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Introduction

The exercises are divided into problem areas that roughly match the lecture schedule.

Exercises marked with (H) have hints available, listed in the end of each chapter. Chal-
lenging exercises are marked with (x). Even more challenging exercises are marked
with (xx).



Chapter 1

Convex sets and convex
functions

Exercise 1.1

Given the following sets.

1. Which of the sets are convex. Motivate.
2. Mark all points the sets have supporting hyperplanes at.

3. Draw the convex hull of each set.

Exercise 1.2

Which of the following sets are convex? If convex, prove it using the definition of convex
sets, if not convex, disprove it by finding a counter example.

1. S ={z € R": Az = b} with A € R™*" and b € R™

2. 5 ={zeR": Ax < b} with A € R™*" and b € R™

3. S={zeR":2>0}

4. S={zreR": |l <z <u}withl,b e R"” such that! <u
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S={zeR: uof> <1}

S={zeR": |l < —1}

S={zeR": —[alz <1}

S={(z,t) e R" xR : [xf]z <t}

S={X e R™™: X » 0}

10. S={z€R": 2 =a} witha € R"

11. S={z €eR":x =aorz =b} with a,b € R" such that a # b

© ® =N O

Exercise 1.3
Which of the following sets are affine?
1. V={x € R": x = a} for some a € R"

2. V={z € R": Ja € [0,1] such that x = aa + (1 — )b} for some a,b € R™ such
that a #£ b

3. V={z € R": Ja € R such that z = aa + (1 — a)b} for some a,b € R" such that
a#b

Exercise 1.4

A set K is a cone if for each = € K also ax € K for each o > 0. Which of the following
figures represent cones? Which of them are convex?

Exercise 1.5

Which of the following sets are convex cones? Prove or disprove. Assume that each set
is nonempty.



1. S={z e R": Az =0} with A € R"™*"

2. S={x e R": Az = b} with A € R™*" and b € R such that b # 0

3. S={zeR": Az <0} with A € R™*"

4. S ={zr € R": Az < b} with A € R™*" and b € R™ such that there exists at
least one index j € {1,..., m} such that row j in the matrix A is nonzero and b,
is nonzero

5, S={zeR":2 >0}
6. S={(z,t) eR*" xR : ||z|2 < t}
7. S={X eR™™: X >0}

Exercise 1.6
Suppose that C; and Cs are convex sets in R".

1. Isthe set C = {z € R" : x € (1 and = € (3} the union or intersection of C; and
C2? Is it convex? Prove or provide a counter example

2. Istheset C = {z € R" : x € C1 or z € (3} the union or intersection of C; and
C5? Is it convex? Prove or provide a counter example

Exercise 1.7

Let {C;} ;e be an indexed family of convex sets in R", with index set J (J can be finite,
countable or uncountable). Show that

¢
JjeJ

is convex.

Exercise 1.8

Prove convexity for each of the following sets.

1. Affine hyperplanes. Recall that affine hyperplanes are written as h,, = {z €
R" : sTx = r} for some s € R" and r € R

2. Halfspaces. Recall that halfspaces are written as H,, = {z € R" : s’z < r} for
some s € R” and r € R

3. Polytopes. Recall that a polytope C' can be represented as
C={zecR": sz <rforic{l,...,m}andslz=r;foric {m+1,...,p}},

where s; € R” and r; € Rforeachi € {1,...,p}



Exercise 1.9 (H)

Prove, without explicitly using the definition of convex sets, that each of the following
sets are convex set.

1. S={x € R": Az = b} with A € R"™*" and b € R™

2. §={zeR": Az < b} with A € R"*" and b € R™

3. S={zeR":2>0}

4. S={zeR": I <z <u}withl,b e R"suchthat! <u
5, S={zeR":x=a} withaeR"

Exercise 1.10 (%)

Let f : R® — R™ be a function, and let C C R™ and D C R™ be two sets. The image of
C under f is denote by f(C) and is defined by

f(C)={f(z):zeC}.
The inverse image of D under f is denote by f~!(D) and is defined by
fHD) = {z: f(z) € D}.

Now suppose that f is an affine function (or map), i.e. f(z) = Az+bfor some A € R™*"
and b € R™, and let both sets C' and D be convex. Show that

1. f(C) is convex

2. f~1(D) is convex

Exercise 1.11 (x)
Let f : R" — R U {0} be a convex function, i.e., let f satisfy

f0zx+ (1 —0)y) <Of(x)+ (1—0)f(y)

for each 0 = [0,1] and for each z,y € R". The effective domain of f is defined as
domf = {z € R": f(z) < oo}. Show that domf is convex.

Exercise 1.12
Show or disprove that the following functions are convex.

1. f:R" - RU {oo} equal to the indicator function of convex set C C R", i.e.

0 ifzeC
oo otherwise

f(@) =1e(x) = {

2. f:R" - RU{oo} such that f(z) = ||z| for each z € R"
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. [+ R" - RU{oo} such that f(z) = —||z| for each x € R"
. f:R? 5 RU{oo} such that f(z,y) = zy for each (z,y) € R?

. f:R® = RU {oc} such that f(z) = a’x + b for each z € R", where a € R" and
beR

. f:R" = RU{oo} such that f(z) = 127Qz for each z € R", where Q € S"

. f:R" - RU{oo} such that f(z) = distc(x) = inf,cc ||z — y|| for each 2 € R”,
where C' C R" is a nonempty closed convex set

[T

a4 o

Exercise 1.13
Draw the epigraph of the following functions f : R — R:

[ ]
S~

L]
~5
8
I
=
=
s
&
8

[N}
~—

Exercise 1.14
Let f : R™ — R be an affine function defined by

f(z)=aTz+b

for each = € R”, where a € R” and b € R. Show that epif is a halfspace in R"*!.

Exercise 1.15
Let f : R® — RU {oo} be a function. Recall that the epigraph of f is given by epif =
{(z,r) e R"" xR : f(z) <r}. Show that f is convex if and only if epif is convex.

Exercise 1.16 (H)

Foreachi =1,...,m, assume that the function f; : R — RU{o0} is a convex. Prove the
following explicitly, without resorting to convexity preserving operations on functions.

1. Show that f(z) = >, a;fi(x) is convex, where o; > 0 foreachi=1,...,m

2. Show that f(z) = max;—1, _m fi(z) is convex

Exercise 1.17



Show that the following functions f : R” — RU{co} are convex. You may use convexity
preserving operations.

1. f(z) = ||z||P wherep > 1

= max(||z, [|=[, [|=]|*)

()
3. f(x)
4. f(o) =L max(0, 1 + ;) + [|z[3
5. f(x)

Exercise 1.18
Let g : R" - RU {0} and define C,, = {x € R" : g(x) < a} for each a € R.

1. Suppose that ¢ is convex and suppose that there exists an z € R™ such that
9(Z) < a for some o € R. Show that C,, is a nonempty convex set.

2. For n = 1, construct a nonconvex function g such that Cj is convex.

3. For n = 1, construct a nonconvex function g such that Cj is nonconvex.

Exercise 1.19

Let f : R™ — R U {oo} be a convex function and define a function g : R™ x R™ —
R U {o0} such that g(z,y) = f(z). Show that g is a convex function.

Exercise 1.20 (H)

Prove, without explicitly using the definition of convex sets, that each of the following
sets are convex.

1. S={x eR": ||z|2 <1}
2. S={(z,t) eR*" xR : ||z|2 < t}

Exercise 1.21 (H)

Let f : R — R U {oo} be a convex function. Suppose that 2* € R" is a local optimum,
i.e., there exists an § > 0 such that

f(@") < f()

for each x € R” such that ||« — 2*|| < ¢. Show that z* is a global minimum, i.e.

f@") < f(z)

for each x € R"™.



Exercise 1.22

Let f : R" — R U {oo} be a proper strictly convex function. Recall that f is called
strictly convex if

fOz+(1—0)y) <0f(z)+(1-0)f(y)

for each z,y € domf such that x # y and for each 6 € (0,1). Completely analogous to
Exercise 1.11, one can show that domf must be convex.

1. Suppose that there exists a point 2* € R” such that
f(@®) < f(x) (1.1)

for each x € R™. Show that x* is the unique minimizer of f.
2. Provide a strictly convex [ whose infimum is not attained by any point z*.

Remark: For (proper, closed and) strongly convex functions, a minimizer always exists.
Moreover, since strongly convex functions are strictly convex, the minimizer is unique.

Exercise 1.23
Decide which of the following convex functions f : R — R U {0} are

* smooth,
* strictly convex,
¢ strongly convex,

or none of the above. In this exercise, you only need to draw/plot the functions and
decide from the drawings.

. f(x):{—log(a:) if >0

00 ifz <0
1
9 flay={z >0
oo ifz<0
3. flz) =2z
4. f(z) = La?
5. f(x) =[x
6. f(x) = if_% ts
7. f(x)=¢€"
8. f(x) =2*

Exercise 1.24 (H)



Suppose we are given some function f : R — R U {co} where we only know that
f(=1) = 0 and f(1) = 1. For x € [-1,1], draw the known bounds on f(z) given the
following assumptions:

¢ fis convex
* fis convex and 2-smooth
* fis 2-smooth and %-strongly convex

For each case, draw an example of a function that satisfies the assumptions.

Exercise 1.25 (H)

Suppose we are given some differentiable function f : R — R where we only know that
f(1) =1 and f’(1) = 1. Draw the known bounds on f given the following assumptions:

* fis strictly convex.
* fis strictly convex and 2-smooth.
* fis 2-smooth and 1-strongly convex.

For each case, draw an example of a function that satisfies the assumptions.

Exercise 1.26 (H)
Suppose that a,b > 0 and p, g > 1 such that % + % = 1. Show that

P q
ab < % + ’; (1.2)

Inequality (1.2) is called Young’s inequality.

Exercise 1.27 (H) ()

Consider the following statement: A differentiable function f : R” — R is convex if
and only if

f(y) = f(@) + V(@) (y - x) (1.3)
for each z,y € R".

1. Show that the statement is true.

2. Provide a nonconvex differentiable function f and a point x for which (1.3) does
not hold.

Exercise 1.28 (H)



Let f : R™ — R be convex and differentiable. Suppose that the point x € R™ satisfies
V f(z) = 0. Show that z is a global minimizer of f.

Exercise 1.29 (%)

Suppose that f : R™ — R is a differentiable function. Show that f is strictly convex if
and only if

f) > f@)+ V@) (y— =) (1.4)

for each x,y € R™ such that = # .

Exercise 1.30 (H)

Suppose that f : R” — R is a differentiable function and let & > 0. Show that f is
o-strongly convex if and only if

) 2 f@) + V@ (- 2) + 2 lle -yl (L5)

for each z,y € R™.

Exercise 1.31 (x)
The indicator function (¢ : R — RU {oco} of a set C C R” is defined as

0 ifxzeC
wo(z) =

oo otherwise.

Show the following:
1. Let K e R™*", be R and C = {z € R": Kz — b = 0}. Show that

vo(x) = sup pl (K —b).
HGR‘"L

2. Let g: R" - R"™ and C = {z € R": g(x) < 0}. Show that

wo(z) = sup p’g(x).
HERT

Exercise 1.32 (H) (»)

Solve the following problems:

1. Suppose that h : R — R is differentiable with nondecreasing derivative. Show
that h is convex.
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2. Let p > 1. Show that the function i : R — R given by

P ifx >0
h(z) = P ifx >
0 otherwise

is a nondecreasing convex function.

Exercise 1.33 (H) (»)

Let f : R — RU{oco} be a convex function. Letn € N, z4,...,2, € R"and 6y,...,6, >0
such that >~ | 6, = 1. Show that

f (Z 92‘162‘) < Z&f(wi)- (1.6)
i1 i1

Inequality (1.6) is called Jensen’s inequality.

Exercise 1.34 (xx)
Let f : R™ — R. Show that f is affine if and only if f is convex and concave.

Exercise 1.35 (%)

Let f : R" — RU{oo} and let o > 0. Recall that f is called o-strongly convex if f — || |12
is convex. Show that f is o-strongly convex if and only if

f0z + (1= 0)y) < Of(x) + (1 0)f(y) — 501 = 0)]lx — y]? (1.7)
for each z,y € R™ and for each 6 € [0, 1].

Exercise 1.36

Let f : R® — RU{oo} and let 5 > 0. Suppose that f is S-smooth, i.e., f is differentiable
and Vf is g-Lipschitz continuous. Let A € R"*™ and b € R". Let g : R™ — R U {o0}
such that

9(z) = f(Az +b)
for each = € R™. Show that g is j || A||3-smooth.

Remark: Recall that || A||, is the spectral norm of the matrix A and that ||A]|, = || A,
holds.

Exercise 1.37 (%)

Let f : R® — R be a differentiable function and let 5 > 0. Consider the following
properties
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D [|[Vf(x) = Vf(y)ll2 < Bz — yl|2, for each z,y € R", i.e., f is S-smooth
II) For each z,y € R™

{f(y) < fla) + V@) (y — ) + Sz — yl3,
> f(z) + V(@) (y —x) — Sz —yl3

I1I) §H )3 — fand f + gH - ||3 are convex
IV) For each z,y € R" and for each 6 € [0, 1]

{f(9fc +(1—0)y) <Of(x)+(1—-0)f(y)+ 2001 —0)||lz — y|3,
FOz+ (1= 0)y) > 0f(x) + (1 —0)f(y) — 5601 —0)]lz — y|3

Show that these properties are equivalent.

Exercise 1.38 (H)(x%)

Let f : R™ — R be a twice differentiable function and let 8 > 0. Show that the following
properties are equivalent:

D |IVf(x) =V iw)lz2 < Bllz —ylo, for each xz,y € R™, i.e., f is S-smooth
II) —B1 < V2f(x) < BI, for each x € R"

Hints

Hint to exercise 1.9

Use the results from Exercise 1.8.

Hint to exercise 1.16

For the second subproblem, use the fact that a function is convex if and only if its
epigraph is convex, i.e. use Exercise 1.15.

Hint to exercise 1.20
Use the results from Exercise 1.18 and 1.19.

Hint to exercise 1.21

Use a proof by contradiction.
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Hint to exercise 1.24
Recall that f is 2-smooth if and only if

{fw:r + (1= 60)y) < 0f(x) + (1= 0)f(y) +6(1— )] —y]3,

fOx+ (1= 0)y) = 0f(z) + (1 - 0)f(y) — 0(1 = 0)llx — ylI3

for each z,y € R and all 6 € [0, 1] and that f is %-strongly convex if and only if
F0z+ (1 =0)y) < O0f(x) + (1= 0)f(y) — 101 =)z -yl

for each z,y € R and all 6 € [0, 1].

Hint to exercise 1.25
Recall that f is 2-smooth if and only if

{f(y) < f(@) + V@) (y = 2) + o —yl3,

fly) = fl@)+ V@) (y—a) - |z —yll3

for each z,y € R and that f is 1-strongly convex if and only if
fy) = f@) + Vi) (y—2)+ 5z - yl3

for each z,y € R.

Hint to exercise 1.26

Consider the case a = 0 or b = 0 and the case a > 0 and b > 0 separately. Moreover,
note that

x = exp(lnz)

for each = > 0.

Hint to exercise 1.27
The directional derivative of f at x € R™ in direction d € R" satisfies

o fz+00) = (@)

6—0 0

= Vf(z)ld.

Hint to exercise 1.28
Use Exercise 1.27.

Hint to exercise 1.30
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Use Exercise 1.27.

Hint to exercise 1.32

1. The mean value theorem might be helpful.

2. Consider the cases p =1 and p > 1 separately.

Hint to exercise 1.33
Use induction on n.

Hint to exercise 1.38
Use Exercise 1.37 and the second-order condition for convex functions.
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Chapter 2

Subdifferentials and proximal
operators

Exercise 2.1
Compute the subdifferentials for the following proper closed convex functions:
1. f:R" — R such that f(z) = }|z|3 for each z € R"
2. f:R" = R such that f(z) = 32" Hz + h7z for each z € R", where H € ST}
3. f:R — R such that f(z) = |z| for each z € R
4. f:R = RU{oc} such that f(r) = ¢y y)(z) for each x € R
5. f : R — R such that f(z) = max(0,1 + z) for each = € R. This is known as the
hinge loss
6. f:R — R such that f(z) = max(0,1 — x) for each x € R

You are allowed to rely on graphical arguments in this exercise.

Exercise 2.2
Consider the following even nonconvex function f : R — R:

W RS

1. Compute (approximate) gradient and subdifferential at z1, z2, and zs.

2. As which of the points z1, z9, and z3 does Fermat’s rule hold?
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Exercise 2.3

Assume that f and g are two real-valued functions. Figure (a) depicts 0 f(z) and Figure
(b) depicts dg(y).

m
<

(a) (b)

1. What are the domains for f and ¢? Note that we are not asking for the effective
domains dom f and domyg.

Is z a minimum to f?
Is y a minimum to ¢?
Is f differentiable at x?
Is g differentiable at y?

S oA N

Draw/explain examples of functions f and g that comply with the figures

Exercise 2.4
Suppose that f : R — R satisfies

f(=1) =1, 9f(-1) ={-1}

and

f)y=1, 0f(1)={1}.
1. Draw a function that lower bounds f

2. Compute a lower bound to the optimal value of f

3. Draw a function f that complies with the requirements

Exercise 2.5
Below a list of set-valued operators A : R — 2F are given.

e Which of them are monotone?

¢ Which of them can be a subdifferential of a closed convex function?
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T x
a b.
A A
c d.

Exercise 2.6

Let A : R® — 28" be an operator and let ¢ > 0. Show that A is o-strongly monotone if
and only if A — oI is monotone.

Remark: In particular, note that if f : R — R U {co}, the subdifferential 0f is o-
strongly monotone if and only if 9f — oI is monotone.

Exercise 2.7 (»)

Provide a monotone operator 4 : R — 28" that is monotone but not the subdifferential
of a function.

