From the previous subproblem, we know that we can determine the optimal
w∗ ∈ Rm by

w∗ = − 1

λ
Xµ

= − 1

λ

n∑
i=1

yixiµi

= − 1

λ

n∑
i=1

s.t. µi ̸=0

yixiµi

i.e. we only utilize support vectors. The optimal parameter b∗ can then be recov-
ered as in the previous subproblem where a nonzero element of µ∗ was utilized,
i.e. a support vector.

Solution 5.9

1. True. Consider the model mw(x) = wTϕ(x) as a function of w instead of x and
note that it is linear in w since ϕ(x) does not depend on w. Since yi also does not
depend on w,

w 7→ L(mw(xi), yi)

is a convex function composed with a linear function and therefore itself convex.
We see that the objective function is a sum of convex functions, and therefore
itself convex.

2. False. Consider a two layer network, i.e. D = 2, with

d = l = k = f1 = 1

and σ1, σ2 as identity functions. Then

mw(x) = w1w2x

for each x ∈ Rn. Take the L as the square error loss and consider a single (n = 1)
data point x1 = 1 with response variable y1 = 0. Then we get the loss (and
objective) function

L(mw(x1), y1) = ‖w1w2‖22
= (w1w2)

2.
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We claim that this is not convex as a function of w = (w1, w2) ∈ R×R. The points
(0, 1) and (1, 0) both have value 0 but the convex combination

1

2
(0, 1) +

1

2
(1, 0) = (0.5, 0.5)

has a positive value. Therefore, the objective function is not convex in general.
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Solutions to chapter 6

Solution 6.1
To estimate the overall computational cost of an algorithm, we can roughly use

(iterations count) × (per-iteration cost).

This quantity for the first algorithm is 5 × 108 and for the second one is 108. Hence,
the second algorithm had a better performance.

Solution 6.2

1. O(ρk1) ↔ A2 (linear)

2. O(ρk2) ↔ A4 (linear)

3. O(1/ log(k)) ↔ A3 (sublinear)

4. O(1/k) ↔ A1 (sublinear)

5. O(1/k2) ↔ A5 (sublinear)

Solution 6.3

1. From the Q-linear rate definition, we have that

Vk ≤ ρVk−1 ≤ ρ2Vk−2 ≤ . . . ≤ ρkV0

or

Vk ≤ ρkV0

holds inductively for each integer k ≥ 0. This implies an R-linear rate with
ρL = ρ and CL = V0.
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2. From the Q-quadratic rate definition, we have that

V1 ≤ ρV 2
0

V2 ≤ ρV 2
1 ≤ ρρ2V 22

0

V3 ≤ ρV 2
2 ≤ ρρ2ρ2

2
V 23

0

V4 ≤ ρV 2
3 ≤ ρρ2ρ2

2
ρ2

3
V 24

0

...
Vk ≤ ρV 2

k−1 ≤ ρρ2ρ2
2
ρ2

3 · · · ρ2k−1
V 2k

0 = ρ2
k−1V 2k

0 = ρ2
k
V 2k

0 ρ−1

or

Vk ≤ (ρV0)
2kρ−1

holds inductively for each integer k ≥ 0. Here, we used that

1 + 2 + 22 + . . .+ 2k−1 = 2k − 1.

We get that (6.2) holds with ρQ = ρV0 ≥ 0 and CQ = ρ−1 ≥ 0 since V0 ≥ 0 and
ρ > 0 by assumption.

3. If ρV0 < 1 or equivalently V0 ≤ ρ−1, we get ρQ = ρV0 ∈ [0, 1).

Solution 6.4

1. Let n = 1 and consider the function f : R → R such that

f(x) = x

for each x ∈ R and xk = −k for each integer k ≥ 0. Clearly, (xk)∞k=0 is a descent
sequence and

f(xk) → −∞ as k → ∞.

I.e. the sequence of function values (f(xk))
∞
k=0 does not converge in R.

2. Solution 1: Note that the sequence (f(xk))∞k=0 is monotone, by construction. More-
over, (f(xk))∞k=0 is bounded — from above by f(x0) and from below by B. Then,
by the monotone convergence theorem, the sequence (f(xk))

∞
k=0 converges in R.

Solution 2: First, note that the nonempty set {f(xk) : k ∈ N0} in R is bounded
from below by B or equivalently, {−f(xk) : k ∈ N0} is bounded from above by −B.
By the least-upper-bound property of R, there exists a real number, say b̃ ∈ R,
such that

sup {−f(xk) : k ∈ N0} = b̃

or equivalently

inf {f(xk) : k ∈ N0} = b
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where b = −b̃. The least-upper-bound property of R can be taken as a complete-
ness axoim of R, or, proven as a theorem from some other completeness axoim,
e.g., the convergence of every Cauchy sequence.

Second, recall that the definition of the infimum of a set is the greates lower
bound of that set. In particular, for any c ∈ R that is a lower bound of {f(xk) :
k ∈ N0}, i.e. c ≤ f(xk) for each integer k ≥ 0, it holds that c ≤ b.

Third, we claim that (f(xk))∞k=0 converges to b, or written differently,

f(xk) → b as k → ∞.

This, by definition, means that for each ϵ > 0, there exists an N ∈ N0 such that

|f(xk)− b| < ϵ

for each integer k ≥ N , or equivalently,

b− ϵ < f(xk) < b+ ϵ

for each integer k ≥ N . Indeed, let ϵ > 0 be arbitrary. Since b is the greates
lower bound of {f(xk) : k ∈ N0}, we get that

b− ϵ < b ≤ f(xk)

for each integer k ≥ 0. Moreover, there exists an N ∈ N0 such that

f(xN ) < b+ ϵ.