Exercise 2.8 (H)(»)

Let f : R™ — R be a differentiable function. Then the following properties are equiva-
lent:

D f(y) > f(z) + Vf(z)(y — ) for each 2,y € R", i.e. f is convex
I (Vf(y) — Vf(x)T(y — ) > 0 for each z,y € R", i.e. Vf is monotone
1. Show that I) implies II)

2. Show that II) implies I)
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Exercise 2.9
The subdifferential df of two functions f : R — R are drawn below.

of of
/

a. b.

1. Are the corresponding functions f closed and convex?
2. Can you find an z* that minimizes f. If so, where is it?
3. Can you compute the optimal value f(z*)?

4. Draw examples of corresponding f

Exercise 2.10 (%)

Let f : R™ — R U {oc} be closed and let c > 0. We denote the effective domain of the
subdifferential 0f as domdf and define it as

domdf = {z € R": df () # 0}.

Assume that f is o-strongly convex. Show that
g
f@) 2 f@) + 5"y = 2) + 5 |l — w3

for each y € R, for each x € domdf and for each s € 9f(z).

Exercise 2.11

The subdifferentials of four closed convex functions f : R — R are drawn below. State
for each if

* {is differentiable,
* Vfis Lipschitz continuous and
* fis strongly convex.

Also, if they exists, estimate the Lipschitz and the strong convexity parameters (given
that the axes are equal).
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(a) (b)

() (d)

/
/

Exercise 2.12 (%)

Let g : R™ — RU{oo}. Suppose there exists g; : R - RU{oc} foreachi =1,...,n such
that

g(z) = Zgi(ﬂii), where = (z1,...,2,)
i=1

for each z € R". Let x = (z1,...,2,) € R" and let s = (z1,...,2,) € R". Show that
s € 0g(z) if and only if s; € Jg;(z;) foreachi =1,...,n.

Exercise 2.13 (%)

Let f : R® — R U {oco} be convex and let y € R™ be a point such that f(y) < co. Show
that 0f(z) is empty for each = ¢ domf.

Exercise 2.14 (%)

Show that the subdifferential of the indicator function of a nonempty set C' C R” is
the normal cone to C.

Exercise 2.15
Compute the proximal mapping for the following proper closed convex functions:

1. f:R" — R such that f(z) = }||z||3 for each z € R"
2. f:R" — R such that f(z) = 327 Hz + hTx for each z € R", where H € S}
3. f:R — R such that f(z) = |z| for each z € R
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4. f:R = RU{oc} such that f(z) = ¢y y)(z) for each x € R
5. f:R — R such that f(z) = max(0,1+ z) for each 2 € R
6. f:R — R such that f(z) = max(0,1 — z) for each z € R

Exercise 2.16

Let g : R" — R U {oo} be a proper, closed and convex function. Suppose there exists
gi : R—RU{oo} for each i = 1,...,n such that

:Zgi(xi), where == (z1,...,2,)

for each z € R". Let z = (21,...,2,) € R” and let v > 0. Show that

prox.,,. (21)
prox,,(z) = :

prox., (zn)

Hints

Hint to exercise 2.8

1. Add I) and I) with = and y swapped.
2. Let z,y € R" and t € R. Then

gtf(x +i(y —2)) = V(e +tly —2) (y - o).

This gives that
1
) — flo) = /0 V(@ + by — o) (y — z)d. @1

Subtracting V f(x)” (y — x) from the expression above yields

fw) — F() — V@) (y - )
1
/ (VF(x +t(y - 2)) — V(@) (y — x)dt

0

1
/0 S (2 + tly — 2) — V@) (@ + Hy - 2)) — 2)dt.
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Chapter 3

Conjugate functions and duality

Exercise 3.1
Compute the conjugates for the following proper closed convex functions:
1. f:R" — R such that f(z) = | z||3 for each z € R"
: R" — R such that f(z) = 22T Hx + hTz for each 2 € R", where H € S%
: R — R U {oo} such that f(z) = ¢_ 1)(z) for each z € R
: R — R such that f(z) = |z| for each z € R

2
3
4.
5. f:R — R such that f(z) = max(0,1 + z) for each x € R
6

G T S

: R — R such that f(z) = max(0,1 — z) for each z € R

Exercise 3.2
Let f,g: R" — R U {oo} be two functions. Show that

1. f*<f

2. f < g implies that f* > g¢*

3. f < g implies that f** < g**

4. f = f*ifand only if f = %H 13

Exercise 3.3 (H)
Let p € (1,00) and ¢ = p/(p — 1). Show that

(5-(3)

Exercise 3.4
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Let f,g: R" - RU {0} and a € (0,1). Show that

(af + (1 —a)g)* < af 4+ (1—-a)g".

Exercise 3.5
Let f: R" - RU{oo} and f; : R - RU {oo} for each i = 1,...,n. Suppose that

n

fl@)=>" filw)

=1

for each z = (x1,...,2,) € R", i.e, f is separable. Show that
Fr(s) = fi(s)
i=1

for each s = (s1,...,s,) € R", i.e, f* is also separable.

Exercise 3.6 (H)
Compute the conjugates of the following functions f : R” — R U {oo}:

1. f(x) = ||z||; for each z € R™
2. f(x) = 111 (z) for each x € R", where 1 = (1,...,1) e R"

Exercise 3.7
Let f : R — R U {oo} be the nonconvex function in the figure below. It satisfies

(0 ifz=-1,

1 ifx =0,
fla)=4 -1 ifz=1,

0 ifz=2,

oo otherwise .

(-1,0) (2,0

(1,-1)
X

1. Draw the conjugate f* of f
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2. Draw the biconjugate f** of f

Exercise 3.8 (H) ()
Let f : R" — R U {oo} such that
f@) = [ll2
for each z € R™.
1. Compute the conjugate f* via the following steps:
(a) Show that f*(s) > 0 for each s € R"
(b) Show that f*(s) < 0 for each s € R" such that ||s|2 <1
(c) Show that f*(s) = oo for each s € R™ such that ||s|[o > 1
(d) Combine the results and give f*(s)
2. Use the conjugate to compute the subdifferential of f

Exercise 3.9 (»)
Let A be the n-dimensional probability simplex, i.e.

A:{xER":xEOanlele}.
Similarly, let D be the set
D:{xER”:xZOanlexgl}.
1. Let f = ta. Show that

fr(s) = max s

for each s = (s1,...,8,) € R”
2. Find f**
3. Let ¢ = tp. Show that

g"(s) = max (O, max si>

i=1,...,n

for each s = (s1,...,8,) € R”

4. Find g**

Exercise 3.10
Consider the following set-valued operators A : R — 2F:
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1. Draw the inverses A~! : R — 2R
2. Which operators A are functions f : R — R?

3. Which operator inverses A~! are functions f : R — R?

/
NS

Nl \ \\

Exercise 3.11

Consider the following four subdifferentials 0f of proper closed convex functions in
the figure below. Decide 0f*, i.e., the subdifferential of the conjugate.

of () = {oa} df (z) = {0}
a b.
af (z) of (z)
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Exercise 3.12
Let f: R™ — R U {oo} be proper closed convex and v > 0. Show that

prox. (z) = (I +70f) 7 (2)

for each z € R", where the inverse denotes the operator inverse.

Exercise 3.13 (H)

Compute the proximal mapping for the following convex functions on R. Use graphical
arguments and that prox. ;(z) = (I +~9f)"!(z).

L f(z) = |z|

Exercise 3.14 (H)
Let f: R™ — R U {oo} be proper closed convex and v > 0. Show that:

1. prox¢(z) + proxs.(z) = z for each z € R"
2. (vf)*(s) = vf*(y1s) for each s € R"
3. Prox(,s)(2) = Yprox, 1. (y~12) for each z € R®

4. prox. ;(z) + yprox,-1+(y"'z) = z for each z € R"

Exercise 3.15
Let v > 0. Compute the prox(, ). for the following f:

1. f:R"™ — R such that f(z) = %xTH:c + W'z for each « € R™, where H € Sty
2. f:R — R such that f(z) = max(0,1 + x) for each x € R
3. f:R — R such that f(z) = max(0,1 — z) for each z € R

Exercise 3.16
Let f : R" - RU {oo}.
1. Show that
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2. Suppose that [ is proper closed convex. Show that

Argmin f(x) = 9f*(0)

reR”™

Exercise 3.17
Consider a primal problem of the form

minimize f(z) + g(x),
TeR™

where f : R" - RU{oco} and g : R" — RU{oo} are proper closed convex functions and
relint dom f N relint dom g # ().

1. Show that solving the primal problem is equivalent to finding =, € R" such
that

{w € af*(u),
x € 09" (—p)

2. Show that this inclusion problem is equivalent to the following dual optimality
condition

0€df*(n) — 09" (—p), (3.1)

that solves the dual problem

minimize f*(u) + g*(—p)
pER™

3. Suppose you are given a solution p* to the dual condition (3.1) and a subgradient
selector function s« : R™ — R" such that

sp(p) € Of* ()

for each ;1 € R™. Can you recover a primal solution z*? What if f* is differen-
tiable?

Exercise 3.18

Let f : R™ - RU{oo} and g : R” — R U {oo} be proper closed convex functions. Let
L € R™*™, Assume that relint dom (f o L) Nrelint dom g # (), i.e. constraint qualification
holds. Consider the primal problem of the form

mifeiﬂr{glize f(Lz) + g(x). (3.2)

Derive the Fenchel dual problem

minimize f*(u) + g* (=L ). (3.3)
}LGR"”
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Exercise 3.19

Let f: R™ - RU{o0}, g : R® - RU{oo} and L € R™*". Consider the primal problem
of the form

minimize f(Lx) + g(z).

z€eR™

State a Fenchel dual problem and show how to recover a primal solution from a dual
solution for the following particular cases:

1.

A
1) =5 vl

for each y € R™, where A > 0 and
g(@) = wi+ 1_10)(z:)
i=1

for each = = (x1,...,2,) € R™. Assume that L is square (i.e. m = n) and invert-
ible.

fly) = U[-1,1] (v)
for each y € R™ and
A
g(x) = 5 ol — v7x

for each z € R™, where A > 0 and b € R"™.

Exercise 3.20 ()

Let f : R" — RU {oco} be a proper function. Let z,s € R". Fenchel-Young’s equality
states that

f*(z) = sz — f(s) ifandonlyif se df(x). (3.4)
Prove (3.4) via the following steps:
1. Prove Fenchel-Young’s inequality, i.e. f*(s) > sTx — f(x)
2. Suppose that s € 3f(x). Show that f*(s) < sTx — f(x)

Remark: Combining the first and second subproblems, we conclude that s €
df(z) implies f*(s) = sTx — f(x)

3. Suppose that f*(s) = s — f(z). Show that s € 9f(x)
Remark: Combining the second and third subproblems, we conclude that (3.4) holds.

Exercise 3.21 (%)
Let f : R" - RU{o0o}. Let z,s € R™. Show that:
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1. s € 0f(z) implies z € 0f*(s)

2. x € 0f*(s) implies s € f**(x)

3. Suppose that f in addition is closed convex. Then
sedf(x) < xedf(s)

i.e. (0f)~! = 0f* (the inverse of the subdifferential is the subdifferential of the
conjugate)

Exercise 3.22 (x)

Let f : R™ — R U {oo} be proper closed convex, L € R"™*" and ¢ € R™. Define
g :R" - RU{oo} such that

g9(x) = f(Lz +¢c)

for each 2 € R". Assume that relint dom g # () and that there exists an z¥ € R" such
that

g*(s) = sup (s"z — g(x))
rER?
= s"at — g(al)
for each s € R". Show that
* _ . * T
g'(s)= inf (f* () — ¢ )
s.t. s=LTp

for each s ¢ R".

Exercise 3.23 (x)

In this exercise we study a type of duality in a nonconvex setting called Toland duality.
Let f,g : R™ — RU {0} be two functions, where f is closed convex and dom g C dom f.
Show that

sup (f(z) — g(x))

z€R™

is equal to

sup (g%(s) = f7(s)) -

seR”

28



Hints

Hint to exercise 3.3
Note that % is differentiable with gradient

| p—2
(v”) @) = {:p|x| fo¢0,
p 0 ifz =0.

Hint to exercise 3.6
Use the results from Exercise 3.1 and 3.5.

Hint to exercise 3.8
Cauchy-Schwarz inequality sz < ||z||2||s||> holds for each z,s € R™.

Hint to exercise 3.13

The subdifferential for each function have already been computed in previous exer-
cises.

Hint to exercise 3.14

For the first subproblem, let »+ = prox;(z), introduce u = z — z and show that v =
proxs«(z). To prove this, use Fermat’s rule on the definition of the prox.
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Chapter 4

Proximal gradient method -
basics

Exercise 4.1

Suppose that f : R™ — R is convex and differentiable. Consider the gradient method
with constant step-size:

* Pick some initial guess 2° € R" and step-size v > 0.
* Fork=0,1,2,...,1let
.’L’k+1 — xk _ ’}/Vf(IEk)

Let 2* € R"™ be a fixed-point of the gradient method. Show that x* is a global minimizer
of f.

Exercise 4.2

Let f : R™ — R U {oco} be proper closed convex and v > 0. Suppose that = € R” is such
that

x = prox, ;(z).

Show that x is a global minimizer of f.

Exercise 4.3

Let f,g: R" — R U {oco} be proper closed convex. Assume that f is differentiable. Let
~v > 0. Suppose that x € R" is such that

x = prox.,,(z — YV f(z)).

Show that x is a global minimizer of f + g.
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Exercise 4.4
Which of

* the gradient method, and
* the proximal gradient method

are applicable to the minimization problem

minimize h(x)
TeR™

where h : R™ — R U {oo} is the proper closed convex function:

1.
1 2
h@) = 5 14z — b3

for each x € R" where A ¢ R™*" b ¢ R™ and m < n

1
h(z) = §xTQ:1: + 0Tz + ||z,

for each x € R" where Q € ST}

1
h(w) = 5 [[ Az — bl}3 + 1ol

for each x € R" where A ¢ R™*" b e R™ and m < n

1
h(z) = 5 [| Az = bll; + |12,

for each x € R" where A ¢ R™*" b e R™ and m < n

h(z) = tzern:a=p} (T) + ¢—1,1)(T)

for each z € R” where A e R™*", b e R, m <nand {z € R": Az =b} #0

h(z) = ele=vllz 4 t1a)(@)

for each x € R™ where y € R"

1
h(@) = 527 Qu + | Dal,

for each x € R" where Q € S}, and D € R"*" is diagonal
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1
h(z) = QxTQ:L" + ¢—1,1(L)

for each x € R" where Q € S}, and L € R™*"

h(x) = log (1 + e*“’T”> + % z": max (0, 2;)*
i=1

for each z = (z1,...,2,) € R” where w € R"

Exercise 4.5

For the optimization methods and objective functions in Excercise 4.4, which are ap-
plicable to some dual formulation of the minimization problem?

Exercise 4.6
Consider the problem

L I
mlilelﬂr{g}zeHmHl—i-ix Qx

where @ € S7 . The goal of this exercise is to state a Fenchel dual problem and find
the proximal gradient update for this dual problem. Define the functions f, g : R* - R
such that

flx) =z, and g(z)= 32" Qx
for each x € R™. The problem can be written as

minimize f(z) + g(z).

FASING
Compute f*
Compute g*

State a Fenchel dual problem using general /* and ¢*

L A e

State a proximal gradient method step for this general dual problem. Specif-
ically, assume that f is proper closed convex and proximable, and g is proper
closed and strongly convex (which in fact is true in our particular case). Con-
struct a proximal gradient method step that is computationally reasonable based
on this information.

5. Specify the proximal gradient method step for the dual problem with our partic-
ular choice of f and g
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Exercise 4.7 ()
Consider a primal problem of the form

minimize f(Lz) + g(x)
TER™

where f : R™ — R U {oco} is proper closed convex and prox friendly, g : R — R U {oco}
is proper closed and strongly convex, L. € R”™*", and relint dom (f o L) Nrelint dom g # (.
We know that a dual problem can be written as

e * * —fLT )
minimize f*(u) + g% (~L7 p)

We also know that f* is proper closed convex and prox friendly and that ¢* is proper
closed convex and smooth. If v; > 0, a proximal gradient method step can be written
as

pes1 = prox, e (e — YV (9% 0 =L7) () -
Show that this equivalently can be written as
x), = argmingcgn (9(z) + pf L)
v = pg + YLy, (4.1)
M1 = Uk — YkPTOX 1 (’Vk_lvk) :

I.e. we can perform the proximal gradient method step for the dual problem using
only primal information (f and g).

Exercise 4.8

Consider the dual problem obtained in Exercise 4.6. For this particular choice of f
and g, explicitly evaluate the dual proximal gradient method step and show that the
resulting step is the same as the implicit step (4.1) obtained in Exercise 4.7.

Exercise 4.9 (H) (»)

Let f : R®™ — R be a g-smooth function for some 5 > 0. Consider the gradient method
step

Tpy1 = Tk — VeV f(2g),

for some v € (0,1/3). Show that the gradient method is a majorization-minimization
algorithm. A majorization-minimization algorithm is an algorithm on the form

Tpy1 = argmin g(y)
yeR”

for some function g : R™ — R such that f < g, i.e. g is a majorizer of f. Thus, the goal
is to find such a g.
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Hints

Hint to exercise 4.9
Start from the decent lemma, i.e.

F(w) < 1)+ V@)~ 2)+ 2 lly

for each z,y € R™ and use that v, < 1/8.
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Chapter 5

Learning

Exercise 5.1
Consider the logistic regression problem

1 ( %1¢w+®) 5.1
Tk“é%l#i%z g1+ G-D

with data points x; € R™ and class labels y; € {—1,1}, foreachi =1,..., N. Show that
(5.1) is equivalent to

N
e 3 1w (1-+¢%) i (e +0)
’ 1=1

if the classes are labeled with y; € {0,1} instead of y; € {—1,1}.