Why does such an N exist? If there did not exists any such N , b + ϵ would be a
lower bound of the set {f(xk) : k ∈ N0}. But this would contradict the fact that b
is the greates lower bound of {f(xk) : k ∈ N0}, since b < b+ ϵ. Finally, note that

f(xk) ≤ f(xN ) < b+ ϵ

for each integer k ≥ N , by construction of the sequence (xk)
∞
k=0. I.e. we estab-

lished that

b− ϵ < f(xk) < b+ ϵ

for each integer k ≥ N , as claimed.

3. The most basic example would be to consider any function f that is bounded from
below and let xk = x for each k ∈ N0, where x ∈ Rn is not an optimal point. A
slightly more interesting example would be f : R2 → R such that

f(x, y) = x2 + y2

for each (x, y) ∈ R2 and the sequence

(xk, yk) =

((
1 +

1

k

)
sin k,

(
1 +

1

k

)
cos k

)
for each integer k ≥ 0. We see that

f(xk, yk) =

(
1 +

1

k

)2

is decreasing but does not converge to the optimum f(0, 0) = 0. There are plenty
more examples. Function value decrease is a very weak (read: useless) condition
for a minimization algorithm.
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Solution 6.5
Below you see an expanded table with the asked for ratios. We see that the linear
ratio is steadily decreasing while the quadratic ratio is more stable (up until machine
precision is achieved). Clearly, the sequence appear to converge Q-quadratically. The
parameter is given by the worst case ratio, i.e., ρ ≈ 0.24.

k xk |xk − x⋆| = dk dk+1/dk dk+1/d
2
k

0 5.000000000000000 4.685076942154594 0.77804204 0.16606815
1 3.960109873126804 3.645186815281398 0.70591922 0.19365790
2 2.888130487596392 2.573207429750986 0.57679574 0.22415439
3 1.799138129515975 1.484215071670569 0.35988932 0.24247788
4 0.849076217909656 0.534153160064250 0.12138864 0.22725437
5 0.379763183818023 0.064840125972617 0.01339947 0.20665396
6 0.315791881094192 0.000868823248786 0.00017665 0.20332357
7 0.314923211324986 0.000000153479580 0.00000003 0.21226031
8 0.314923057845411 0.000000000000005 0.00000000 0.00000000
9 0.314923057845406 0.000000000000000 NA NA

For the interested: The gradient and Hessian are

∇f(x) = ex − 2 + 2x

∇2f(x) = ex + 2

for each x ∈ R, which shows that f is strongly convex and thus has a unique minimizer.
The Newton iteration is then explicitly written as

xk+1 = xk −
exk − 2 + 2xk

exk + 2

for each integer k ≥ 0.

Solution 6.6

1. Note that

0 ≤ Qk ≤ V

ψ1(k)
+

D

ψ2(k)
→ 0 as k → ∞.

Therefore, Qk → 0 as k → ∞, by the squeeze theorem.

2. Since we have two terms (both converging to zero as k → ∞) on the r.h.s. of the
inequality, the slower term is the bottleneck and decides the rate of convergence,
that is, the smaller between ψ1 and ψ2 determines the rate of convergence. When
comparing we can ignore the constant terms. With that in mind, the rates are
as follows:

(a) O(log(k)/
√
k) sublinear rate of convergence.

(b) We should compare O(1/k1−α) and O( 1
k1−α/k1−2α ) = O(1/kα). Since α ∈

(0, 0.5), O(1/kα) is the rate of convergence.

(c) We should compare O(1/k1−α) and O( 1
k1−α/k1−2α ) = O(1/kα). Since α ∈

(0.5, 1), O(1/k1−α) is the rate of convergence.
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3. The cases in (b) and (c) are similar. We just need to compare them with case (a).
Let α ∈ (0, 0.5) and note that

log(k)/
√
k

1/kα
=

log(k)

k0.5−α
→ 0 as k → ∞.

We conclude that case (a) gives the faster rate.

Solution 6.7

1. Note that

0 ≤ f(xk)− f(x⋆) ≤
V +D

k∑
i=0

γ2i

b

k∑
i=0

γi

≤
V +D

∞∑
i=0

γ2i

b
k∑

i=0

γi

→ 0 as k → ∞.

The squeeze theorem gives that

f(xk)− f(x⋆) → 0 as k → ∞

or equivalently

f(xk) → f(x⋆) as k → ∞

as desired.

2. In both cases, the function ϕ : R+ → R++ such that

ϕ(i) = γi

for each i ≥ 0 is decreasing. Therefore, we obtain the following bound:

0 <

∫ k

0
ϕ(t)dt ≤

k∑
i=0

ϕ(i)

=
k∑

i=0

γi

for each integer k ≥ 0. Similarly, we also get the bound
k∑

i=0

γ2i =
k∑

i=0

ϕ2(k)

≤
∫ k

0
ϕ2(t)dt+ ϕ2(0)

≤
∫ ∞

0
ϕ2(t)dt+ ϕ2(0)
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for each integer k ≥ 0. Combining these bounds with the inequality given by the
convergence analysis, we get the new inequality

f(xk)− f(x⋆) ≤
V +D

k∑
i=0

γ2i

b
k∑

i=0

γi

≤
V +D

(∫ ∞

0
ϕ2(t)dt+ ϕ2(0)

)
b

∫ k

0
ϕ(t)dt

for each integer k ≥ 0.

(a) Let

ϕ(t) =
c

t+ 1

for each t ≥ 0. Note that∫ ∞

0
ϕ2(t)dt+ ϕ2(0) = c2

(∫ ∞

0

1

(1 + t)2
dt+ 1

)
= c2

([
−1

1 + t

]∞
t=0

+ 1

)
= 2c2

and ∫ k

0
ϕ(t)dt = c

∫ k

0

1

t+ 1
dt

= c [log(t+ 1)]kt=0

= c log(k + 1).

We conclude that

f(xk)− f(x⋆) ≤ V + 2Dc2

bc log(k + 1)

for each integer k ≥ 0, which shows a O(1/ log k) sublinear rate of conver-
gence.

(b) Let

ϕ(t) =
c

(t+ 1)α

for each t ≥ 0, where α ∈ (0.5, 1). Note that∫ ∞

0
ϕ2(t)dt+ ϕ2(0) = c2

(∫ ∞

0

1

(1 + t)2α
dt+ 1

)
= c2

([
1

(1− 2α)(1 + t)2α−1

]∞
t=0

+ 1

)
=

2αc2

2α− 1
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and ∫ k

0
ϕ(t)dt = c

∫ k

0

1

(t+ 1)α
dt

= c

[
1

(1− α)(t+ 1)α−1

]k
t=0

=
c

1− α

(
(k + 1)1−α − 1

)
.

We conclude that

f(xk)− f(x⋆) ≤
V +D

2αc2

2α− 1
bc

1− α

(
(k + 1)1−α − 1

)
for each integer k ≥ 0, which shows a O(1/k1−α) sublinear rate of conver-
gence.

3. Note that α ∈ (0.5, 1) implies that 1− α ∈ (0, 0.5). Therefore, we get that

1/k1−α

1/ log k
=

log k

k1−α
→ 0 as k → ∞.

Thus, step-size (b) gives the fastest convergence rate.

Solution 6.8
The Lyapunov inequality (6.3) gives that

‖xk − x⋆‖22 ≤ ‖x0 − x⋆‖22 − 2γ

k∑
i=1

(f(xi)− f(x⋆))

holds inductively for each integer k ≥ 1. Therefore,

k∑
i=1

(f(xi)− f(x⋆)) ≤ ‖x0 − x⋆‖22 − ‖xk − x⋆‖22
2γ

≤ ‖x0 − x⋆‖22
2γ

(7.53)

for each integer k ≥ 1, since ‖xk − x⋆‖22 ≥ 0 for each integer k ≥ 1. Furthermore,

k(f(xk)− f(x⋆)) ≤
k∑

i=1

(f(xi)− f(x⋆)) (7.54)

for each integer k ≥ 1, since (xk)
∞
k=0 is a descent sequence for f . Combining (7.53) and

(7.54) gives

0 ≤ f(xk)− f(x⋆) ≤ ‖x0 − x⋆‖22
2γk

→ 0 as k → ∞. (7.55)
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The squeeze theorem gives that

f(xk)− f(x⋆) → 0 as k → ∞

or equivalently

f(xk) → f(x⋆) as k → ∞.

Moreover, we identify a O(1/k) sublinear rate of convergence from (7.55).

Solution 6.9

1. We start from the inequality

E
[
‖xk+1 − x⋆‖22 | xk

]
≤ ‖xk − x⋆‖22 − 2γk(f(xk)− f(x⋆)) + γ2kG

2

for each integer k ≥ 0. By monotonicity and linearity of expectation, we get that

E
[
E
[
‖xk+1 − x⋆‖22 | xk

]]
≤ E

[
‖xk − x⋆‖22 − 2γk(f(xk)− f(x⋆)) + γ2kG

2
]

= E
[
‖xk − x⋆‖22

]
− E [2γk(f(xk)− f(x⋆))] + E

[
γ2kG

2
]

= E
[
‖xk − x⋆‖22

]
− 2γk E [f(xk)− f(x⋆)] + γ2kG

2,

for each integer k ≥ 0, since G and γk, for each integer k ≥ 0, are deterministic.
The law of total expectation gives that

E
[
‖xk+1 − x⋆‖22

]
≤ E

[
‖xk − x⋆‖22

]
− 2γk E [f(xk)− f(x⋆)] + γ2kG

2

for each integer k ≥ 0. This is the Lyapunov inequality we pick.

2. The Lyapunov inequality above gives that

E
[
‖xk+1 − x⋆‖22

]
≤ E

[
‖x0 − x⋆‖22

]
− 2

k∑
i=0

γi E [f(xi)− f(x⋆)] +G2
k∑

i=0

γ2i

= ‖x0 − x⋆‖22 − 2

k∑
i=0

γi E [f(xi)− f(x⋆)] +G2
k∑

i=0

γ2i

holds inductively for each integer k ≥ 0, since ‖x0−x⋆‖22 is deterministic. Again,
by monotonicity of expectation, we know that

0 ≤ E
[
‖xk+1 − x⋆‖22

]
for each integer k ≥ 0 since

0 ≤ ‖xk+1 − x⋆‖22
for each integer k ≥ 0. We conclude that

0 ≤ ‖x0 − x⋆‖22 − 2

k∑
i=0

γi E [f(xi)− f(x⋆)] +G2
k∑

i=0

γ2i

for each integer k ≥ 0, or by rearranging

2
k∑

i=0

γi E[f(xi)− f(x⋆)] ≤ ‖x0 − x⋆‖22 +G2
k∑

i=0

γ2i

for each integer k ≥ 0, as desired.
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Solution 6.10

1. First, we prove the claim provided in the hint, i.e.

λk ≥ 1 +
k

2
(7.56)

for each integer k ≥ 0. Clearly, (7.56) holds for k = 0. Note that

λk =
1 +

√
1 + 4λ2k−1

2

≥ 1

2
+ λk−1

holds for each integer k ≥ 1. This gives that

λk ≥ k
1

2
+ λ0

= 1 +
k

2

holds inductively for each integer k ≥ 1. This establishes (7.56).