Exercise 5.2

Consider the logistic regression problem

N
coe . x; w+b (T
pipimive 3 (0g (14 ¢+747) = (o 1)) 62

with data points z; € R" and class labels y; € {0,1}, for each i = 1,..., N. Assume
that there exists (w,b) € R™ x R such that

zlw+b<0 ify; =0
slw+b>0 ify; =1

for each i = 1,...,n. Show that the optimal value of (5.2) is 0, and that no (w,b) €
R"™ x R exists that attains the optimal value 0.

Exercise 5.3
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Consider the univariate Lasso problem
o1 2
minimize — ||az — b||5 + A |z] (5.3)
zeR 2

where a € R™, b € R™ and A > 0 are given.

Assume that a # 0 and b # 0, since otherwise the optimal point of (5.3) is simply z = 0.
Prove that the optimal point of (5.3) is

0 if A > ’aTb ,
v Tlg — %sgn (r1g) ifA< ‘aTb‘
lall3
where
a’'b
T = m

corresponds to the solution of the problem for A = 0, i.e. the corresponding univariate
least squares problem.

Exercise 5.4

Consider the Lasso problem
| 2
minimize o |Az — b5 + A |z, (5.4)

where A € R™*™ b e R" and A\ > HATbHOO. Show z = 0 is a solution.

Exercise 5.5 (H)(x%)
Consider the following bivariate Lasso problem

migeiglzize; 1Az — bJ2 + AJzl, (5.5)
where A € R"*2 b € R", n > 2 an integer and A\ > 0. Suppose that
A= [al ag]
has normalized columns, i.e. |lai||, = [jaz|l, = 1, and that A has full (column) rank.

This implies that |a{ az| < 1. Consider each of the four possible sparsity patterns of
z € R?in (5.5), i.e.

Xo,0 = {(0,0) € R*},

Xi1= {(a:l,:cg) eR?:z #£0,29 # O},
X10={(z,0) e R* : 2 # 0},

Xo1 ={(0,z) eR*: x #0}.
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Find the set
A;j = {\ > 0: 2z optimal point for (5.5) using A and = € X, ;}

for each i, j € {0,1}. Verify that for a given problem the four ranges A; ; are disjoint
and the number of zeros in the solution is nondecreasing with \.

Exercise 5.6
Consider the SVM problem with an affine model

n

A
0,1—vy; (zFw+b Zlaw||? 5.6
i 2 01w ) g el &

with data points z; € R™ and class labels y; = {—1,1} for each i = 1,...,n, and a
regularization parameter \ > 0.

1. Consider the unregularized problem, i.e. A = 0, and assume that examples from
both classes exists. Assume the data is fully separable, i.e. there exists a non-
zero pair of parameters (w,b) € R™ x R such that

zfw+b<0 ify, =-1
zfw+b>0 ify =1

for each i = 1,...,n. Show the optimal value of (5.6) is 0 and that the that the
optimal set, i.e. the set of all optimal points, is unbounded.

2. Consider again the unregularized problem, i.e. A = 0, but assume that the data
only contains one class, e.g. there exists noi =1,...,n such that y; = —1. Show
that an arbitrary w € R™ is part of an optimal point of (5.6) and show that the
optimal set is unbounded.

3. Consider the regularized problem, i.e. A > 0. Assume the data only consists

of one class, e.g. there exists no: = 1,...,n such that y; = —1. Show that
w = 0 € R™ is part of an optimal point of (5.6) and show that the optimal set is
unbounded.

Exercise 5.7

Find X € R™*" and ¢ € R" such that the SVM problem (5.6) in 5.6 can be reformulated
as

(wllllisleiglwilzxe]R 17 max (0,1 — (XTw + bg)) + % wll3 (5.7)

where the max function is applied element-wise and 1 € R"” is a vector of all ones.

Exercise 5.8(x)
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Consider the reformulated SVM problem (5.7) in Exercise 5.7, i.e.

A
minimize 17 max (0,1 — (X7w + b¢)) + = [wll3
(w,b)ER™ xR 2

=17 max (O, 1-L [?ﬂ) =g(w)

=f(L(w,b))

where f : R” — R is given by
f(u) = 1" max (0,1 — u)
for each v € R"™,
L=[XT ¢]

and g : R™ x R — R is given by

A
g(w,b) = 3 Jlwl
for each (w,b) € R™ x R. Assume that A\ > 0 and that examples from both classes
exists.

1. Find the Fenchel dual problem

minimize f* () + g*(— L7 )
pER?

2. Show how to recover a primal solution from a dual solution and motivate when
and why this is possible

3. A support vector for this kind of soft-margin SVM is defined as any data point
x € R™ of class y € {1,—1} that lies on the wrong side of the margin, i.e. 1 >
y(zTw +b), for a given model with parameters (w,b) € R™ x R. It is easy to see
that only the support vectors contribute to the cost of the objective function (see
objective function (5.6) in Exercise 5.6), if we ignore the regularization term.

Suppose that p* € R” is an optimal point for the dual problem. Show that the
nonzero elements of ©* € R™ corresponds to support vectors of the corresponding
model with optimal parameters (w*,b*) € R™ x R. Show that the optimal model
parameters can be recovered from the dual solution by only considering support
vectors

Exercise 5.9
Consider the typical supervised learning problem

n
minimize Z L(my(x:), vi)
w
i=1

where n is the number of training examples, z; € R?is a data point with corresponding
response variable y; € R/, foreachi =1,...,n, m, : R? = R” is a model parameterized
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by w we wish to train, and L : R¥ x R! — R is the loss function comparing the model
output m,,(z;) with the known correct output ;.

Assume that L(-,y) is convex for each y € R'. Prove or disprove the following state-
ments:

1. The objective function
w > Lmay(2:), yi)
i=1

is convex if a linear model with some feature map is used. IL.e. if

for each = € R? where ¢ : R — R/ and w € Rf**

2. The objective function

w Z L(muy(zi),yi)

i=1
is convex if a DNN model is used. I.e. if

my(z) = o1 (wl oo (wl ...op(whz)...))

for each z € R? where o; is an activation functions that act elements-wise, for
eachi=1,...,D,and

w = (wla"'va)
such that
wy € Rlek
w; € RFxfiifor i =2,..., D —1
wp € R4*fp-1
Hints

Hint to exercise 5.5

For 2* € X, g, first find the optimal z7. Use this together with the optimality condition
for 25 = 0 to find the bounds on \. For z* € X, i, first find the ordinary least squares
solution and show the coordinates of the Lasso solution have the same signs. Use
this, the optimality condition and z* # 0 to find the bound on \. Useful identities are

sgn(z) = sgn(z)~", |z| = sgn(z)x and sgn(z) sgn(y) = sgn(zy)
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Chapter 6

Algorithm convergence

Exercise 6.1

For a given optimization problem, we used two algorithms to solve it up to a desired
precision.

1. The first algorithm, performed 5000 floating point operations in each iteration
and we ran it for 10° iterations

2. The second algorithm, performed 50 floating point operations in each iteration
and we ran it for 2 x 10 iterations

Which algorithm had better performance?

Exercise 6.2

Match the following rates with the corresponding curve given in figure below. For
each rate, specify if it is linear, sublinear or superlinear.

1. O(p}), with0 < p; < 1
2. O(p )Wlthp1<p2<1
3. O(1/ log(k))

4. O(1/k )

5. O(
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Exercise 6.3

Let (Vi)72, be a nonnegative convergence measure.

1. Suppose that (V})2, has a Q-linear rate, i.e. there exists a p € [0,1) such that
Vir1 < pVi

for each integer k£ > 0. Show that (V)72 has a R-linear rate, i.e. there exists a
pr €10,1) and C7, > 0 such that

Vi < phor

for each integer &k > 0

2. Suppose that (V)72 , has a Q-quadratic rate, i.e. there exists a p € [0,1) such
that

Vi1 < oV (6.1)
for each integer k£ > 0. Show that there exist pg > 0 and Cg > 0 such that
Vi < p3 Cq (6.2)

for each integer k£ > 0

3. Suppose that (V)22 , has a Q-quadratic rate as in (6.1). If pg € [0, 1) in (6.2), we
say that (V)72 , has a R-quadratic rate and can conclude that

Vi, -0 as k — oo.

However, pg € [0,1) will only hold for certain initial values ;) — which?

Thus, R-quadratic rate is only achived localy, i.e. for certain initial values V)
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Exercise 6.4
Let f : R®™ — R and consider the problem

inf
zeR"™

f(@).

Suppose that some iterative descent algorithm generates a sequence (z)7°, in R”,
i.e.

f(@rs1) < flag)
for each integer k£ > 0. We call such a sequence (z;);2, a descent sequence for f.

1. Give an example of a function f and descent sequence (z})7° , for f such that the
sequence of function values (f(xy)),—, does not convergence

2. In addition, assume that the function f is bounded from below, i.e. there exists
a B € R such that f(z) > B for all z € R™. Prove that the sequence of function
values (f(zy)),—, converges

3. Give an example of a function f that is bounded from below and descent sequence
(21)32, of f such that (f(x)),—, does not converge to infycpn f()

Exercise 6.5
Let f : R — R such that

f(z) = e* — 2z + 2*

for each x € R. Consider finding a minimizer of f using the standard Newton’s method

without line search: Pick some initial point zy € R and let

Tht1 = T — (VQf(a?k))_l Vf(xk)

for each integer k& > 0. Below you find the 10 first iterations for when zy = 5.

Tk

|z) — 2*]

O© 00 IO ULk WNhHOF

Calculate the ratios

and

5.000000000000000
3.960109873126804
2.888130487596392
1.799138129515975
0.849076217909656
0.379763183818023
0.315791881094192
0.314923211324986
0.314923057845411
0.314923057845406

4.685076942154594
3.645186815281398
2.573207429750986
1.484215071670569
0.534153160064250
0.064840125972617
0.000868823248786
0.000000153479580
0.000000000000005
0.000000000000000

| g1 — 27
|z — ¥

|[Tt1 — 2
|lzp — a2
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Based on these ratios, estimate whether the sequence (|z; — 2*|)72, is Q-linear or
(-quadratic convergent and find the corresponding rate parameter.

Exercise 6.6

A sequence (Q1);2,in R is generated by some iterative algorithm. It is found to satisfy
the following inequality

v D
P1(k)  Pa(k)

for each integer £ > 0, where D and V are positive constants and 1,12 : R — R
are functions that depend on the algorithm that generated (Q)3°,,.

1. Show that Q; — 0 as k — oo if

0<Qr <

P1(k) 00 as k— oo,
Po(k) 00 as k— oo

2. Let ¢ > 0 and decide the rate of convergence for the following cases:

(a) When
. 1 ifk<l1
1 ifk<0 -
k) = - d k)=
Yi(k) {m/% ifp>o o veb) { VE iepe
clogk
(b) When
1 ifk <1,
k; = 1—0(_
P1(k) = q 2¢(k D ere
11—«
and

{1 if k <1,

Po(k) =9 (1—2a)(k'">—1) .

=)kl —2q) TF>1
where « € (0,0.5)

(c) When

1 ifk <1,
]{j = 1—04_
Y1(k) = q 2¢(k D ere

11—«
and

1 ifk <1,
Po(k) = { (1 —2a)(k'=> 1)
(1 — a) (k=22 — 2a)

ifk>1
where a € (0.5,1)
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3. Which case above gives the fastest convergence rate?

Exercise 6.7

An iterative algorithm for minimizing a function f : R” — R produces a sequence
(zk)32,in R™. Suppose that 2* is a minimizer of f and ; > 0, for each integeri > 0, are
the step-sizes used by the algorithm. A convergence analysis results in the following
inequality:

k
V+D Z’yf
Flaw) - ) < —— =0

for each integer k > 0, where V', D and b are positive constants.
1. Show that (f(zx));2, converges to f(z*) if (77).°  is summable and (v;){ is not,
i.e. if

oo oo
Z 72 < oo and Z ;i = 00
i=0 i=0

2. Let ¢ > 0 and estimate the convergence rates for the following step-sizes:
(a) vi =c¢/(i+ 1) for each integer i > 0
(b) v; = ¢/(i + 1)* for each integer i > 0, where o € (0.5,1)

3. Which step-size +; above gives the fastest convergence rate?

Exercise 6.8

Let f/ : R® — R be a 3-smooth convex function for some 3 > 0. Let z* € R" be
a minimizer of f. Consider finding a minimizer of f, not necessarily x*, using the
gradient descent method:

Trp1 = x — YV ()

for each integer &k > 0, where zg € R" is some given initial point and the step-size
v € (0,1/p] is constant. In this case, the gradient descent method can be shown to be
a descent algorithm, i.e.

f(@rs1) < flag)

for each integer £ > 0. Put differently, (z1);2, is a descent sequence for f. Moreover,
the Lyapunov inequality

. — 23 < llwr—1 —2*(13 — 2y(f(zx) — f(2*)) (6.3)

for each integer k£ > 1 can be shown to hold. Show that f(z;) — f(2*) as k — oo and
find the convergence rate.
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Exercise 6.9

Consider minimizing a function f : R® — R, with a minimizer z* € R", using a
stochastic optimization algorithm and starting at some predetermined (deterministic)
initial point zy € R". Analysis of the algorithm resulted in the inequality

E [|lzgsr — 2|3 | ax] < llog — (13 — 29 (f (2x) — f(27)) + 176G

for each integer k£ > 0, where G is a positive constant and v, > 0 for each integer &k > 0
are the deterministic step-sizes of the algorithm satisfying

oo o0
Zyk:oo and Zy,%<oo.
k=0

k=0
In particular, (z);2, is a stochastic process.

1. Apply an expectation to the above inequality to derive a Lyapunov inequality for
the algorithm

2. Use the obtained Lyapunov inequality to show that

k k
2> WELf (@) — f@*)] < lloo — 2* 3+ G2+
=0

1=0

for each integer k£ > 0

Exercise 6.10 (H) ()

Let f : R — R be a -smooth convex function, for some 5 > 0. Consider finding a
minimizer of f using Nesterov’s accelerated gradient descent method, i.e.

Ykl = T — ;Vf(wk%

Try1 = (1 = V) Yrt1 + Yk

for each integer k > 0, for some initial points zo = yo € R", where

1— Mg
k= Akt1
and
1 if k =0,
Ae =9 1+ /1442,
5 otherwise

for each integer & > 0. Suppose that the function f has a minimum at z* € R".
Nesterov’s accelerated gradient descent method can be shown to satisfy

2
Vit — Vi < 2gk<f<xk> — F@) = L (fag) — f(2)) (6.4)

where
Vi = [ = 1) (@1 — 25) — g + ¥

for each integer k > 1.
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1. Show that f(z;) — f(z*) as k — oo and find the rate of convergence

2. Show that if the number of iterations % is as large or greater than
max<|r 0—2-‘ ,2)
€

C = 26V1 + 4N (f(a1) — f(2*))

where

the methods achieves an c-accurate objective value, i.e.

flae) = f(z7) <€

Hints

Hint to exercise 6.10
For the first part, show that

Mg > 14 -

\V]

for each integer k£ > 0.
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Chapter 7

Proximal gradient based
algorithms

Exercise 7.1

Suppose that f : R" — R is S-smooth for some 5 > 0. Consider the gradient method
with constant step-size:

* Pick some initial guess xg € R" and step-size v > 0.

e Fork=0,1,2,..., let

Tpr1 =z — YV (k). (7.1)

Suppose that z* € R" is a global minimizer of f.

1. Find the Lyapunov inequality

(o) = £a) = () = fla) = (1= ) Vsl (2

2. Show that
IVf(zp)|3 =0 as k— oo
- 2
ifo<y< 3
3. Find the convergence rate of

. N
nin, IV f(zi)ll5

if0<’y<%

Exercise 7.2

Suppose that f : R™ — R is convex and -smooth for some 8 > 0. Consider the gradient
method with constant step-size:

* Pick some initial guess 2o € R™ and step-size v > 0.
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* Fork=0,1,2,..., let

Th+1 = Tk — ’}/Vf(mk). (7.3)

Restrict the step-size to 0 < v < % Suppose that z* € R" is a global minimizer of f.
1. Show that the iterates satisfy

g — 2113 < g — 2113 = 29(f (@ar) — £@*)) + 7287 = 1) [V Fa) 3. (74)
Do this by
* expanding the square ||z — x*||§,
¢ using the first order condition for convexity, and

* using the Lyapunov inequality (7.2) from Exercise 7.1

2. Show that
flag) — f(z*) as k— oo

and find the rate of convergence. Note that 3.3°, ||V f(z1)||3 was shown to be
bounded in Exercise 7.1.

Exercise 7.3

Suppose that f : R® — R is o-strongly convex and S-smooth for some 5 > o > 0.
Consider the gradient method with constant step-size:

¢ Pick some initial guess xg € R™ and step-size v > 0.

® Fork=0,1,2,...,1let
T =z — YV f(2p).
Suppose that z* € R" is the global minimizer of f.
1. Suppose that v € (0,1/5]. Show that the iterates satisfy the inequality
1 — 25 < (1= o) llzx — 2*|f5.

Use the same technique as in Exercise 7.2.1, but replace the first order condition
for convexity with the first order condition for strong convexity.

Which step-size v gives the fastest convergence rate?

2. In the lectures a different approach is used to analyze the convergence. There it
is shown that

[zt — 2"l < max(l — o7, By — 1) |z — 27|,

holds if v € (0,2/5). What is the best step-size v according to this inequality?

3. Which approach gives the faster convergence rate?
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Exercise 7.4

Consider the minimization problem

o1
minimize ~z7 Qz + ¢’ x
xeR? 2

where Q € S, and g € R". We use the gradient method with constant step-size:
* Pick some initial guess xg € R™ and step-size v > 0.

* Fork=0,1,2,...,let
T = ok — YV f(2p).