Next, rearranging (6.4) and recursive application gives

2λ2k+1

β
(f(xk+1)− f(x⋆)) ≤ Vk − Vk+1 +

2λ2k
β

(f(xk)− f(x⋆))

≤ V1 − Vk+1 +
2λ21
β

(f(x1)− f(x⋆))

= V1 − Vk+1 +
2λ21
β

(f(x1)− f(x⋆))

≤ V1 +
2λ21
β

(f(x1)− f(x⋆))

for each integer k ≥ 1, since Vk ≥ 0 for each integer k ≥ 1. Using (7.56), we get
that

f(xk+1)− f(x⋆) ≤
V1 +

2λ21
β

(f(x1)− f(x⋆))

2λ2k+1

β

≤
V1 +

2λ21
β

(f(x1)− f(x⋆))

2

β

(
1 +

k + 1

2

)2

for each integer k ≥ 1, or equivalently

f(xk)− f(x⋆) ≤ 2βV1 + 4λ21(f(x1)− f(x⋆))

(k + 2)2
(7.57)

for each integer k ≥ 2. Note that

0 ≤ f(xk)− f(x⋆) ≤ 2βV1 + 4λ21(f(x1)− f(x⋆))

(k + 2)2
→ 0 as k → ∞.
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The squeeze theorem gives that

f(xk)− f(x⋆) → 0 as k → ∞

or equivalently

f(xk) → f(x⋆) as k → ∞.

Moreover, we identify a O(1/k2) sublinear rate of convergence.

2. From (7.57), if k ≥ 2, we know that

f(xk)− f(x⋆) ≤ 2βV1 + 4λ21(f(x1)− f(x⋆))

(k + 2)2
.

Therefore, if the integer k ≥ 2 is so large such that

2βV1 + 4λ21(f(x1)− f(x⋆))

(k + 2)2
≤ ϵ

we obtain an ϵ-accurate objective value. This is equivalently to

k ≥

⌈√
2βV1 + 4λ21(f(x1)− f(x⋆))

ϵ
− 2

⌉
and k ≥ 2

or simply

k ≥ max

(⌈√
2βV1 + 4λ21(f(x1)− f(x⋆))

ϵ
− 2

⌉
, 2

)
.
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Solutions to chapter 7

Solution 7.1

1. We know that the inequality

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) +
β

2
‖xk+1 − xk‖22

holds since f is β-smooth. Using the update rule (7.1) we get that

f(xk+1) ≤ f(xk) +∇f(xk)T ((xk − γ∇f(xk))− xk) +
β

2
‖(xk − γ∇f(xk))− xk‖22

= f(xk)− γ

(
1− βγ

2

)
‖∇f(xk)‖22

Subtracting f(x⋆) from both sides gives that

(f(xk+1)− f(x⋆)) ≤ (f(xk)− f(x⋆))− γ

(
1− βγ

2

)
‖∇f(xk)‖22

as desired.

2. The Lyapunov inequality (7.2) can be written as

γ

(
1− βγ

2

)
‖∇f(xi)‖22 ≤ (f(xi)− f(x⋆))− (f(xi+1)− f(x⋆))

for each integer i ≥ 0. Summing over i = 0, . . . , k gives that

γ

(
1− βγ

2

) k∑
i=0

‖∇f(xi)‖22 ≤
k∑

i=0

((f(xi)− f(x⋆))− (f(xi+1)− f(x⋆)))

= (f(x0)− f(x⋆))− (f(xk+1)− f(x⋆))

≤ f(x0)− f(x⋆)

for each integer k ≥ 0, since f(xk+1) − f(x⋆) ≥ 0 by assumption. Suppose that
0 < γ < 2

β . Then we get that

k∑
i=0

‖∇f(xi)‖22 ≤
f(x0)− f(x⋆)

γ

(
1− βγ

2

) (7.58)
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for each integer k ≥ 0. In particular, we see that
∞∑
i=0

‖∇f(xi)‖22 ≤
f(x0)− f(x⋆)

γ

(
1− βγ

2

)
and conclude that

‖∇f(xk)‖22 → 0 as k → ∞

as desired.

3. Using inequality (7.58), we get that

(k + 1) min
i=0,...,k

‖∇f(xi)‖22 ≤
k∑

i=0

‖∇f(xi)‖22

≤ f(x0)− f(x⋆)

γ

(
1− βγ

2

) .

for each integer k ≥ 0. Dividing by k + 1 gives that

0 ≤ min
i=0,...,k

‖∇f(xi)‖22 ≤
f(x0)− f(x⋆)

γ

(
1− βγ

2

)
(k + 1)

.

for each integer k ≥ 0. We identified a O(1/k) sublinear rate of convergence.

Solution 7.2

1. Plugging in the update rule (7.3) into ‖xk+1 − x⋆‖22 and expanding gives that

‖xk+1 − x⋆‖22 = ‖xk − γ∇f(xk)− x⋆‖22
= ‖xk − x⋆‖22 − 2γ∇f(xk)T (xk − x⋆) + γ2 ‖∇f(xk)‖22 .

The first order condition for convexity gives that

f(x⋆) ≥ f(xk) +∇f(xk)T (x⋆ − xk)

which is equivalently to that

−∇f(xk)T (xk − x⋆) ≤ − (f(xk)− f(x⋆)) .

Therefore,

‖xk+1 − x⋆‖22 ≤ ‖xk − x⋆‖22 − 2γ (f(xk)− f(x⋆)) + γ2 ‖∇f(xk)‖22 . (7.59)

From Exercise 7.1, we have the Lyapunov inequality (7.2), i.e.

(f(xk+1)− f(x⋆)) ≤ (f(xk)− f(x⋆))− γ

(
1− βγ

2

)
‖∇f(xk)‖22 .
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Adding f(x⋆) to both sides, multiplying by 2γ and rearranging gives that

−2γf(xk) ≤ −2γf(xk+1)− γ2(2− βγ) ‖∇f(xk)‖22 . (7.60)

Inserting this into (7.59) gives that

‖xk+1 − x⋆‖22 ≤ ‖xk − x⋆‖22 − 2γ(f(xk+1)− f(x⋆)) + γ2(βγ − 1) ‖∇f(xk)‖22

as desired.