Suppose that z* € R” is the global minimizer of f. Moreover, let v € (0,2/3) where

B=1Ql,-
1. Show that
2k1 — 2%y < = Qo [z — 27|,

and that

1 —~Qll, <1

2. Let v = 1/ and find an expression of

HI—’YQH2

in terms of the eigenvalues of Q)

Let the linear convergence rate p € [0,1) be defined as the smallest p so that
|l = 2*[| < p* [|lzo — 2*|

holds for each integer k > 0.
3. Let v =1/4 and let

@=lp ¥

where 0 < ¢ < 1. What is the worst case linear convergence rate p we can expect
given the result above?

Let ¢ = 0. Can you find an initial point x( that achives this worst case conver-
gence rate?

4. Let

e £
o=[: ]
15 1
where 0 < € < 1 and assume that ¢ is much smallar than 1. The eigenvalues of

this matrix are approximately 1 and e. Gradient method will therefore be slow
on this problem also.
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To improve the convergence rate, we want to find a variable change y = Ax for
some invertible matrix A € R™"*" so that the equivalent problem

1
minimize —y? ATQAy + ¢7 Ay
yeR™? 2

has better properties. This is often called preconditioning. Find a diagonal ma-
trix V so that the diagonal elements in V7' QV are 1.

5. What are the eigenvalues of the new matrix V7' QV? What can we expect in
terms of convergence rate of ||y, — y*||?

6. When we have a problem where the proximal gradient method is needed instead
of just gradient descent, why do we usually have to limit ourselves to diagonal
scalings V?

Exercise 7.5

Let f : R™ — R be closed and convex. Consider the poximal point method:
* Pick some initial guess 2y € R™ and v > 0.
* Fork=0,1,2,..., let
Tp+1 = Prox, (k).

1. Show that (f(zx))32, is a nonincreasing sequence by showing that

1
f(zpg1) < flxg) — > [Era—

2. Assume that f is lower bounded by B € R, i.e.
f(x) = B
for each x € R". Show that

|pe1 — 2]l >0 as  k — oo

3. Show that
|zpr —zkl3 =0 as  k — oo.
implies that
disty(s,)(0) = 0 as k— oo.
where

disty f(z) (y) = Seg}f(z) Is =yl

for each z,y € R™. I.e. show that if the reisdual convergence to zero, then the
distance between the subdifferential and zero convergence to zero.
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4. In addition, assume that f is o-strongly convex for some o > 0. Let

x* = argmin f(z).
z€R™

Show that

T, —x° as k— oo.

Remark: A note about the last point. There exist conditions weaker than strong con-
vexity so that the sequence to converges to an optimal point, but strong convexity is
arguably the simplest.

Exercise 7.6

Let f : R" — R be convex and 3-smooth for some § > 0. Let g : R” — R U {co} be
proper, closed and convex. Consider the proximal gradient method:

* Pick some initial guess 2y € R® and v > 0.

e Fork=0,1,2,..., let
Tgy1 = prox,g(zg — YV f(zg)).

Here we restict the step-size such that v € (0,1/3]. Suppose that

x* € Argmin f(z) + g(z).
zeR”

A procedure for proving convergence in function value of the method is given below.
However, some of the steps are missing. Fill in the gaps marked by ... to complete
the procedure.

1. The goal is to get a Lyapunov inequality on the form

Vierr < Vi — Qi

for each integer k > 0, where (Q;);2, is some nonnegative convergence measure
and

Vi = ||z — 2|3

for each integer & > 0. We further define the residual mapping R : R® — R"
such that

Rz =z — prox,,(z — vV f(z))
for each z € R™. The proximal gradient update can then be written as
Tpt1 = Tk — Rag. (7.5)
We can use this to relate Vi to Vi by

Vk—i—l = Vk +... (7.6)
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2. Next, we wish to upper bound the quantity —2(z, — 2*)7 (Ray) + | Rai|3. We
start by using (7.5) to rewrite it as

—2(xp — )T (Rag) + [R5 = —2(zper — )T (Ray) + ... (7.7

3. We now turn to bounding —2(zj,1 — 2*)”(Rx). Using Fermat’s rule on the
proximal gradient update gives that

0 € Og(zpsr) + i (a1 — (25 — 7V f(21))

which is equivalent to that

7_1R$k —Vf(zk) € 0g(xks1)

The definition of a subgradient then gives that

9(x%) > g(zps1) + (v "Ray — V()" (@ — zp41)
which implies that

—2(zpp1 — 2) T (Ray) < ... (7.8)

4. We continue to bound —27V f(x3)” (211 —*). Using the definition of 3-smoothness
of f and the first-order condition of convexity on f gives the two following inequal-
ities:

Flaie) < Flaw) + 9 Fn) (i — 8) + 5 i — mal}

= ) + V) (i — ) + 5[ Rag
Fat) 2 flan) + V) (@ - ).

Adding these two together and rearranging gives that
Flekan) < @)+ V() (i —a%) + 5 Rl

which implies that
~29V f ()T (@ppr — 2*) < ... (7.9)

5. Inserting (7.9) into (7.8), (7.8) into (7.7), and (7.7) into (7.6) gives that

Vi1 S Ve +...

6. Using the assumption v < 37! gives that

Vier1 = Vi — Qk

where

Q= ...

which is nonnegative since v > 0 and ... > ... by assumption on z*.
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7. Since Vi, > 0 and @}, > 0 we we know that

Qr—0 as k— o

Exercise 7.7

Consider the problem

which implies that
.—>... as k— .
min f(z) + g() (7.10)

where f : R" — R is of-strongly convex and -smooth, and g : R” — RU {oo} is proper,
closed and o,-strongly convex, for some 0 < oy < 3 and o, > 0. The problem can then
be solved using the proximal gradient method:

* Pick some initial guess 2o € R" and v > 0.

e Fork=0,1,2,...,let

Let

Tr41 = Proxyg(zr — YV f(2r)).

x* = argmin f(z) + g(z).
TER™

1. Show that the proximal gradient method satisfy

max(l — oy, By — 1)2

2
1+ 0,7 zg — Hz

k1 — 2*3 <

by inserting the definition of 2, in |3, — 2*||3 and then use the following:

The minimum z* is a fixed point to the proximal gradient step.

The proximal operator of a o-strongly convex function is ﬁ-LipschitZ con-
tinuous.

The gradient of f satisfies

Boy
B+oy

(Vi) = Vi) (@ —y) > IV f(z) — V()3 + |z — vl

B+oy
for each x,y € R", since it is o ¢-strongly convex and /-smooth.
Then, in two different cases, use that

- V/f is B-Lipschitz continuous, and that

— the inequality

IV f(x) - Vf(y)”Q >0y |z — yH2

holds for each z,y € R", since f is differentiable and o ;-strongly convex
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2. For which step-sizes v and combinations of oy > 0 and o, > 0 does our analysis
give that the proximal gradient method converge linearly?

3. Note that it is possible to “move” the strong convexity between f and ¢ in some
sense. In particular, consider the following problem

. g 2
h _
min h(z) + ¢(z) + 5 llzll
where h : R — R is L-smooth and convex, ¢ : R” — R U {0} is proper, closed
and convex, and o, L > 0. This can be written as a problem of the form (7.10) by
choosing any § € [0, 1] and forming

(o (o
f=h+oZ I3 and g=6+(1 -0

The objective function f + g will always be the same and will remain o-strongly
convex, regardless of the choice of 5. However, the individual strong convexity of
f and g, and the smoothness of f, will depend on §. Therefore, the same holds for
the linear convergence rate of the proximal gradient method that we can prove.

Compare the convergence rates for the best choice of step-size v when all strong
convexity is put in the gradient step, i.e. § = 1, and when all is put in the
proximal operator, i.e. § = 0.

Hints
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Solutions to chapter 1

Solution 1.1

1. Figures b. and d. represent convex sets since the straight line connecting any
two points with the sets are contained within the sets.

Figures a. and c. represent nonconvex sets since the lines drawn below between
two points in the respective sets are partially outside the sets.

c. d.
2. Figures b. and d. are convex so there exist supporting hyperplanes at the entire
boundary.
a. b.
® ®
® @
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3. Figures b. and d. are convex so the convex hull is the set itself.

Solution 1.2

1. Let z,y € Sand 6 € [0,1]. Then Az = b and Ay = b. Therefore,
Az + (1—0)y) = 0Az+ (1 —0) Ay =0b+ (1 — 0)b=1b
and we conclude that
Or+ (1—0)y e S.

Since, z,y € S and 0 € [0, 1] are arbitrary, the set S is convex. (This is an affine
subspace/intersection of hyperplanes.)

2. Let z,y € Sand 6 € [0,1]. Then Az < band Ay < b. Since 6 and (1 — ) are
nonnegative, we have that

A0z + (1 —0)y) = 0Az + (1 — 0)Ay < b+ (1 —O)b=b
and we conclude that
Or+(1—0)y e S.

Hence, the set S is convex. (This is a polytope /intersection of halfspaces.)

3. Let z,y € Sand 0 € [0,1]. Then z > 0 and y > 0. Therefore, since § and (1 — 0)
are nonnegative,

Bz + (1—0)y >0
and we conclude that
r+ (1 —0)y € S.

Hence, the set S is convex. (This is the non-negative orthant.)
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4. Let z,y € Sand 0 € [0,1]. Then! <z <wuand! <y < u. Since § and (1 — ) are
nonnegative, we have that

0z +(1 -0y <Ou+(1-0u=u
and
Or+(1—-0)y>0l+(1—-0) =1L
In particular,
[<b0z+(1-0)y<u
and we conclude that
Or+ (1—0)y e S.

Hence, the set S is convex. (The constraints that defines the set are called box-
constraints.)

5. Let z,y € S and # € [0,1]. Then |z||, < 1 and ||z||, < 1. Since # and (1 — 6) are

nonnegative, we have that

102 + (1= 0)ylly < [[0z]l5 + [|(1 = )yl
=0 |lzlly + (1 —0) [lylly
<O+ (1-0)
=1

and we conclude that
Or+(1—-0)yeS.

Hence, the set S is convex. (This is the unit 2-norm ball, i.e. all points with
distance to the origin less than one.)

6. The set S is not convex. We prove this by finding a counter example to the defi-
nition of convexity. Let z = ¢; and y = —e;. Then — ||z||, < —1 and — ||y||, < —1.
In particular, =,y € S. However, for the convex combination (1/2)z + (1/2)y we
have that

1 1
z Zyll=0
e+ 2

and therefore

1 1

This show that (1/2)x+ (1/2)y is a counter example to the definition of convexity,
and therefore, we conclude that the set S is not convex, as desired.

7. The condition — ||z||, < 1 holds for each € R". Hence S = R", which is convex.

8. Let (z,t,),(y,ty) € S and 0 € [0,1]. Then |z|, < ¢, and ||y||, < t,. Since 6 and
(1 — ) are nonnegative, we have that

102 + (1 = 0)ylly < Ollll2 + (1 =)yl
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10.

11.

and therefore
Oz + (1 —-0)y,0t, + (1 -0)t,) €8S.
However,
O(z,tz) + (1 —0)(y,ty) = Oz + (1 —0)y,0t, + (1 —6)t,)
and we conclude that
O(z,ty) + (1 —0)(y,ty) €S.

Hence, the set S is convex. (This set is called a second-order cone or Lorentz cone
and is shaped like an ice cream cone.)

. Let X,Y € S and 6 € [0,1]. Note that 6X + (1 — 6)Y is symmetric since X and

Y are. Also, 7 Xz > 0 and 27Yz > 0, for each 2 € R™. Since # and (1 — 6) are
nonnegative, we have that

T OX+1-0)Y)z=02"Xe+ (1 —-0)zTYz >0
for each x € R", and therefore
0X +(1—0)Y =0
or
OX +(1—0)Y € S.

Hence, the set S is convex.

Note that S = {a}, i.e. a singleton. Let z,y € Sand 0 € [0,1]. Then z = a, y = a.
Note that

br+(1—-0)y=a
and therefore
Or+ (1—0)y e S.

Hence, the set S is convex. (In particular, all singletons are convex.)

Note that S = {a,b}. The set S is not convex. We prove this by finding a counter
example to the definition of convexity. Let x = a and y = b. Since a # b, there
exists an index i = 1,...,n such that a; # b;. Suppose without loss of generality
that a; < b;. Create the convex combination

11
z=-x+ —y.
2t T oY

Then a; < z; < b;. Thus, z # a and z # b. In particular,
z¢ 8.

This show that z is a counter example to the definition of convexity, and therefore,
we conclude that the set S is not convex, as desired.
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Solution 1.3

1. Note that V' = {a}, i.e. a singleton. The set V is affine. Let z,y € V. Then
r =1y =aand

ar+(1l—a)y=acV

for each o € R. Therefore, the set V' is affine. (In particular, all singletons are
affine.)

2. The set V is not affine. We prove this by finding a counter example to the defi-
nition of affine set. Note that a,b € V. Since by assumption a # b, there exists
an index i = 1,...,n such that a; # b;. Suppose without loss of generality that
a; < b;. But then

x; < b;
for each = € V. Create the affine combination
z=(-1a+(1—(-1))b=—a+ 2b.
But it holds that b; < —a; + 2b; = z;. In particular, we must have that
2 ¢ V.

This show that z is a counter example to the definition of affine set, and therefore,
we conclude that the set V is not an affine set, as desired.

3. The set V is affine. Let =,y € V. But then there exists oy, as € R such that

r=ora+ (1 —oa1)b
= oa + (1 — Ozg)b.

Note that

ar+ (1 —a)y = (aa; + (1 —a)az)a+ (a(l —ai) + (1 —a)(l — a2))b
= (aog + (1 —a)ag)a+ (1 — (aog + (1 — a)ag))b
=faa+ (1= Ba)beV

where 3, = aa; + (1 — a)ag, for each a € R. Thus, V is an affine set.

Solution 1.4
Figures (a), (b), and (d) are cones. Figures (a), (b) and (c) are convex.

Solution 1.5

All the sets in this exercises are in Exercise 1.2 and were shown to be convex. It
remains to decide which of them are cones.
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1. Let z € S, i.e., Axr = 0. Then A(ax) = aAz = 0 for each a > 0. Hence, ax € S for
each o > 0 and S is a cone.

2. Let z € S,i.e, Ax = b # 0. Then A(ax) = aAz = ab # b for each a # 1 (unless
b = 0), and therefore ax ¢ S. Hence S is not a cone.

3. Let z € S,i.e., Az <0. Then A(ax) = aAz < 0 for each o > 0. Hence ax € S for
each a > 0 and S is a cone.

4. The inequality Az < b consists of m scalar inequalities azT:c < b; that all must
hold. Here, q; is the ith row of the matrix A and b; is the ith element of the vector
b. Let x € S be such that aJT:r = b; (such z always exists by assumption on j).

Now, a;‘r(am) = oza;‘-F:C = ab; for each o > 0.

Ifb; > 0 and o > 1, then a (ax) = ab; > bj and ax & S.
Ifb; <0and a € [0,1), then a?(ax) =abj >bjand ax &€ S.
Hence, S is not a cone.

5. Letx € S,ie., z > 0. Then az > 0 for each o > 0. Hence, ax € S for each o > 0
and S is a cone.

6. Let (z,t) € S, i.e, |z], < t. Then |az|, = a|z|, < ot for each a > 0. Hence
(ax, at) € S for each a > 0 and S is a cone.

7. Let X € S, i.e., X is symmetric and 27 Xz > 0 holds for each z € R". Scaling
X by « does not destroy symmetry. Also, 27 (aX)z = az” Xz > 0 for each a > 0
and for each z € R"™. Hence, X € S for each oo > 0 and S is a cone.

Solution 1.6

1. Intersection. Take z,y € C. Thenz,y € C and z,y € Cs. Therefore, by convexity
of C1 and Cy, we have for each 6 € [0, 1] that Oz +(1—-0)y € Cy and Oz +(1—-0)y € Co.
Hence, 6z + (1 — 0)y € C, which shows that C is convex.

2. Union. Take C, = {0} and Cy = {e1}. Then C = {0, e;}. This is not convex since,
e.g., 0.5e1 € C.

Solution 1.7
Let z,y € (e, Cj and let 6 € [0,1]. Then

bz + (1 —0)y € C;

by convexity of C;, for each j € J. Therefore,

0z +(1-0)ye )G
jeJ

We conclude that the set (), ; C; is convex.
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Solution 1.8

1. Let x,y € h,, and let 6 € [0, 1]. Note that
sT 0z +(1-0)y)=0sTx+(1—0)sTy=0r+(1—0)r=r
Therefore, 0x + (1 — 0)y € hs,. We conclude that h, is convex.
2. Let z,y € Hy, and let § € [0, 1]. Note that

sT 0z +(1—0)y)=0sTz+1—-0)sly<br+1—0)r=r
Therefore, 0x + (1 — §)y € H,,. We conclude that H; , is convex.

3. Note that the set C can be written as an intersection of affine hyperplanes and

halfspaces:
= ( ﬂ hsuh) m ( ﬂ HS“”) ’
ie{l,...,m} ie{m+1,...,p}

In particular, we see that the set C is given by an intersection of convex sets, and
is therefore itself convex.

Solution 1.9
All of the sets are polytopes and therefore convex.

Solution 1.10

1. Let y1,y2 € f(C) = {Az+b: 2 € C} and let 0 € [0,1]. There exists 1,22 € C
such that

y1=Ax1+b and yo = Axg +b.
We have 0z1 + (1 — )z € C since C is convex. Note that
Oy + (1 —0)ya = A(Ox1 + (1 — O)ze) + b € f(O).
We conclude that f(C') is convex.
2. Let z1,290 € f71(D) = {x: Az + b€ D} and let 6 € [0, 1]. We know that

Azx1+be D and Azy+beD.
By convexity of D we get that
O0(Az; +b)+ (1 —0)(Azy +b) = A(Ox1 + (1 —O)x2) + b€ D.

In particular, we note that 6z, + (1 —0)xy € f~1(D). We conclude that f~1(D) is
convex.
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Solution 1.11
Let 2,y € domf and 0 € [0, 1]. Then, by definition of convexity of f, we have that

[0z + (1 =0)y) < 0f(x) +(1—-0)f(y) < <.
This implies that
Ox + (1 —0)y € domf.

We conclude that domf is convex.

Solution 1.12

1. The function is convex. We need to prove that
te(0x + (1= 0)y) < bue(x) + (1 —0)e(y) (7.11)

for each =,y € R" and for each 6 € [0,1]. Moreover, recall that we are using
arithmetics in the extended real numbers. In particular, we use the convention
that

0-c0=0

a-oo=o00 foreach a>0
at+ococ=00+a=0o0c foreach aeR
00 + 00 = 00

a<oo foreach acRU{oo}

* Suppose that x,y € C. Then the lefthand side of (7.11) is 0 since 6z + (1 —
0)y € C by convexity of C, and the righthand side of (7.11) is 0 since 00 +
(1 —6)0 = 0. Thus, (7.11) holds in this case.

* Suppose that z ¢ Cory ¢ C. If 6 € (0,1) then both # and 1 — 6 are positive,
and the righthand side is oo, which is always greater or equal to the lefthand
side. Thus, (7.11) holds in this case. If § € {0,1} then at least of one of §
and 1 — 6 is positive, and the righthand side is oo, which is always greater
or equal to the lefthand side. Thus, (7.11) holds in this case.

This covers all cases. Therefore, (7.11) always holds, and we conclude that the
function f is a convex function.

2. The function is convex. Note that
f0x+(1—=0)y) = |0x+ (1 —-0)y|
< [|0z]| + [|(1 = 0)y]|
<Ozl + (1 -0) [yl
=0f(x) +(1-0)f(y)

for each z,y € R™ and for each 6 € [0, 1]. Therefore, f is a convex function.
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. The function is not convex. We will find z,y € R™ and 6 € [0, 1] such that

F(02+ (1= 0)y) < 0f(x) + (1 — 0)£(y) (712)

fails. Indeed, pick x = —y # 0 and § = 1/2. Then

f(Oz+(1—0)y)=—0]| =0
and
1 1
0 (@) + (1= 0)f(y) = —5 llall = 5 ==l = = || < 0.

This example violates (7.12). Therefore, f is not a convex function.

. The function is not convex. The function f is twice differentiable with Hessian
9 {01

for each (z,7) € R?. Note that the Hessian is not positive semidefinite (it is sym-
metric but has eigenvalues 1 and —1). Therefore, by the second-order condition
for convexity, we conclude that f is not a convex function.

. The function convex. Note that

f(0x+(1—0)y) =a’ Bz + (1 —0)y)+b
=0tz +b) +1—-0)(a'y+0)
=0f(z)+(1-0)f(y)

for each z,y € R™ and for each 6 € [0, 1]. Therefore, the convexity definition holds
with equality, and we conclude that f is a convex function.

. The function is convex. Indeed, the function f is twice differentiable with Hes-
sian V2f(x) = Q = 0 for each z € R". Therefore, by the second-order condition
for convexity, we conclude that f is a convex function.

. The function is convex. Note that

(z,y) = e(y)
is convex by Exercise 1.12.1 (and by Exercise 1.19) and that
(z,y) = [lz =yl

is convex by Exercise 1.12.2 and the composition rule with a linear mapping.
Therefore,

(z,y) = |z =yl +c(y) = h(z,y)

is a convex function since it is the sum of convex functions. Note that
= inf h = inf [|x —
f(x) inf (,y) Jnf, |z —yll

is convex by the convexity under partial minimization rule, establishing the de-
sired result.
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Solution 1.13

f(z) = |o| + 22 f(z) = max(|z|, %)

f(z) = min(|z|, 2%)

Solution 1.14
The epigraph of f is

epif = {(z,7) €ER" xR: f(z) <r}
={(z,r) ER"xR:a’z+b<r}

={(z,r) eR"xR: [T, —1] m < -b}

which is a halfspace in R"t!.

Solution 1.15

Suppose that f is convex. Let (x1,71), (x2,72) € epif and let 6 € [0,1]. By convexity of
f, we get that

f(Oz1 + (1= 0)x2) <Of(x1) + (1 —0) f(x2)
< 07’1 + (1 — 9)’/“2
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since # and 1 — 6 are nonnegative. This implies that
O(z1,m) + (1 —0)(x2,72) = (01 + (1 — 0)x2,0r1 + (1 — 0)r) € epif.
Thus, epif is convex.
Conversely, suppose that epif is convex. The condition defining convexity is that
fOx1+ (1 —0)xe) <Of(x1)+ (1 —0)f(x2) (7.13)

for each z1, 22 € R™ and for each 6 € [0,1]. If x; ¢ domf or x; ¢ domf, condition (7.13)
holds trivially for each 6 € [0,1]. Thus, consider the case when z1,z2 € domf. But
then (x1, f(z1)), (x2, f(z2)) € epif. Thus, by convexity of epif, we get that

(01 + (1 = 0)xg, 0f (x1) + (1 = 0) f(22)) = 0(x1, f(21)) + (1 = 0)(w2, f(22)) € epif
for each 6 € [0,1]. This implies that
f(0z1 + (1= 0)x) < O0f(z1) + (1 - 0)f(2)

for each 0 € [0,1], i.e. condition (7.13) holds. This covers all cases and we conclude
that f is convex.

Solution 1.16

1. Note that

FOx+ (1= 0)y) =Y aifi(0z+ (1 - 0)y)

=1

<Y ailbfi(z) + (1 0)fiy)]
=1

=0 aifi(z) +(1-0) aifiy)
i=1 =1
=0f(z)+(1-0)f(y).

for each z,y € R™ and for each § € [0, 1]. We conclude that f is convex.

2. Recall that a function is convex if and only if the epigraph is convex (see Exercise
1.15). Thus, epif; is convex for each : = 1, ..., m, by assumption. Note that

epif = {(z,r) e R" xR : f(z) <r}

- {(x,r) ER"xR: max fi(z) < 7“}

i=1,....m

={(z,r) e R" xR : fi(z) <rand fao(x) <r... and fp(z) <7}
= ﬂ {(z,7) e R" xR : fi(z) <r}

i=1,....m
= ﬂ epifi.
i=1,...,m

Therefore, epif is convex since it is the intersection of convex sets (see Exercise
1.7). We conclude that f is convex.
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Solution 1.17

1. We know that ||z is convex. Define

yP ify >0
h(y) = .
0 otherwise

Since & is a non-decreasing and convex, the composition i (||z|) = ||z||” is convex.

2. The function
2 ||z]13
is convex by the previous subproblem and
z s ||Az — b||3

is convex since it is a composition of a convex function with an affine mapping.
The function

z = |z,
is convex since norms are convex. Therefore, the function
2
x> [|[Az —bl|5 + [[=]|; = f(z)

is convex since it is a sum of convex functions.

3. All norms in the max expression are convex. The max operation preserves con-
vexity.

4. The function

x — max(0,1 4 z;) (7.14)
is convex since it is the maximum of two convex functions, and this holds for each
i =1...,n. The function

n
x Z max(0, 1 + z;) (7.15)
i=1

is convex since it is the sum of convex functions. We have already established
that

2
z = [|z3
is a convex function. Therefore, the function
n
z Y max(0,1+ ;) + [z]3 = f(x)
i=1

is convex since it is a sum of convex functions.
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5. Suppose that y € R" is fixed. The function

2Ty —g(y)

is an affine function and therefore also convex. Recall that the supremum of
convex functions is convex. However, f is nothing but a supremum of convex
functions, i.e.

f(x) = sup (z"y — g(y))
yeR”

where R" is the index set. We conclude that f is a convex function.

Solution 1.18

1. The set C,, is nonempty since z € C,,. Let ;1 € C, and z3 € C,. Then, g(z1) < «
and g(x2) < a. By convexity of g, we have that

g(0z1 + (1 = 0)x2) < Og(x1) + (1 — 0)g(x2)
<fOa+(1-0)

=«
and therefore
Ox1+ (1 —60)xs € C,
for each 6 € [0,1]. We conclude that C,, is convex.

2. Let g be as follows:

9()

0

3. Let g be as follows:

Solution 1.19
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Consider any (x1,¥1), (x2,y2) € R™ x R"2 and any 6 € [0, 1]. Note that

9Oy + (1= 0)z2, 01 + (1 = O)y2) = f(O1 + (1 = 0)az)
<O0f(z1) + (1 —0)f(z2)
=0g(z1,y1) + (1 — 0)g(z2,y2)

due to convexity of f. We conclude that ¢ is convex.

Solution 1.20

1. The set is a sublevel set of a norm and norms are convex. We conclude that the
set is convex.

2. The norm ||z||2 is convex in (z,y) and —t is convex in (z,t). Therefore, their sum
||x||2 — t is convex in (x,t). But the set is nothing but a sublevel set of the convex
function ||z||2 — t, and therefore a convex set.

Alternatively, the set is equal to the epigraph of the convex function = — ||z||2
and is therefore a convex set.

Solution 1.21

We proceed by a proof by contradiction. Assume on the contrary that z* is not a global
minimum (but still a local minimum with parameter ¢). This means that there exists
z € R™\ {z*} such that

f(@) < f(@®).
By convexity of f, we have
f(L=0)z" +0z) < (1—-0)f(2") +0f(2) < (1—0)f(z") +0f(z") = f(z")
or simply
F(A—=0)a" +0z) < f(z") (7.16)

for each 0 € (0, 1] (note that we must exclude the case § = 0 for the inequality above to
hold). Now, let

x=(1-6)z" +0x

for some 6 € (0, 1] small enough (for instance, # = min (1, ﬁ) will suffice here).
Note that

|z — 2™ =[|(1-8)z" + 0z —a™|| = O[z" -z <&
or simply

[l — 2% <0
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However, note that (7.16) mush hold for this z, i.e.
flz) < f(z").

But this is a contradiction to the fact that z* is a local minimum of f (with parameter
0). Therefore, x* must be a global minimum.

Solution 1.22

1. Since f is proper, we know that there exists a y € R™ such that

fly) < oo
By (1.1), we get that

f@™) < fly) < oo

This implies that 2* € domf. Next, we prove that z* is the unique minimizer of
f via a proof by contradiction. Assume on the contrary that there exists another
minimizers x € R" of f,i.e., x # 2* and f(z) = f(z*). This implies that z € domf.
Then, by strict convexity of f, we have that

(g4 50°) < 5U@+ 1) = 1)

which is a contradiction. Hence, at most one minimizer can exist.

2. Consider the strictly convex function f : R — R U {oco} such that

1
— ifz >0,
fl)=q=
oo otherwise.
Clearly,
S =0

However, there exists no 2 € R such that f(z) = 0. See the figure below.

Solution 1.23
See figure below.
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/( Y,

Not smooth: The function does not have full effective domain. Hence, it can
not be smooth.

Strictly convex: It is strictly convex since it has no flat regions.

Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

Not smooth: The function does not have full effective domain, hence it can
not be smooth.

Strictly convex: It is strictly convex since it has no flat regions.

Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

Smooth: The function is smooth since it has quadratic upper bounds every-
where.

Not strictly convex: It is not strictly convex since it has flat regions.

Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

Smooth: The function is smooth since it has quadratic upper bounds every-
where.
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Strictly convex: It is strictly convex since it has no flat regions.

Strongly convex: It is strongly convex since there is quadratic lower bounds
everywhere.

Not smooth: The function is not differentiable 0. Hence, it can not be
smooth.

Not strictly convex: It is not strictly convex since it has flat regions.

Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

Smooth: The function is smooth since it has quadratic upper bounds every-
where.

Not strictly convex: It is not strictly convex since it has flat regions.

Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

Not smooth: The function is not smooth since it has no quadratic upper
bounds.

Strictly convex: It is strictly convex since it has no flat regions.

Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

Not smooth: The function is not smooth since it has no quadratic upper
bounds.

Strictly convex: It is strictly convex since it has no flat regions.

Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

Solution 1.24

1. See the figure below. The graph a valid function must lie within the dark shaded
areas. The dashed lines are examples of valid functions f. Note that smoothness
always requires differentiability. The example in the convex case can therefore
not be used in the smooth case even though it lies within the shaded region.

Convex

Convex and Smooth
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Solution 1.25

1. See the following figure. The graph a valid function must lie within the shaded
areas. The dashed lines is are possible functions f.

' 1 ) 1 1
Strictly Convex Strictly Convex and Smooth Strongly Convex and Smooth

Solution 1.26
If a = 0 or b = 0 the statement is obvious. Assume that a,b > 0. Let f : R — R such
that

f(z) = exp(w)
for each = € R. Note that
f"(x) = exp(x) >0

for each x € R. By the second-order condition for convex functions we conclude that f
is convex. Note that

1 1
ab = exp <p1na + qlnb>
p q

convexity of exp ] 1
< —exp(plna) + — exp(qlnb)
p q
a? bl
P g

as desired.

Solution 1.27

1. Suppose that f is convex. Let x,y € R"™. By the convexity of f, we have that
fle+0(y—2z) <(1=0)f(x)+0f(y)
for each ¢ € (0,1]. This can be written as
0f(y) = 0f(x) + flx+0(y —x)) — f(x)

for each 0 € (0, 1]. If we divide both sides by 6 and take the limit as 6 \, 0, we
obtain

Fw) > f(@) + Jim flz+6(y - z)) — f()

= f(z)+ Vi) (y —2),
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where the equality follows from the hint. In particular, (1.3) holds.
Conversely, suppose that (1.3) holds. Let z,y € R", § € [0,1], and let z = 0z +

(1 —0)y. Then
f@) 2 f2) + Vi) (@ —2) = f(z) + 1= 0Vf(x) (x—y),
Fy) = f(2) + V() (y = 2) = f(z) =0V f(2)  (x —y)

Multiplying the first inequality by 6, the second by 1 — 6, and adding them gives
0f(z)+ (1 —=0)f(y) = f(z) = f(Oz + (1 - 0)y)

since 6 € [0, 1]. We conclude that f is convex.

2. Consider the following function f and point x:

X

/TN

Solution 1.28
By Exercise 1.27 we know that

fy) 2 fl@) + V(@) (y —2) = f(z)

for each y € R"™. We see that z is a global minimizer of f.

Solution 1.29

Suppose that f is strictly convex. We know from Exercise 1.27 that we must have that

Fy) = f(@) + V(@) (y - x)

for each x,y € R™. Suppose towards a contradiction that (1.4) does not hold, i.e. there
exists z,y € R", x # y such that

fy) = f(@) + V(@) (y — ). (7.17)
Define the function ¢ : R — R such that
¢(t) = flz+t(y —x) — f(x) =tV f(2)" (y — x)
for each ¢ € R. Note that (7.17) can be written as

$(0) = ¢(1). (7.18)



It not hard to show that ¢ is strictly convex and differentiable. Note that
¢'(0) = 0.

By Exercise 1.28 we see that 0 is a minimizer of ¢. But (7.18) gives that 1 is a minimizer
of ¢ too. However, since ¢ is strictly convex, this gives a contradiction by Exercise 1.22
— strictly convex functions can only have an unique minimizer.

Conversely, suppose that (1.4) holds. Let =,y € R™ such that x # y, 6§ € (0,1), and let
z=0z+ (1 —0)y. Then

f@)> f(2) + V() (&= 2) = f(2) + A = OV f(2) (z —y),
Fly) > )+ V) (y—2) = f(2) = 0V(2) (& —y)
Multiplying the first inequality by 6, the second by 1 — #, and adding them gives
0f(x) +(1—=0)f(y) > f(2) = f(6z + (1 - 0)y)

since 6 € (0,1). We conclude that f is strictly convex.

Solution 1.30
Suppose that f is o-strongly i.e. f — ||-||§ is convex. The derivative of f — ||-||§ is

Vi(x)—ox

for each = € R. Exercies 1.27 gives that f — HH% is convex if and only if
) =5 Il = f(@) = 5 llzll3 + (Vi (@) = o) (y - 2)
for each x,y € R™. This is equivalent to that
F) = f@) + Vi@ (y—2) + 2 Iyll3 = 2 Il — 0" (y — )
= f@) + V@) (g —2) + 2 Iyll3 + 3 llal; — 02"y
= @)+ V@) (g —2) + 2 o — v}

for each x,y € R™. But this is (1.5). This completes the proof.

Solution 1.31

1. Consider the case x € C. Then Ax — b = 0 and we get that

sup pul (Kz —b) =0=10(x).
/J,GR""‘ ﬁa_/
Next, consider the case x ¢ C. Then Az — b # 0. Consider p = t(Kx — b) where
t € R. Then
pl(Kz—b)=t|Ke—b||> > 00 as t— oo
—_—

>0
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In particular,

sup pl (Kz —b) = 0o = 1o(x).
pER™

2. Consider the case = € C. Then g(z) < 0 and we have that
plg(z) <0

for each i € R". Moreover,

for ;1 = 0. Therefore,

Next, consider the case z ¢ C. Then there exists an index i € {1,...,m} such
that (g(x)); > 0. Consider ; = te; € R’} where t > 0. Then

plrg(z) =t(g(z))i — 00 as t— oo

——
>0

In particular,

sup 1 g(x) = oo = 1o(x).
HERT?