2. The inequality (7.4) can be written as

2γ(f(xi+1)− f(x⋆)) ≤ ‖xi − x⋆‖22 − ‖xi+1 − x⋆‖22 + γ2(βγ − 1) ‖∇f(xi)‖22

for each integer i ≥ 0. Summing over i = 0, . . . , k gives that

2γ

k∑
i=0

(f(xi+1)− f(x⋆)) ≤
k∑

i=0

(
‖xi − x⋆‖22 − ‖xi+1 − x⋆‖22 + γ2(βγ − 1) ‖∇f(xi)‖22

)
= ‖x0 − x⋆‖22 − ‖xk+1 − x⋆‖22 + γ2(βγ − 1)

k∑
i=0

‖∇f(xi)‖22

≤ ‖x0 − x⋆‖22 + γ2(βγ − 1)
k∑

i=0

‖∇f(xi)‖22

for each integer k ≥ 0. Note that

γ <
2

β

implies that

βγ − 1 < 1.

Therefore,

2γ

k∑
i=0

(f(xi+1)− f(x⋆)) ≤ ‖x0 − x⋆‖22 + γ2
k∑

i=0

‖∇f(xi)‖22

≤ ‖x0 − x⋆‖22 + γ2
∞∑
i=0

‖∇f(xi)‖22 (7.61)

for each integer k ≥ 0. Note that inequality (7.2) implies that (xi)∞i=0 is a decent
sequence for f , i.e. (f(xi))∞i=1 is nonincreasing. This implies that

2γ(k + 1)(f(xk+1)− f(x⋆)) ≤ 2γ
k∑

i=0

(f(xi+1)− f(x⋆))

which combined with (7.61) gives that

0 ≤ f(xk+1)− f(x⋆) ≤
‖x0 − x⋆‖22 + γ2

∑∞
i=0 ‖∇f(xi)‖

2
2

2γ(k + 1)
→ 0 as k → ∞

since
∑∞

i=0 ‖∇f(xi)‖
2
2 is bounded. We conclude that

f(xk) → f(x⋆) as k → ∞

and identify a O(1/k) sublinear rate of convergence.

155



Solution 7.3

1. Note that

‖xk+1 − x⋆‖22 = ‖(xk − γ∇f(xk))− x⋆‖22
= ‖xk − x⋆‖22 − 2γ∇f(xk)T (xk − x⋆) + γ2 ‖∇f(xk)‖22 .

The first order condition for strong convexity gives that

f(x⋆) ≥ f(xk) +∇f(xk)T (x⋆ − xk) +
σ

2
‖x⋆ − xk‖

which is equivalently to that

−∇f(xk)T (xk − x⋆) ≤ − (f(xk)− f(x⋆))− σ

2
‖x⋆ − xk‖ .

Therefore,

‖xk+1 − x⋆‖22 = (1− σγ) ‖xk − x⋆‖22 − 2γ (f(xk)− f(x⋆)) + γ2 ‖∇f(xk)‖22 . (7.62)

Recall inequality (7.60) from Exercise 7.2, i.e.

−2γf(xk) ≤ −2γf(xk+1)− γ2(2− βγ) ‖∇f(xk)‖22 .

Using inequality (7.60) in (7.62) gives that

‖xk+1 − x⋆‖22 = (1− σγ) ‖xk − x⋆‖22 − 2γ (f(xk+1)− f(x⋆))︸ ︷︷ ︸
≥0

+ γ2(βγ − 1) ‖∇f(xk)‖22︸ ︷︷ ︸
≤0 since γ≤1/β

≤ (1− σγ) ‖xk − x⋆‖22

as desired. The fastest convergence rate is obtained when 1 − σγ is minimized
which in turn happens when γ is maximized. Since γ is upper bounded by 1/β,
the fastest convergence rate is obtained when

γ =
1

β

which gives the convergence rate

1− σ

β
=
β − σ

β
.

2. Let g : R → R such that

g(γ) = max(1− σγ, βγ − 1)

for each γ ∈ R. The step-size that gives the fastest convergence rate is the one
that minimizes g. Since g is the maximum of two affine functions it is closed and
convex. Fermat’s rule then give that the best step-size γ satisfies

0 ∈ ∂g(γ) =


{−σ} if 1− σγ > βγ − 1,

{β} if 1− σγ < βγ − 1,

[−σ, β] if 1− σγ = βγ − 1.
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Clearly, this holds only when 1− σγ = βγ − 1, i.e., when

γ =
2

β + σ

which gives the convergence rate

g

(
2

β + σ

)
=
β − σ

β + σ
.

3. From the analysis earlier in the previous subproblem, we get that the fastest
convergence rate is given by

‖xk+1 − x⋆‖22 ≤
β − σ

β
‖xk − x⋆‖22 .

From the analysis in the lectures we get that the fastest convergence rate is given
by

‖xk+1 − x⋆‖22 ≤
(
β − σ

β + σ

)2

‖xk − x⋆‖22 .

Since 0 < σ ≤ β, we have that(
β − σ

β + σ

)2

≤ β − σ

β + σ
≤ β − σ

β
.

Thus, the convergence analysis in the lectures yields a faster convergence rate.

Solution 7.4

1. Let f : Rn → R such that

f(x) =
1

2
xTQx+ qTx

for each x ∈ Rn. We have that

∇f(x) = Qx+ q

and

∇2f(x) = Q � λmin(Q)I

for each x ∈ Rn, where λmin(Q) > 0 since Q ∈ Sn++. The second order condition
for strong convexity gives that x∗ is the unique global minimizer of f . Fermat’s
rule gives that x∗ is the global minimizer of f if and only if

∇f(x⋆) = 0.

Note that

xk+1 = xk − γ∇f(xk)
= (I − γQ)xk − γq

157



and

x∗ = x∗ − γ∇f(x∗)
= (I − γQ)x∗ − γq.

Therefore,

‖xk+1 − x∗‖2 = ‖(I − γQ)(xk − x∗)‖2
≤ ‖I − γQ‖2 ‖xk − x∗‖2 .