Solution 1.32

1. We want to show that
h(0x + (1 —0)y) < 6h(z) + (1 — 0)h(y) (7.19)

for each =,y € R and for each § € [0,1]. If x = y or # = 0 or 6 = 1, inequality
(7.19) holds trivially. Thus, assume that = # y and 0 € (0,1). We may without
loss of generality assume that = < y. Then we have that

x<Oxr+(1-0)y<y.
By the mean value theorem, there exists &1, &> € R such that

h(6z+ (1 —0)y) — h(x) h(0z+ (1 —0)y) — h(x)

(1-0)(y—=) T Gz +(1-0y) —= = W' (&),
h(y) — h(0z+ (1 —0)) _ h(y) —h(bz + (1-0)) _ Vi
0y — ) y—(0z+(1-0)y)

and

r<&§ <Or+(1—-0y<&<y.
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Multiplying the first equality by —0(1 — 6)(y — z), the second equality by (1 —
0)(y — x) and noting that h'(&;) < /(&) gives that

—0(h(0x + (1 = 0)y) — h(x)) = —0(1 = 0)(y — 2)W (&) = —0(1 = O)(y — z)h'(&a),
(1= 0)(h(y) = h(0z + (1= 0))) = 0(1 = 0)(y — z)1'(&2)

Summing these and rearranging gives (7.19). We conclude that & is convex.

2. Suppose that p = 1. Then

h(z) = {x ifz >0

0 otherwise.

Note that & is not differentiable. However, it is trivial to check that h is nonde-
creasing and convex using the definitions. Next, suppose that p > 1. Then A is
differentiable and

W () = pxP~t if2 >0
0 otherwise.

Since i’ > 0, we conclude that h is nondecreasing. If we can show that 7’ is
nondecreasing, we know that h is convex by the previous subproblem. Thus, let
x<y. Ifz<y<0orz<0<yitis trivial to show that #'(z) < h'(y). Therefore,
assume that 0 < z < y. But then

Inx <Iny
=
(p—1)lnz < (p—1)Iny
=
exp((p — 1) Inz) <exp((p—1)Iny)
=

W(z) =paP~" =pexp((p— 1) Inz) < pexp((p — 1) Iny) = py* " = h'(y).

This shows that /' is nondecreasing and thus, & is convex. This concludes the
proof.

Solution 1.33

We proceed by induction on n. In the base case n = 1, inequality (1.6) holds trivially.
For the inductive step, assume that inequality (1.6) holds for n = k, where k € N. We
need to prove that inequality (1.6) holds for n = k£ + 1. In the case ;.1 = 1, inequality
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(1.6) holds trivially. Therefore, assume that 0,1 < 1. Note that

k+1 k
f <Z 91%) =f (Z O;x; + 9k+1l‘k+1>
i—1

=1

k
=f <(1 — Oks1) <Z i xz) + 9k+1$k+1>

10k

convexity of f k

< (1= 6Oks1)f (Z o wz) + Ok 1 f(Tt1)

1=k

inductive assumption k

< (1 _9k+1)ZLJC<xi) + 01 f (2r11)

1 — 0kt

=1

k+1

=> 0;f(xs).
=1

Thus, inequality (1.6) holds true for n = k + 1, establishing the inductive step. By
mathematical induction, inequality (1.6) holds true for each n € N.

Solution 1.34

First, we recall some definitions. The function f is called affine if the function
z— f(x) — f(0) (7.20)

is linear. Moreover, the function f is called concave if — f is convex. Thus, f is concave
if and only if

fOx+ (1 =0)y) = 6f(x)+ (1-6)f(y)
for each =,y € R™ and for each 6 € [0, 1].

First, suppose that f is affine. We then know that the function (7.20) is linear. Let
z,y € R"and 0 € [0, 1]. Then

f(0x + (1 =0)y) - f(0) =

0(f(z) = £(0)) + (1 = 0)(f(y) — £(0))
=40

f(x) + (1 =0)f(y) — f(0)
which implies that
[0z + (1=0)y) =6f(x)+(1—-0)f(y)

In particular,

f0z+ (1 —0)y) <Of(x)+ (1—6)f(y)

and

fOx+(1=0)y) = 0f(x)+ (1—-0)f(y)

holds, and we conclude that f is both convex and concave.
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Conversely, suppose that f is concave and convex. Define the function g : R” — R such
that

g9(x) = f(z) — f(0)
for each = € R™. We need to show that g is linear. Note that g is concave and convex.
This implies that

g0z + (1= 0)y) = Og(x) + (1 - 0)g(y)

for each z,y € R™ and for each 6 € [0,1]. Moreover, note that g(0) = 0. Let z € R".
Then

0=g(0)

CE)

— L@+ 2o

2 2
which shows that ¢ is an odd function, i.e.
g(—z) = —g().

We have the following two facts:
® Claim: The function ¢ is homogeneous of degree 1, i.e.
glaz) = ag(x)
for each 2 € R™ and for each a € R.

Proof: Let x € R". The cases o = 0 or & = 1 hold trivially. Suppose that o € (0, 1).

Then
g(azx) = glaz + (1 — a)0)
= ag(z) + (1 — a)g(0)
— ag(@) + (1—a)0
= ag(x).

Suppose that « > 1. Then

which implies that

Suppose that o < 0. Then

This covers all cases.



¢ Claim: The function g is addative with respect to addition, i.e.

9(z +y) = g(z) + 9(y)
for each z,y € R™.
Proof: Let x,y € R™. Then

glr+y)=g (;(295) + ;(2y)>

= 5022) + 39(2)

= 2 (29(x)) + 3 (2(0))
=g(x) + 9(y).
This proves the claim.

These two facts give that

glax + By) = ag(x) + Bg(y)

for each z,y € R™ and each «, 5 € R, i.e. g is linear. Thus, we conclude that [ is affine.

Solution 1.35

Assume that f is o-strongly convex, i.e. f(z) — %[|z||3 is convex. By definition, this
means that

F(2) = §llzl3 < 0(f(x) = §lll3) + (1 = O)(f(y) — §llyll3) (7.21)

where z = 0z+(1—0)y, for each z,y € R" and for each 6 € [0, 1]. But (7.21) is equivalent
to

fz) < 0f(2) + 1= 0)f(y) + §(II=l13 — Oll«l3 — (1 = )]ylI3) (7.22)
for each z,y € R™ and for each # € [0, 1]. Note that

1213 — Oll(13 — (1 - 0)llyll3

= [0z + (1= 0)ylz - 0llz]3 — (1 - O)llyl3

= (0° = 0)|zll3 + (1 = 0)* — (1 = 0))lly[13 + 20(1 — O)zTy

= (001 = 0)(~llz]3 — llyll3 + 227y)

= —(0(1 - 0))(Il= - yl3). (7.23)

Inserting (7.23) into (7.22) gives (1.7). This proves the equivalence.

Solution 1.36
Recall that the spectral norm || A||, of A is defined such that

[A]ly = max {||Az[|, : x € R™, [[zfl, <1}.
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This definition implies that
[Az]ly < [|Ally (2]l
for each x € R™. We have that
Vg(x) = ATV f(Az —b)
for each z € R™. Let =,y € R™. Note that
IVg(x) = Vg(a)ll, = A"V f(Az — b) — ATV f(Ay - b),

= [[AT(Vf(Az = b) = VF(Ay - b)),
= [|AT]|, I(V f(Az = b) = V f(Ay = b)),
= B[ AT, [I(Az = b) — (Ay = )|,
= B[ AT, A(z =y,
= B[ AT, 1Al lz = yll,
= BllAlI3 llz = yll, -

This shows that Vg is (|| A3-Lipschitz continuous. We conclude that g is 3| A|3-
smooth, as desired.

Solution 1.37

We first prove the equivalence in the simple case when § = 0. Property I) is equivalent
to f being affine. Moreover, property I1)-IV) simply give that f is convex and concave.
But this holds if and only if f is affine. Therefore, I)-IV) are equivalent.

Next, we consider the case when 5 > 0.

I) = II): Assume that I) holds. Note that for z,y € R" and ¢ € R,
0
Sil @ty —2) = V(e +ty - 2)"(y - ).
This gives that
1
Flo) = $(@) = [ VSt tly =) (o - ) (7.24)

for each z,y € R™. Subtracting Vf(x)” (y — z) from the expression above and taking
absolute value yields

|fy) — f(x) = V() (y — )|
1
/0 (Vf (@ 4ty — ) — V(@) (y — z)dt

1
< /0 (Vf(x 4ty — ) — V@) (y — )| dt
Cauchy-Schwartz 1

< /0 IV + by — 2)) — V@) l2lly — 2l|2dt
¢ 18y — ol

By
= Ly — 2l
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I.e. II) holds.
IT) = I): Assume that II) holds. Consider any z,y, z € R™. In II), insert z for y in the
first inequality, and insert y for 2 and z for y in the second inequality. I.e.

{f(z) < f(@) + V)T (2 —x) + 5z - 23,
F) > f@) + VW (2 —y) — Sy — 2|3,

or

{f(z) < fla) + V@) (z —a) + 8|z — 2|3,
< f(2) = VIWT(z—y) + Ly — 23

Adding this pair of inequalities yields
F(w) < F() + V1@~ ) = V@) ) + Dl — 213+ Dy — =13
= J(@) = V)2 + V1) g+ S el + DI+ Bll=I3 + 2 (VS () ~ V() B~ By)
= (@)~ V)2 + V1) + D el3+ 23
+ Bl + 55(V (@) = VE() — B = By)I = Bl55(V/ (@) = V) = Bz = By 3
We are free to choose z = —%(v f(x) = Vf(y) — Bz — By). This gives

F6) < @) = V() + V)T + Sl + S0l - 15194) - Vi) - 6o - Byl

= f(z) (V@) - Vw3

1
-
+ Dl + Dl D+ i~ VI @) e+ V@) + (V@) — V) @+ )

= 1(@) = 3519 F@) = VIR + Fllo — vl + 5 (V7() + VIW) - o)

We may insert = for y and y for x in the in inequality above. This yields the pair of
inequalities

{f(y) < f(@) = HIVI@) = VIWIB+ e — yl3 + 5(VF() + Vi) (y - 2),
f@) < f) = HIVFW) = V@B + Slly — 23+ 3(V£(y) + V()

Adding the pair of inequalities gives

=2
s
)
|
s

1
0<—5 IV F) = V@I + Sl — ol

i.e. I) holds.

IT) & III): Note that the gradient of 2||z||3 — f(z) and f(z) + 2|jz|3 are fz — Vf(z)
and Vf(x) + Sz, respectively. By the first-order condition for convexity, we get that
Bl|lz)13 — f(x) and f(z) + 5||z|3 are convex if and only if

{‘éuyug — f(y) = Blzl3 - f(2) + (Bx — V()T (y - ),
F) + 21913 > f(2) + L2} + (Vf(2) + Be)T (y — ),
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or

{f(y) < f@)+ V@) (y—2) + 5z — yl3,
> f(z) + V(@) (y— ) — 5z —yll3,
holds for each z,y € R™. But this is II).

ITI) & IV): Applying Exercise 1.35 (the statement in Exercise 1.35 generalizes to all
o € R and the proof remains exactly the same) to ngH% — f(x) and f(z) + ngH% gives
the result immediately.

Solution 1.38

By Exercise 1.37 we get that I) is equivalent to that 2 ||z||3 — f(z) and f(z) + 2 |z[|3 are
convex function. However, by the second-order condition for convex functions, this is
equivalent to

BI —V2f(z) = 0and V2f(z) + BI = 0, for each z € R",

respectively. This is simply II). This establishes the desired equivalence.
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Solutions to chapter 2

Solution 2.1

1. The function is convex, finite-valued and differentiable with V f(x) = z. There-
fore, 0f(x) = {Vf(x)} = {}.

2. The function is convex, finite-valued and differentiable with Vf(z) = Hz + h.
Therefore, 0f(z) = {Vf(z)} = {Hx + h}.

3. The function is convex, finite-valued and differentiable except at z = 0.

* For © < 0, the function is f(z) = —z and differentiable with gradient
V f(x) = —1. Therefore, 0f(z) = {Vf(x)} = {—1} in this case.

* Forx > 0, the function is f(z) = x and differentiable with gradient V f(z) =
1. Therefore, 0f(x) = {V f(x)} = {1} in this case.

* At z = 0, all elements in [—1, 1] are subgradients. See the figure below.
Therefore, 0f(xz) = [—1,1] in this case.

Thus,
{-1} ifz <0,
of(x) =< [-1,1] ifx=0,
{1} ifz > 0.

of

(1’{%1)

(0,-1)

4. The function is convex.

* For z < —1 or x > 1, we have that 2 ¢ domf. Therefore, 9f(z) = () in this
case.

® For z € (—1,1) C relintdomf, the function is f(z) = 0 and differentiable
with gradient V f(z) = 0. Therefore, 0f(x) = {Vf(z)} = {0} in this case.

* For x = 1, each s > 0 is a subgradient. See the figure below. Therefore,
df(x) = [0,00) in this case.
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e For x = —1, each s < 0 is a subgradient. See the figure below. Therefore,
df(z) = (—o0,0] in this case.

Thus,

[—00,0] ifz=—1,
{0} ifz e (—1,1),
[0,00] ifz=1,

0 otherwise.

Of (x) =

Remark: Note that this subdifferential is the inverse of the subdifferential of |z|.
of

5. The function is convex and finite-valued.

* For + < —1, the function is f(z) = 0 and differentiable with gradient
Vf(z) = 0. Therefore, 0f(z) = {Vf(x)} = {0} in this case.

® For x > —1, the function is f(z) = 1 4+ = and differentiable with gradient
Vf(z) = 1. Therefore, 0f(z) = {Vf(x)} = {1} in this case.

* Forz = —1, each s € [0,1] is a subgradient. See the figure below. Therefore,
Jdf(z) = [0,1] in this case.
Thus,
{0} ifz < -1,
of(z) =41[0,1] ifx=-1,
{1} ifz> -1
of
f(@)

/|

(1,-1)

(0, —1) (0.5, —1)

6. The function is convex and finite-valued.

* For x < 1, the function is f(z) = 1 — = and differentiable with gradient
V f(x) = —1. Therefore, 0f(z) = {Vf(x)} = {—1} in this case.
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* For z > 1, the function is f(x) = 0 and differentiable with gradient V f(z) =
0. Therefore, 0f(z) = {V f(z)} = {0} in this case.

* Forz =1, each s € [-1,0] is a subgradient. See the figure below. Therefore,
Jdf(z) = [—1,0] in this case.

Thus,
{-1} ifz<1,
of(x) =< [-1,0] ifx=1,
{0} ifz > 1.
f(x) of
A ’
xr
(-1.Ln
(=0.5,-1) (0, —1)
Solution 2.2

1. See figure below.

x1: There is one affine minorizor to f at x; with slope —3. Hence, 0f(z;) =
{—3}. The function f is also differentiable at x; with gradient —3. Hence,
Vf(l’l) =-3.

x9: There is no affine minorizor to f at xo. Hence, df(z) = 0. However, f is
differentiable at x5 with gradient V f(z2) = 0.

x3: There are several affine minorizors to f and z3. Their slopes range from 0
to 3. Hence, 0f(x3) = [0, 3]. However, f is not differentiable at x3.

f()
T2 /
(=3,-1) «— 1 /x\ x
v
1

,-1)
2. Fermat’s rule 0 € 9f(x) holds for x5 but not for x; and x2. Therefore, z3 is a
global minimum to the nonconvex function f.
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Solution 2.3

1. Since 0f(x) and dg(y) are subsets of R?, a reasonable domain for both f and g
is R%. Le., we have that f : R?> — R and g : R> — R. Also, we must have that
z,y € R2,

Yes, since 0 € 0f(x).
No, since 0 ¢ 9g(y).
No, since the subdifferential not a singleton (unique) at x.

No, since the subdifferential not a singleton (unique) at y.

w A

S ok N

See examples below.

Solution 2.4

1. The following function (which is the absolute value |z|) is a lower bound to the
function f:

0,0)]

2. Since the function above is a lower bound to f, its minimum 0 is a lower bound
to the minimum of f.

3. An example of function f is given below. The function is f(z) = %(xQ +1).
-y Y

(-1,-1) (1,-1)

(0,0

Solution 2.5

* From the definition of monotonicity, we know that the minimum slope is 0 and
maximum is co. Therefore a. and b. are monotone while c. and d. are not.
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e We rule out c. and d. since they are not monotone. Since operators A4 : R — 2%
for Figures a. and b. are monotone, there exist functions f such that A = 9f.
The subdifferential in a. is maximally monotone. Hence, a. is a subdifferential
of a closed convex function. The subdifferential in b. is not maximally monotone
Hence, b. is not a subdifferential of a closed convex function.

Solution 2.6
Suppose that A — oI is monotone, i.e

((s0 = ox) = (sy — oY) (z —y) = 0

for each x,y € domA, for each s, € Az and for each s, € Ay. However, this inequality
is equivalent to that

(50 = sy) (@ —y) > oflz —yll3

for each z,y € domA, for each s, € Az and for each s, € Ay. But this is the definition
of A being o-strongly monotone. This proves the equivalence.

Solution 2.7

We know that we need to consider n > 2, since for n = 1, each monotone operator is a
subdifferential of some function. Therefore, let n = 2 and let A : R? — R? be a linear
single-valued operator such that

A(z1,z2) = (z2, —71)

for each (21, 72) € R%2. With some notation overloading, A can be represented by the

matrix
0 1
A= [_1 O]

Then A = — AT (i.e. A is skew symmetric) and

(Az — Ay) T (z —y) = (z —y) AT (z - y)
= —(z —y)" (Az — Ay)
= —(Az — Ay)"(z — y).

Hence (Az — Ay)T (z — y) = 0 and monotonicity holds with equality.

However, A is not the gradient of a function since the matrix A would be the Hessian,
but it is not symmetric.

Solution 2.8
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1. Assume that I) holds. Let z,y € R™. Write I) and I) with z and y swapped,

{f(y) > f(z) + V(@) (y - ),
> f(y) + V) (z—y).
Adding these gives
(Vf(y) = V@) (y—=z)>0
i.e. II).
2. Assume that II) holds. Let x,y € R". Using the hint we get that
(y) = fz) = V(@) (y - x)
- / (Vf (e + 1y — ) = V@) (@ + Uy — 2)) — o) de

>0 by II)

>0

But this is I).