Note that

λi(I − γQ) = 1− γλn−i+1(Q) (7.63)

and therefore

−1 < λi(I − γQ) < 1

for each i = 1, . . . , n, since γ ∈ (0, 2/β) where

β = ‖Q‖2
= λmax(Q)

since Q ∈ Sn++. We see that

‖I − γQ‖2 = σmax(I − γQ)

=
√
λmax ((I − γQ)2)

= max
i=1,...,n

|λi(I − γQ)|

and conclude that

0 ≤ ‖I − γQ‖2 < 1.

2. Suppose that γ = 1/β. This implies that

0 < λi(I − γQ) < 1

by (7.63). Therefore I − γQ ∈ Sn++ and

‖I − γQ‖2 = λmax(I − γQ)

= 1− γλmin(Q)

= 1− λmin(Q)

λmax(Q)
.

3. Note that

λmin(Q) = ϵ and λmax(Q) = 1

and therefore

ρ = ‖I − γQ‖2
= 1− ϵ.
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If q = 0, then x∗ = 0 is the unique global minimizer of f . If we pick

x0 =

[
1
0

]
then

xk =

[
(1− ϵ)k

0

]
and the linear convergence rate is achieved, i.e. the inequality

‖xk − x∗‖ ≤ ρk ‖x0 − x∗‖

becomes an equality. In particular, if ϵ is very small compared to 1, we get a slow
convergence.

4. Let

V =

[
1√
ϵ

0

0 1

]
.

Then

V TQV =

[
1 1

10
1
10 1

]
.

5. V TQV has the eigenvalues 0.99 and 1.01. The convergence will therefore be very
fast. Indeed, with

γ =
1

1.01

we get the linear rate of convergence

ρ = 1− 0.99

1.1
≈ 0.02.

6. Suppose that V is not diagonal. The proximal operator is often computed on
some function g that is separable. With the change of variables to x = V y, we
need compute the proximal operator of the function g ◦ V which in general is
no longer separable. Computing the proximal operator on this term generally
becomes computationally expensive.

Solution 7.5

1. Recall that

proxγf (x) = argmin
z∈Rn

(
f(z) +

1

2γ
‖x− z‖22

)
for each x ∈ Rn. Thus, if

xk+1 = proxγf (xk)
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then

f(xk+1) +
1

2γ
‖xk+1 − xk‖22 ≤ f(z) +

1

2γ
‖z − xk‖22

for each z ∈ Rn. Setting z = xk gives that

f(xk+1) +
1

2γ
‖xk+1 − xk‖22 ≤ f(xk)

or equivalently

f(xk+1) ≤ f(xk)−
1

2γ
‖xk+1 − xk‖22 (7.64)

as desired.

2. Inequality (7.64) can be written as

1

2γ
‖xk+1 − xk‖22 ≤ f(xk)− f(xk+1)

Summing over k = 0, . . . , l gives that

1

2γ

l∑
k=0

‖xk+1 − xk‖22 ≤
l∑

k=0

(f(xk)− f(xk+1))

≤ f(x0)− f(xl+1)

≤ f(x0)−B

and therefore
l∑

k=0

‖xk+1 − xk‖22 ≤ 2γ (f(x0)−B)

for each integer l ≥ 0. In particular, we see that
∞∑
k=0

‖xk+1 − xk‖22 ≤ 2γ (f(x0)−B) <∞

and conclude that

‖xk+1 − xk‖22 → 0 as k → ∞

as desired.

3. Suppose that

‖xk+1 − xk‖22 → 0 as k → ∞.

Fermat’s rule gives that

xk+1 = proxγf (xk)

is equivalent to

0 ∈ ∂f(xk+1) +
1

γ
(xk+1 − xk)
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or equivalently

1

γ
(xk−1 − xk) ∈ ∂f(xk).

This implies that

0 ≤ dist∂f(xk)(0) ≤
∥∥∥∥1γ (xk−1 − xk)− 0

∥∥∥∥
2

=
1

γ
‖xk−1 − xk‖2 → 0 as k → ∞.

The squeeze theorem gives that

dist∂f(xk)(0) → 0 as k → ∞

as desired.

4. Note that f is lower bounded by f(x∗). Therefore,

‖xk − xk−1‖2 → 0 as k → ∞

by a previous subproblem. The σ-strong convexity of f implies that

f(y) ≥ f(x) + sT (y − x) +
σ

2
‖y − x‖22

for each x, y ∈ Rn and each s ∈ ∂f(x). In particular, we have that

1

γ
(xk−1 − xk) ∈ ∂f(xk) ⇒ f(x∗) ≥ f(xk) +

1

γ
(xk−1 − xk)

T (x∗ − xk) +
σ

2
‖x∗ − xk‖22

0 ∈ ∂f(x⋆) ⇒ f(xk) ≥ f(x⋆) +
σ

2
‖xk − x⋆‖22 .

Adding these two inequalities together and unsing the Cauchy-Schwarz inequal-
ity gives that

‖xk − x⋆‖22 ≤
1

γσ
(xk − xk−1)

T (x∗ − xk)

≤ 1

γσ
‖xk − xk−1‖2 ‖x

∗ − xk‖2

and therefore

0 ≤ ‖xk − x⋆‖2 ≤
1

γσ
‖xk − xk−1‖2 → 0 as k → ∞.

The squeeze theorem gives that

‖xk − x⋆‖2 → 0 as k → ∞

or equivalently

xk → x⋆ as k → ∞

as desired.
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Solution 7.6
The complete procedure is given below:

1. The goal is to get a Lyapunov inequality on the form

Vk+1 ≤ Vk −Qk

for each integer k ≥ 0, where (Qk)
∞
k=0 is some nonnegative convergence measure

and

Vk = ‖xk − x⋆‖22

for each integer k ≥ 0. We further define the residual mapping R : Rn → Rn

such that

Rx = x− proxγg(x− γ∇f(x))

for each x ∈ Rn. The proximal gradient update can then be written as

xk+1 = xk −Rxk. (7.65)

We can use this to relate Vk+1 to Vk by

Vk+1 = ‖xk+1 − x⋆‖22
= ‖(xk −Rxk)− x⋆‖22
= ‖xk − x⋆‖22 − 2(xk − x⋆)T (Rxk) + ‖Rxk‖22
= Vk − 2(xk − x⋆)T (Rxk) + ‖Rxk‖22 .