Solution 2.9

1. a. Since df is maximally monotone, f is closed and convex.

b. Since 0f is not maximally monotone, f is not closed and convex.

2. An optimal point z* satisfies 0 € df(z*) by Fermat’s rule. Hence, the minimizing

z* are the x where the graph crosses the z-axis for both a. and b.
3. No, since a constant offset of f is not visible in 9f.

4. Below are example plots of f.

~ / .
o M

a. b.

It is linear to the left of the minimum and quadratic to the right.

Solution 2.10
Since f is o-strongly convex and closed, the function g : R” — R U {oc} such that

9(@) = f(a) = 3 llel;
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for each = € R™ is convex and closed. By the subdifferential sum rule, we have that

(£ =215+ 3 I13) @)

for each = € R™, which is equivalent to that
dg(x) = 0f(x) — ox (7.25)
for each 2 € R". This implies that
domdf = domdyg.

Let z € domdf and sy € 0f(x). Then (7.25) implies that there exists an s, € dg(x)
such that

Sg =S8f —0X.
Let y € R™. Note that

Iw) =5 Iyl = 9(v)

s4€0g(x)
> glx)+ s (y—a)

fz )**II?CH2+S (y — )
fz) = IIfCHQ +(sp — o) (y — x)
fx

o 2
)+ sf( —a) =5zl + ox’ (y — x).

Now, since ||y[|5 — ||z]|5 — 227 (y — ) = ||z — y||3, this is implies that

fly) = flz)+ sy —2) + 5 eyl

i.e. the desired result.

Solution 2.11

(a) - The function f is not differentiable as 0f is multivalued at 0.

- Since f is not differentiable, f does not have a Lipschitz continuous gradi-
ent.

— The subdifferential Jf not strongly monotone since it has minimum slope 0.
Hence, f is not strongly convex.

(b) - The function f is differentiable as 0f is a singleton everywhere.
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— The subdifferential 9/ has maximum slope 1. Hence, V [ is 1-Lipschitz.

— The subdifferential 0 f is not strongly monotone since it has minimum slope
0. Hence, f is not strongly convex.

(c) - The function f is differentiable as 0f is a singleton everywhere.
— The subdifferential 9/ has maximum slope 1. Hence, V[ is 1-Lipschitz.

— The subdifferential 9 is not strongly monotone since it has minimum slope
0. Hence, f is not strongly convex.

(d) - The function f is differentiable as Jf is a singleton everywhere.
— The subdifferential 0 f has maximum slope 1. Hence, V f is 1-Lipschitz.

— The subdifferential 0f is 1/2-strongly monotone since it has minimum slope
1/2. Hence, f is 1/2-strongly convex.

Solution 2.12
Assume that s € dg(z). Then

n

Zgi(yz-) =g(y)

= Z(gz‘(ﬂcz‘) + si(yi — xi))- (7.26)

foreachy = (y1,...,yn) € R". Letj € {1,...,n} and let y = (y1,...,y,) € R" such that
y; = x; foreachi =1,...,n and ¢ # j. Using this y in (7.26) gives that

9;(y;) = gj(x5) + 55(y; — 75),
for each y; € R. This implies that
Sj S 8gj(xj). (727)

However, since j € {1,...,n} is arbitrary, we get that (7.27) holds for each j =1, ..., n.

Conversely, assume that s; € dg;(x;) for each i = 1,...,n. But then

9i(yi) > gi(wi) + si(yi — x4) (7.28)
holds for each y; € R and for each i = 1,...,n. Summing (7.28) over i = 1,...,n gives
that

9(w) = gi(wi) > Y (gi(wi) + silyi — ) = g(x) + 5" (y — @)
=1 =1

for each y = (y1,...,yn) € R". In partial, s € dg(z) holds.

This proves the equivalence.
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Solution 2.13
For z ¢ domf, subgradients s € 9f(x) must satisfy

f(y) > f(x) + st (y —x) for each y € R™.

Since there exists y € R" such that f(y) < co and f(z) = oo, we see that Jf(z) must
by empty.

Solution 2.14
Recall that the normal cone to C' at = € R™ is given by

n . Tl o) < .
Ne(z) = {SER VYyeC, s (y x)_o} ?fl‘EC
0 ifeé¢C.
Let x € R". We have that s € 0uc(z) if and only if

wey) > o) + s (y — )
for each y € R", by definition.

* First, assume that » € C and s € dic(z). Then 1c(y) > s' (y — z) for each y € R”,
which is equivalent to that s’ (y — ) < 0 for each y € C, since C is nonempty.

e Next, assume that z ¢ C' and s € dic(x). Considery € C. Then 0 > co+s' (y—x),
which is impossible. Hence, ¢(z) = () in this case.

We conclude that
Ovc(x) = No(z)

for each x € R™.

Solution 2.15

Recall that Fermat’s rule gives that = = prox, ;(z) if and only if 0 € 0f (z) + 77! (2 — 2).
We will use this multiple times throughout.

1. Let z € R", v > 0 and z = prox, ;(z). We have
Of (x) = {x}.

Therefore, we get that 0 = vz + (z — 2) or x = (1 + )}

z, and conclude that

prox, s(z) = (1 + )"tz

2. Let z € R", v > 0 and x = prox, ;(z). We have

Of(x) ={Hx + h}.

Therefore, we get that 0 = v(Hx + h) + (z —2) or (I +vH)x = z —yh or x =
(I +~H)~'(z —~h), and conclude that

prox, ;(2) = (I +vH) ™ (z = vh).
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3. Let z € R,y > 0 and = = prox, ;(z). We have

{-1} ifz<0,
of(x)=1<[-1,1] ifx=0,
{1} ifx > 0.

* For x < 0, we have 0f(z) = {—1}. Therefore, we get that 0 = —y + (z — 2) or
x = v + z. Note that z < —v implies the condition = < 0.

* For x > 0, we have 0f(z) = {1}. Therefore, we get that 0 = v+ (z — 2) or
x = z —~. Note that z > ~ implies the condition x > 0.

* For z = 0, we have 0f(x) = [—1, 1]. Therefore, we get that 0 € [—v,~] — z or
z € [=77].

Thus,
2+ ifz < —,

prox., ;(z) = < 0 if z € [—7,7],
z—~ ifz>n.

4. Let z € R, v > 0 and = = prox,,(z). Here, f is the indicator function of the set
[—1,1]. Recall that prox, ((z) then reduces to the projection onto [-1, 1].
e If 2 < —1, the projection is point is —1.
e If z € [-1,1], the projection point is z, since z € [—1, 1].

e If 2 > 1, the projection point is 1.

Thus,
1 ifr< 1,
prox,r =14z ifz € [-1,1],
1 ifz>1.

5. Let z € R,y > 0 and = = prox, ;(z). We have
{0} ifx<-—1,
of(x) =1410,1 ifz=-1,
{1} ifz> -1

* For z < —1, we have df(z) = {0}. Therefore, we get that 0 =z — z or x = z.
Note that z < —1 implies the condition = < —1.

* For x > —1, we have df(x) = {1}. Therefore, we get that 0 = v+ (z — z) or
x = z — . Note that z > 7 — 1 implies the condition = > —1.

* Forz = —1, we have 9f(x) = [0, 1]. Therefore, we get that 0 € [0,~7]+ (—1—2)
orze[—1,v—1].

Thus,
z if 2 < —1,
prox,; = { —1 ifze[-1,v—1],
z—x ifz>~y—1.
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6. Let z € R, v > 0 and = = prox, ;(z). We have

{-1} ifz<1,
of(x) =< [-1,0] ifx=1,
{0} ifz > 1.

* Forz < 1, we have 0f(z) = {—1}. Therefore, we get that 0 = —y + (z — z) or
x = z + 7. Note that z < 1 — v implies the condition = < 1.

¢ For x > 1, we have 0f(x) = {0}. Therefore, we get that 0 = 0+ (z — 2) or
x = z. Note that z > 1 implies the condition = > 1.

* For z = 1, we have 0f(z) = [—1,0]. Therefore, we get that 0 € [—v,0]+(1—2)
orze[l—~,1].

Thus,

2+ ifz<1l—7,
prox, ;= ¢ 1 if ze[1—~,1],
z if 2 > 1.

Solution 2.16

One can show that g; : R — R U {occ} must be proper, closed and convex, for each
i =1,...,n. However, we may assume this without proof. We have that

. 1
pros (2) = arguin (9(0) + - flo = <I3

TeR™
n n
. 1 2
= argmin gi(xi) + 5= ) (75— 2
- 1
. 2
= argmin 9i(T;) + — (x5 — 2

argming cg (91(961) + g5 (21— 21)2>

argming cp (gn(xn) =+ %(mn - Zn)%)

_proxw1 (z1)

| PToX,, (zn)
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Solutions to chapter 3

Solution 3.1

Recall that the conjugate function of a function f : R” — RU{oo} is denoted as f* and
given by

f*(s) = sup (s"z - f(x))

z€eR™

for each s € R™.

1. We have
77(s) = sup (57— % |2]3)
zeR”
nf (-5 4+ 5 ||z|;

=g(=)

for each s € R™. Fermat’s rule gives that x € R” is an optimal solution to the
optimization problem above if and only if

0 € dg(z). (7.29)

Since g is finite-valued, convex and differentiable, we know that dg(x) = {Vg(z)}.
Thus, (7.29) is equivalent to that

O0=—-s+x or x=s.
Therefore,
fr(s)=s"s— 33
2
=5 lIsl3

for each s ¢ R™.

2. We have
f5(s) = sup (s'z — La"Hz — h'x)
TzeR™
=- ian (=sTz+ saTHe + n"z)
xe n

=g(x)

for each s € R™. Fermat’s rule gives that z € R" is an optimal solution to the
optimization problem above if and only if

0 € dg(x). (7.30)
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Since g is finite-valued, convex and differentiable, we know that dg(z) = {Vg(z)}.
Thus, (7.29) is equivalent to that

0O=-s+Hx+h or x=H '(s—h)
since H invertible. Therefore,

f*(s)=sT(H Ys—h))— 3(s— WIHTHH Y (s —h) —hTH Y (s —h)
=3(s—h)TH (s —h).

for each s € R™.

. We have
f*(s)= sup sz
ze[—1,1]
for each s € R.
If s < 0, an optimal solution to the optimization problem above is x = —1 and

get that f*(s) = —s.

If s > 0, an optimal solution to the optimization problem above is z = 1 and get
that f*(s) = s.

Therefore,

for each s € R.
. Alterative 1: Since ¢[_, ) is proper, closed and convex, we have that
Lrjm} = -11-

Recall from above that

ey =11
Therefore,
fr=1-r
= (f[k—l,l])*
= 1]
= L[_LH.

Alterative 2: We have

f*(s) = sup (sz — |z)
z€eR

for each s € R.

Next, we consider three different cases.
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¢ Suppose that s < —1. Let x < 0. Then

ff(s)>sx+zx
=(s+1l)z— 00 as x— —oc.
——

<0
Thus, f*(s) = oo in this case.

* Suppose that s > 1. Let z > 0. Then

fi(s)>sx—x
=(s—1)x =00 as x— o0.
~——

>0
Thus, f*(s) = oo in this case.

* Suppose that s € [—1, 1]. Note that

f(s) = 50— 0]
=0.

By the Cauchy-schwarz inequality we have that
sz < |af]s] <[z
for each = € R, since |s| < 1. Therefore,
f(s) < igg(\x! = |=)
=0.
Thus, f*(s) = 0 for each s € [-1,1].
We conclude that
= U-1,1]
5. Recall Fenchel-Young equality, i.e.
f(s) = sz — f(x)
if and only if
s € 0f(x).
Recall from Exercise 2.1-5 that

{0} ifz < —1,
of(x)=410,1] ifzr=-1,
{1} ifax>-1.

Next, we consider different cases.
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Suppose that x < —1. Then s = 0. Therefore,
fis)=0z—  f(z)
~—

=0 since x<—1

=0.

Suppose that 2 > —1. Then s = 1. Therefore,
ffs)=a— [flz)
—~~

=14 since x>—1

= 1.

Suppose that = —1. Then s € [0, 1]. Therefore,

ffs)==s— [f(z)
—~~

=0 since x=—1

Suppose that s < 0. Let + < —1. Then
ff(s)>sx—00 as x— —o0.

Therefore, f*(s) = oo for each s < 0.

Suppose that s > 1. Let x > —1. Then

fH(8) = sz — (1+2)
=(s—1)z—1—00 as z— —o0.
——
>0

Therefore, f*(s) = oo for each s > 1.

We conclude that

oo otherwise.

F(s) = {—s if s € [0,1],

6. Recall Fenchel-Young equality, i.e.
fr(s) = sz — f(x)

if and only if
se€df(x).
Recall from Exercise 2.1-6 that
{-1} ifz<1,
of(x) =< [-1,0] ifx=1,
{0} ifz > 1.

Next, we consider different cases.
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Suppose that x < 1. Then s = —1. Therefore,
ffs)=-z—  [f(z)
—~~

=1—x since <1

=1

Suppose that x > 1. Then s = 0. Therefore,
f(s) =0z - f(z)
~—

=0 since z>1

=0.

Suppose that x = 1. Then s € [-1,0]. Therefore,
fs)=s— flz)
~~

=0 since z=1

Suppose that s < —1. Let z < 1. Then

f(s) > sx—(1—1x)

=(s+1)z—1—00 as z— —o0.
——

<0

Therefore, f*(s) = oo for each s < —1.

Suppose that s > 0. Let z > 1. Then
ff(s) > sr—o00 as x— oc.

Therefore, f*(s) = oo for each s > 0.

We conclude that
« s ifse[-1,0],
J(s) = {oo otherwise.
Solution 3.2
1. Note that
f5(s) = sup (s"z— f(2))
z€R"™
> 5"z — f(x)

for each s,z € R™. This implies that
f(x) = sTa — f*(s)
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for each s,z € R™. This implies that
f(x) > sup (s"z — f*(s))

seR”
= [ (2)
for each x € R” or simply
as desired.
. Assume that f < g, i.e.
f(z) < g(x),

for each x € R™. Then
sTe — f(x) > sTa — g(),
for each s,z € R™. In particular,

f*(s) = sup (s'w — f(2)) = sup (s"z —g(2)) = g"(s),
T€R”™ TeR™

for each s € R". We conclude that f* > g*.
. Assume that f < g. From the previous subproblem we get that f* > ¢*, i.e.
fr(s) 2 g (s),
for each s € R". Then
als — f*(s) < zls — g*(s),
for each s, 2 € R". In particular,

£ (@) = sup (o7~ £1(3)) < swp (o7s " (5)) = 0" (2).

for each z € R™. We conclude that f** < g**.
. Suppose that f = £||-||3. From Exercise 3.1-1 we know that f* = 1||-||3. Therefore,
f=r.
Conversely, suppose that / = f*. Note that
f@)+ f(s) = f(2) + [*(s) 2 a"s,
for each s,z € R", by Fenchel-Young’s inequality. If we pick s = z, we get that
1
fla) = 5 ll=ll3,
for each 2 € R", i.e.
1
=015

However, we know from the second subproblem above that this implies that
F=r <GB =515

We conclude that f = 1| - |13.

This completes the proof.
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Solution 3.3
The hint gives that

By definition,

for each s € R. Fermat’s rule gives that x € R” is an optimal solution to the optimiza-
tion problem above if and only if

0 € dg(x). (7.31)

Since g is finite-valued, convex and differentiable, we know that dg(z) = {Vg(z)}.
Thus, (7.31) is equivalent to that

0= s+ z|zP~? ifx #0, or s — x |zP? if:z:;zéO,.
0 ifx=0 0 if x = 0.

Let 2 # 0, then s = z |2[P~2, and

(5) o=t

Let z = 0, then s = 0, and

(yo-o-tt

This covers all cases for s € R. We conclude that
(-6
p q)’
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as desired.

Solution 3.4
Note that
(@f + (1= 2)g)"(9) = sup (s"z = (af(@) + (1 - a)g(x)
= xseuﬂg (a(sTz = f(2) + (1 —a) (sTz — g(z)))
< ;euﬂg (a(sTz = f(2))) + ;euﬂgz (1-a)(s"z - g(z)))
=asup (sTz— f(z)) + (1 — ) sup (s’ —g())
T€R™ TER™

= af(s)+ (1 —a)g"(s),
for every s € R", i.e.

(af+(1-a)g)" <af +(1-a)g

as desired.
Solution 3.5
We have
f5(s) = sup (z"s— f(2))
rER™
= sup zisi — fi(@i
rER™ (; ( ))
= sup (wisi — filw))
i=1 z;ER

=3 £
=1

for each s = (s1,...,s,) € R™

Solution 3.6

1. The function f can be written as
f(x) = llzlh

n
=2_lai
i=1
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for each = (x1,...,x,) € R™. Therefore, by Exercise 3.5 and Exercise 3.1-4, we

have that
)= (D)
i=1
= Z b[—1,1}($z‘)
i=1
= [1[71,1}(8)
for each s = (s1,...,s,) € R™

2. The function f can be written as
f(z) = L-1,1] ()

= Z L—1,1] (:)
i=1

for each = = (x1,...,x,) € R™. Therefore, by Exercise 3.5 and Exercise 3.1-3, we
have that

n

fi(s) = Z Lr—171}(5i)

i=1
n

=D _lsi
i=1

= llslly

for each s = (s1,...,s,) € R™

Solution 3.7

1. Since f is only defined in four points, the conjugate is

f*(s) =sup(sx — f(z)) = max(—s — 0,—1,s + 1,2s)
z€R

for each s € R.
f(a:) s+1

(0,1)

(-1,0) (2,0)
x

(1,-1)
X
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2. The biconjugate f** is the convex envelope of f. See the figure below.

f(x) f(x)
0,1) O }
(-1,0) (2,0) (-1,0) (2,0)
T x\ K— T
(1,-1) 1,-
X

Solution 3.8

1. We have that

f*(s) = sup (s"z —[z[,)
zeR”

for each s € R™.
(a) Note that
f*(s) = s70 — ol
=0
for each s € R".