(7.66)

2. Next, we wish to upper bound the quantity −2(xk − x⋆)T (Rxk) + ‖Rxk‖22. We
start by using (7.65) to rewrite it as

−2(xk − x⋆)T (Rxk) + ‖Rxk‖22 = −2(xk − x⋆)T (Rxk) + (Rxk)T (Rxk)
= −2(xk − x⋆)T (Rxk) + 2(Rxk)T (Rxk)− (Rxk)T (Rxk)
= −2(xk −Rxk − x⋆)T (Rxk)− (Rxk)T (Rxk)
= −2(xk+1 − x⋆)T (Rxk)− ‖Rxk‖22 .

(7.67)

3. We now turn to bounding −2(xk+1 − x⋆)T (Rxk). Using Fermat’s rule on the
proximal gradient update gives that

0 ∈ ∂g(xk+1) +
1

γ
(xk+1 − (xk − γ∇f(xk)))

which is equivalent to that

γ−1Rxk −∇f(xk) ∈ ∂g(xk+1)

The definition of a subgradient then gives that

g(x⋆) ≥ g(xk+1) + (γ−1Rxk −∇f(xk))T (x⋆ − xk+1)

which implies that

−2(xk+1 − x⋆)T (Rxk) ≤ −2γ(g(xk+1)− g(x⋆))− 2γ∇f(xk)T (xk+1 − x⋆). (7.68)
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4. We continue to bound−2γ∇f(xk)T (xk+1−x⋆). Using the definition of β-smoothness
of f and the first-order condition of convexity on f gives the two following inequal-
ities:

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) +
β

2
‖xk+1 − xk‖22

= f(xk) +∇f(xk)T (xk+1 − xk) +
β

2
‖Rxk‖22

f(x⋆) ≥ f(xk) +∇f(xk)T (x⋆ − xk).

Adding these two together and rearranging gives that

f(xk+1) ≤ f(x⋆) +∇f(xk)T (xk+1 − x⋆) +
β

2
‖Rxk‖22

which implies that

−2γ∇f(xk)T (xk+1 − x⋆) ≤ −2γ(f(xk+1)− f(x⋆)) + γβ ‖Rxk‖22 . (7.69)

5. Inserting (7.69) into (7.68), (7.68) into (7.67), and (7.67) into (7.66) gives that

Vk+1 = Vk − 2(xk − x⋆)T (Rxk) + ‖Rxk‖22
= Vk − ‖Rxk‖22 − 2(xk+1 − x⋆)T (Rxk)
≤ Vk − ‖Rxk‖22 − 2γ(g(xk+1)− g(x⋆))− 2γ∇f(xk)T (xk+1 − x⋆)

≤ Vk − ‖Rxk‖22 − 2γ(g(xk+1)− g(x⋆))− 2γ(f(xk+1)− f(x⋆)) + γβ ‖Rxk‖22
≤ Vk − (1− γβ) ‖Rxk‖22 − 2γ(g(xk+1) + f(xk+1)− g(x⋆)− f(x⋆)).

6. Using the assumption γ < β−1 gives that

Vk+1 ≤ Vk − (1− γβ) ‖Rxk‖22 − 2γ(g(xk+1) + f(xk+1)− g(x⋆)− f(x⋆))

≤ Vk − 2γ(g(xk+1) + f(xk+1)− g(x⋆)− f(x⋆))

= Vk −Qk

where

Qk = 2γ(g(xk+1) + f(xk+1)− g(x⋆)− f(x⋆))

which is nonnegative since γ > 0 and g(xk+1) + f(xk+1) ≥ g(x⋆) + f(x⋆) by as-
sumption on x⋆.

7. Since Vk ≥ 0 and Qk ≥ 0 we we know that

Qk → 0 as k → ∞

which implies that

f(xk) + g(xk) → f(x⋆) + g(x⋆) as k → ∞.

Solution 7.7
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1. Following the steps gives that

‖xk+1 − x⋆‖22 =
∥∥proxγg(xk − γ∇f(xk))− x⋆

∥∥2
2

=
∥∥proxγg(xk − γ∇f(xk))− proxγg(x

⋆ − γ∇f(x⋆))
∥∥2
2

≤ 1

1 + σgγ
‖xk − γ∇f(xk)− x⋆ + γ∇f(x⋆)‖22

=
1

1 + σgγ

(
‖xk − x⋆‖22 − 2γ(∇f(xk)−∇f(x⋆))T (xk − x⋆) + γ2 ‖∇f(xk)−∇f(x⋆)‖22

)
≤ 1

1 + σgγ

((
1−

2βσfγ

β + σf

)
‖xk − x⋆‖22 − γ

(
2

β + σf
− γ

)
‖∇f(xk)−∇f(x⋆)‖22

)
.

If γ ≥ 2
β+σf

, then the last term is positive, and we can use β-Lipschitz continuity
of ∇f to get that

‖xk+1 − x⋆‖22 ≤
1

1 + σgγ

((
1−

2βσfγ

β + σf

)
‖xk − x⋆‖22 − γ

(
2

β + σf
− γ

)
β2 ‖xk − x⋆‖22

)
≤ 1

1 + σgγ

(
1−

2βσfγ

β + σf
− 2β2γ

β + σf
+ β2γ2

)
‖xk − x⋆‖22

≤ 1

1 + σgγ

(
1−

2βσfγ + 2β2γ

β + σf
+ β2γ2

)
‖xk − x⋆‖22

≤ 1

1 + σgγ

(
1− 2βγ + β2γ2

)
‖xk − x⋆‖22

≤ (βγ − 1)2

1 + σgγ
‖xk − x⋆‖22 .

If 0 < γ ≤ 2
β+σf

, then the last term is negative, and we can use

‖∇f(xk)−∇f(x⋆)‖2 ≥ σf ‖xk − x⋆‖2
to get that

‖xk+1 − x⋆‖22 ≤
1

1 + σgγ

((
1−

2βσfγ

β + σf

)
‖xk − x⋆‖22 − γ

(
2

β + σf
− γ

)
σ2f ‖xk − x⋆‖22

)
=

1

1 + σgγ

(
1−

2βσfγ

β + σf
−

2σ2fγ

β + σf
+ γ2σ2f

)
‖xk − x⋆‖22

=
1

1 + σgγ

(
1−

2βσfγ + 2σ2fγ

β + σf
+ γ2σ2f

)
‖xk − x⋆‖22

=
1

1 + σgγ

(
1− 2σfγ + γ2σ2f

)
‖xk − x⋆‖22

=
(1− σfγ)

2

1 + σgγ
‖xk − x⋆‖22 .

To write these on one common form we use the fact that

max(1− σfγ, βγ − 1) =

{
1− σfγ if γ ∈ (0, 2

β+σf
]

βγ − 1 if γ ∈ [ 2
β+σf

,∞)
(7.70)

which gives the desired inequality, i.e.

‖xk+1 − x⋆‖22 ≤
max(1− σfγ, βγ − 1)2

1 + σgγ
‖xk − x⋆‖22 .
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2. From the previous subproblem we see that

xk → x∗ as k → ∞

with linear convergence if

max(1− σfγ, βγ − 1)2

1 + σgγ
< 1. (7.71)

• Assume that σf > 0.

– If 0 < γ < 2
β+σf

, (7.70) gives that

max(1− σfγ, βγ − 1)2

1 + σgγ
=

(1− σfγ)
2

1 + σgγ

≤ (1− σfγ)
2

< max

(
1,

(
1− 2

σf
β + σf

)2
)

= 1.

– If γ ≥ 2
β+σf

, (7.70) gives that

max(1− σfγ, βγ − 1)2

1 + σgγ
=

(βγ − 1)2

1 + σgγ
< 1

⇔
(βγ − 1)2 < 1 + σgγ

⇔
1 + β2γ2 − 2βγ < 1 + σgγ

⇔

β2γ2 − γβ(2 +
σg
β
) < 0

⇔

βγ < 2 +
σg
β

⇔

γ <
2

β
+
σg
β2
.

The case σf > 0 can be summarize by that the proximal gradient method
converges linearly if 0 < γ < 2

β +
σg

β2 , since 2
β+σf

< 2
β +

σg

β2 .

• Assume that σf = 0. Then (7.71) becomes

max(1, βγ − 1)2

1 + σgγ
< 1

which is impossible if σg = 0.

• Assume that σg > 0.
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– If 0 < γ < 2
β+σf

, then (7.70) gives that

max(1− σfγ, βγ − 1)2

1 + σgγ
=

(1− σfγ)
2

1 + σgγ
.

We have that

0 < γ <
2

β + σf
≤ 2

β

⇒

0 ≤ σfγ ≤
2σf
β

< 2

⇒
−1 < 1− σfγ ≤ 1

⇒
(1− σfγ)

2 ≤ 1

Thus, (7.71) holds since 1 + σgγ > 1.

– If γ ≥ 2
β+σf

, (7.70) gives that

max(1− σfγ, βγ − 1)2

1 + σgγ
=

(βγ − 1)2

1 + σgγ
< 1

⇔

γ <
2

β
+
σg
β2

where the equivalence is shown exactly as in the σf > 0 case above.

The case σg > 0 can be summarize by that the proximal gradient method
converges linearly if 0 < γ < 2

β +
σg

β2 , since 2
β+σf

< 2
β +

σg

β2 .

To summarize all cases, the proximal gradient method converges linearly if 0 <
γ < 2

β +
σg

β2 and at least one of σf > 0 and σg > 0 holds.

3. • Let δ = 1. Then β = L+ σ, σf = σ and σg = 0. The linear convergence rate
is then given by

max(1− σγ, (L+ σ)γ − 1)2.

In Exercise 7.3 we have already shown that this is minimized by

γ =
2

L+ 2σ

which is a valid step-size by the analysis above, and results in the linear
convergence rate (

1− 2σ

L+ 2σ

)2

=

(
L

L+ 2σ

)2

.

• Let δ = 0. Then β = L, σf = 0 and σg = σ. The linear convergence rate is
then given by

max(1, Lγ − 1)2

1 + σγ
.

Next, we split this up into two subcases with respect to valid step-sizes:
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– Suppose that 0 < γ ≤ 2
L . The rate is then

1

1 + σγ
.

Hence, γ should be chosen as large as possible, i.e. γ = 2
L , giving the

linear convergence rate

L

L+ 2σ
.

– Suppose that 2
L ≤ γ < 2

L + σ
L2 . The rate is then

(Lγ − 1)2

1 + σγ
.

Taking the derivative of the rate gives

d

dγ

(Lγ − 1)2

1 + σγ
=

2L(Lγ − 1)

1 + σγ
− σ(Lγ − 1)2

(1 + σγ)2

=
Lγ − 1

(1 + σγ)2
(2L(1 + σγ)− σ(Lγ − 1))

=
Lγ − 1

(1 + σγ)2
(2L+ Lσγ + σ)

≥ 0.

Hence, the rate increasing in γ and the step-size should be chosen as
small as possible, i.e. γ = 2

L , again giving the linear convergence rate

L

L+ 2σ
.

To summarize, the best linear convergence rate we can get for the case δ = 0
is

L

L+ 2σ
.

Note that

L

L+ 2σ
>

(
L

L+ 2σ

)2

since L > 0 and σ > 0. It is therefore advantageous two put the strong convexity
in the gradient step.
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