(b) By the Cauchy-Schwarz inequality, we have

f7(s) < sup (|[sll2]|z]]2 — [|z]2)
rER?

= sup | ([lsll2 — 1) [|z[l2
z€ERN | S—————
<0

<0

for each s € R” such that ||s||o < 1. Combined with the previous sub-

exercise, we see that f*(s) = 0 for each s € R" such that ||s||2 < 1.

(c) Suppose that s € R™ such that ||s||2 > 1. Let x = ¢s for some ¢ > 0. Then

F*(s) = sup(s"@ — [|[|2)
z€eR

> t]s]|3 — tllsll2
=t]slla(llsllo =1) =00 as & —oc.
~ —

>1 >0

Thus,
fi(s) =00

for each s € R™ such that ||s||2 > 1.
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(d) To summarize, we have

oo otherwise

F(s) = {o if ||sl]2 < 1,

for each s € R™.

2. Since f is closed and convex, the subdifferential of f satisfies

Of (z) = Argmax(sTz — f*(s))
seR™

= Argmax s'z.

s€ER™:||s|]2<1

for each = € R™.
* For x = 0, the objective is 0 and all feasible points are optimal, i.e.,

Of (x) = {s € R" : [|s]la < 1}

— B(0,1).
* For = # 0, note that
mac  sTo < max sl el
sER™:||s]|2<1 seR™:||s]|2<1
= [|=[l2

with equality if and only if s = x/||z||2, by the Cauchy-Schwarz inequality.

Therefore,
o
0f(w) = { Tl } |

We conclude that

e — B(0,1) ifz =0,
J(w) = {Hxxll} otherwise

2

for each z € R"™.

Solution 3.9

1. We have that

f*(s) =sup s’z
L ASTAN

for each s € R™. The exercise claims that

f*(s) = max s;
i=1,...,n
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for each s = (s1,...,s,) € R™. Let s € R". Let j be any index such that

5j = max ;.
i=1,...,n

First, note that

Next, let x € A such that x # ¢;. Then

sTx: E S; T4

Hence, all points € A\ {¢;} satisfy s’z < s; and the point ¢; € A satisfy
sTe; = s;. Therefore,
f*(s) =sups’x
TEA
= max Sj,
i=1,...,n

for each s = (s1,...,s,) € R", as desired.

. The function f is proper, closed and convex. Therefore,
f** — f — LA.

. We have that

g*(s) =sup s’z
zeD

for each s € R"™. The exercise claims that

g"(s) = max (O, _max si>

i=1,...,n

for each s = (s1,...,s,) € R™. Let s € R™.
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* Suppose that s < 0. Then
sTa <0
for each x € D and with equality for x = 0 € D. Therefore,
g*(s) =0
in this case.

* Suppose that s < 0 does not hold, i.e. the vector s has at least one nonneg-
ative element. Let j be any index such that

S5 = 1MmaX §;
i=1,...,n

and s; > 0. First, note that

Hence, all points = € D\ {¢;} satisfy s’z < s; and the point ¢; € D satisfy
sTe; = sj. Therefore,

g"(s) = max s;
i=1,...,n

in this case.

We conclude that
g*(s) =sup s’z
xeD
= max (0, max si) ,
1=1,...,n
for each s = (s1,...,s,) € R", as desired.

106



4. The function g is proper, closed and convex. Therefore,

*k

g =9g=1ID-

Solution 3.10

1. See the figure below. Since we are dealing with set valued mappings it is no prob-
lem if the inverses are set valued, i.e. we do not need to care about surjectivity
and injectivity. The axis of the graphs are simply flipped.

2. Only a. and b. are functions. The other are set-valued.

3. Only the inverses of operators a. and c. are functions. The other are set-valued.

—

/
\

\

Solution 3.11
Since 0f* = (0f)!, we can flip the figures as follows:
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Of (x)

Of (x)

108

af*(s)

af*(s)

af*(s)

af*(s)
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Solution 3.12
Recall that

. 1 2
prox. ((z) = argmin | f(z) 4+ — ||z — 2 )
1) = arguin ( £0) + - o 513

for each z € R". Let 2 € R". By Fermat’s rule, z = prox, ;(2) if and only if
0€df(x)+7 1 (z—2)
&
z€ (I +~0f)(x)
&
(I +~0f) (z) = .

We have equality in the last step since we know that the prox is single-valued for
proper closed convex functions. Therefore,

prox, ;(z) = (I +~79f) "' (2)

for each » € R", as desired.

Solution 3.13

1. We will solve this graphically. Left plot shows I + vdf and the right shows (I +
79 f)~! = prox. ;. Therefore,

x+y ifx < —nv,
prox, s(z) = 4 0 ifz € [—7,7],
x—~ ifx>~.

/ (I +~0f)~!
Y1 /

T

2. We will solve this graphically. Left plot shows I + 79 f and the right shows (I +
yOf)~t = prox., ;. The prox does not depend on v (since it is actually a projection).

Therefore,
-1 ifx<-—1
prox,¢(r) = qz ifxe[-1,1]
1 ifzx>1
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(I+~0f)~!

8

3. We will solve this graphically. Left plot shows I + 70 f and the right shows (I +
79 f)~! = prox. ;. Therefore,

T ifr < —1,
prox. () = ¢ —1 ifee[-1,v—1],
x—v ifx>~y-—1

(I +~9f)
(I +~0f)~!
+y—1 -1 7-1
x i i x
11 /

4. We will solve this graphically. Left plot shows I + 79 f and the right shows (I +
79 f)~' = prox. ;. Therefore,

x4y ifx<1l—7y,
prox, s(z) = ¢ 1 ifze[l—n,1],
x ifx>1.

(I +~0f)

/

Solution 3.14
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1. Recall that

: 1 2
prox.¢(z) = argmin | f(x) + — ||z — 2 >
1) = arguin ( £@) + 5 o = <13

for each z € R". Let z € R"” and set © = prox;(z). Let u = 2 — z. By Fermat’s
rule, z = prox,(z) is equivalent to that

0edf(x)+x—2 < z—xz€df(x) [subdifferential calculus rules]

& xe€df(z—x) |[fisproper closed convex|
& z—uedf(u)
& 0€df(u)+u—=z
& u=proxs.(z). [ByFermat’s rule for prox;.(z)]
Therefore,
Z2=x+u
= proxs(z) + prox s« (2)
as desired.
2. We have
(vf")(s) = sup (s —vf(2))
TER™
=7 sup ((y"'s)"z — f())
zeR?
=7/ (v 's)

for each s € R".

3. Let = € R" and set u = prox,s)- (). Note that u = prox, ;- (2) is equivalent to

that
. * 1 2
u = argmin ( (1£)"(s) + 5 Is — =13
seR™
. * —1 1 2
= argmin | 7f*(777s) + Slls — 213
seER™
. 1
— yargmin (7/*(0) + o <13
vER™
’72 1.2
—yargmin (17°(0) + o = 51213 )
veER™
: —1 g% 1 -1 2
= yargmin (7 £(0) + 5o — (712 3
vER™
= YPrOX, -1 f« (v 12)
as desired.

4. Combine first and third subproblems.

Solution 3.15
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Recall that the Moreau decomposition gives that
Prox(, )« (2) = 2z — prox, ¢(z).
See Exercise 3.14.
1. Exercise 2.15-1 gives that the prox of +f is given by
prox,(z) = (I +yH) ™ (z — vh)
for each z € R", which by the Moreau decomposition implies that
prox(,p(2) =z — (I + yH) (2 — ~h)
for each z € R™.

2. Exercise 2.15-5 gives that the prox of + f is given by

z if z < —1,
prox, s(z) = { —1 if 2z e [-1,v—1],
z—v ifz>~vy—1

which by the Moreau decomposition implies that

0 if 2z < —1,
prox,p«(2) = z+1 ifze[-1,7—1],
5 if z>~v—1.

3. Exercise 2.15-6 gives that the prox of ~f is given by

2+ ifz<1l—7,
prox, ;= ¢ 1 if z€[1—~,1],
z ifz>1

which by the Moreau decomposition implies that

— if 2 <1—+,
prox(, p+(2) =z -1 ifz €1 —~,1],
0 if 2 > 1.

Solution 3.16

1. Note that

—f*(0) = = sup (0"z — f(x))

TzER™
= — sup (—f(z))

TeER™

TeER™
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2. Note that f** = f, since [ is proper closed convex. By the subdifferential formula
for f*, we have that

df*(0) = Argmax(07z — f**(z))
T€R"

— Argmax(—f(x))
zeR”

= Argmin f(z).
z€R™

Solution 3.17

1. The functions are proper closed convex and constraint qualification holds. There-
fore, by Fermat’s rule, x € R" is an optimal solution to the primal problem if and
only if

0 € df(x) + dg(x)
4

{u € Of(x)
—p € 9g()
=

{x € f*(n)

z € 0g*(—p).
where p € R™.

2. Eliminating x in the subproblem above gives that

{x € 9f*(n)
z € 0g™(—n)

=
0€df*(p) — g™ (—p).

3. In general no. Inspired by the condition

€ df ()

you could use the subgradient selector s;- to generate a candidate solution

T =sp(u") €0f (1)

However, the full condition

{x € of* (1)
x € 0g*(—p")
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need not necessarily hold for each = € 9f*(u*). Le.
e df (W) # 1 € 09" (—p").
If f* is differentiable, we have that 0f*(u) = {Vf*(n)} for each u € R”, since

f* is proper closed convex. This means that for every solution p* to the dual
condition (3.1), z* is the unique point such that

{w* = V()
* € 99" (=)

In this case, the subgradient selector is the gradient and & = s+ (u*) = Vf*(p*) =
z* will recover the solution.

Solution 3.18

Fermat’s rule gives that + € R” is an optimal solution to the primal problem (3.2) if
and only if

0€d(foL+g)(a). (7.32)

Since f o L and g are closed convex and relint dom (f o L) Nrelint dom g # @, the subdif-
ferential sum rule gives that (7.32) is equivalent to

0€d(folL)(x)+ dg(x). (7.33)

Moreover, since f is closed convex and relint dom (f o L) # (), the subdifferential com-
position rule gives that (7.33) is equivalent to

0 € LTof(Lx) + dg(x).

This is equivalent to that there exits a point ;1 € R such that

jedf(La)
{_ T4 ¢ 5(a). (7.34)

Since f and g are closed convex, we know that
@f)"'=0af" and (99)"' = dg".

where f* and g* are the conjugate functions of f and g, respectively. Thus, (7.34) is
equivalent to that

Lz € 0f*(u)
x € 0g*(—L"p).

This in turn is equivalent to that
0€df(n) — Log (=L ). (7.35)
Note that it always holds that

~LAg*(—L" 1) C 9(g* o —LT)(n)
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and
F*() +0(g" o =LT) (1) C O(f* + g% o =LT)(n).
This combined with (7.35), this implies that
0€d(f*+g*o—L")(p).

However, Fermat’s rule gives that it is equivalent to that x is an optimal solution to
the optimization problem

minimize f*(p) + ¢* (=L ).

HER™

This is the Fenchel dual problem (3.3) we wanted to derive.

Solution 3.19
For the primal problem

minimize f(Lz) + g(x)

zeR™

a Fenchel dual problem is

minimize f*(u) + g* (=L ). (7.36)
pneER™

1. Note that f and ¢ are proper closed convex and constraint qualification holds,
i.e.

relint dom (f o L) Nrelint dom g # ()

for this particular case. Using Exercise 3.1-1 and 3.14-2, we have that

* _ i 2
£ () = 55 Il
for each i € R™. Exercise 3.1-6 gives that
(max(0,1 — )" (zi) = z; + ¢[—1,0(2:)

for each z; € R. However, since max(0,1 — -) is proper closed convex, we know
that

I+ L[,LO})*(I/i) = (max(0,1 — )" (»)
= (max(0,1 — ) ()

= max(0,1 — ;)

for each v; € R. Combining this with Exercise 3.5, we have that
g*(v) = Zmax(o, 1—uv)
i=1
for each v = (v1,...,1,) € R™.
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Therefore, (7.36) becomes

N -
minimize o+ 3 + ; max (0,1 + (LT,u)i) (7.37)

in this case.

Note that f* and g* are proper closed convex, and that constraint qualification
holds for (7.37), i.e.

relint dom ( f*) N relint dom g* o —LT # (.

Therefore, if 1 € R™ is an optimal solution to (7.37), we can recover an optimal
solution = € R” to the primal problem by considering any one of the primal dual
necessary and sufficient optimality conditions. In particular, it must holds that

Lx € 0f*(u) (7.38)
z € dg* (—LTp).
Note that f* is differentiable with gradient

1
*:7[
Vf 3

Therefore, the first condition in (7.38) uniquely determines z, i.e.

1
= !
T \ n

since 0f*(u) = {Vf*(n)} and this = must then automatically fulfill the second
condition in (7.38).

. Note that f and g are proper closed convex and constraint qualification holds,
ie.

relint dom (f o L) Nrelint dom g # ()

for this particular case. Using Exercise 3.6, we have that

fr () = llully
for each 1 € R™. Using Exercise 3.1-2, we have that
* 1 2
g (v)= B3N [+ bll5

for each v € R”,
Therefore, (7.36) becomes

L 1 2
mggg}gze el + N H—LTV + sz (7.39)

in this case.

Note that f/* and ¢g* are proper closed convex, and that constraint qualification
holds for (7.39), i.e.

relint dom (f*) N relint dom g* o —LT # (.

116



Therefore, if ;1 € R™ is an optimal solution to (7.39), we can recover an optimal
solution z € R” to the primal problem by considering any one of the primal dual
necessary and sufficient optimality conditions. In particular, it must holds that

Lx € 0f*(p)
7.40
{x €dg* (-L"p) . ( )

Note that ¢* is differentiable with gradient
1
Vo) = ;v +b)

for each v € R™. Therefore, the second condition in (7.40) uniquely determines
x,1i.e.

1
x = X(—LTM +b)

since dg*(—L"p) = {Vg*(~L" 1)} and this 2 must then automatically fulfill the
first condition in (7.40).

Solution 3.20

1. By definition, we have

f*(s) = sup (s'2 — f(2))

zeR™
> sz — f(x)

as desired.

2. Suppose that s € 9f(z). This implies that f(z) < co. We have that

sedf(x)
=
fly) = f(x) +s"(y—x) foreachyeR"
=
sTe — f(x) > sy — f(y) for eachy € R"
=

sTe — f(z) > sup (s'y — f(y))
yeRn

=

ste — f(z) 2 f*(s)

g
f(s) <sTaw - f(x)

as desired.

3. Suppose that f*(s) = s”x — f(x). This implies that f*(s) < s”x — f(x). However,

the above sequence of equivalences gives that s € df(z), as as desired.
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Solution 3.21

1. Suppose that s € 9f(x). The function f is then proper. Fenchel-Young’s equality
(see Exercise 3.20) gives that

fr(s) = sTaw — f(x).
We know that f** < f (see Exercise 3.2). We get that
0= f*(s)+ f(z) —sTx > f*(s) + f*(x) — sTx >0,

where the last inequality follows from Fenchel Young’s inequality (see Exercise
3.20-1). Thus,

f () = sTx = f*(s),
which is equivalent to x € 9f*(s) by Fenchel-Young’s equality.
2. Apply the previous result to f*.

3. Combine the above the results and that f** = f for proper closed convex f.

Solution 3.22
Define h : R™ — R U {co} such that

h(y) = f(y+c)
for each y € R™. Then g = ho L. Let s € R". We have that
g*(s) = sup (ST:U — h(Lz))

zeR?
=— ian (h(Lzx) + l5(x)), (7.41)
TER™
where I, : R™ — R is given by
lo(z) = —sTx

for each = € R". Note that

W (p) = sup (u'y— fly+c))

yeR™

= sup (4 (v ) — f(v)
veER™

= sup (u"v— f(v)) —p"c
veER™

= [ =

for each 1 € R™, and
X(v) = sup (v'z +s"z)
Tz€eR™

= sup ((v+ s)Tx)
T€ER™

= L{Q}(V + S).
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for each 1 € R™.

Consider the minimize problem in (7.41). We have that h and I are proper closed
convex and that constraint qualification is satisfied since

relint dom A o L N relint dom /5 = relint dom g N relint R™
= relint dom g N R"

= relint dom ¢

20,

Moreover, by assumption, we know that there is an x, € R™ that achieves the infimum
in (7.41). Therefore, strong duality must hold, and we get

g'(s) = = inf (h(Le) +1y())

= — sup (~h"(n) ~ 13 (~L"p)
pHER™

= inf (WG + 15 (~L))

= inf () — ).
nf, (f*(n) = c' )
st. s=LTp

Solution 3.23

Since f is closed convex, we have that f(z) = f**(2) = sup,egn (z7's — f*(s)) for each
r € R™. Therefore,

sup (f(z) — g(x)),

reR™

is equal to

sup sup (z7s — f*(s) — g(x)) .
T€R™ scR”™

However, we may switch the supremums to get the equal problem

sup sup (st —g(z) — f*(s)) .
s€R" zcR”

But this is equal to

sup (9" (s) — f7(s)),

seR”

since g*(s) = sup,epn (z7's — g(w)) for each s € R™. This completes the proof.
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Solutions to chapter 4

Solution 4.1
That z* is a fixed-point means that

¥ =a* — 4V f(z¥).
This is equivalent to that
0=Vf(zX).

Exercise 1.28 gives that x* is a global minimizer of f.

Solution 4.2
Note that

2z = prox, ¢(z)

. 1
—arguin (1) + - lly ol
yeR? i

Fermat’s rule and subdifferential calculus rules give that z satisfies
0€df(z) +v 1z — ).
The fixed-point assumption z = z gives that
0€adf(x).

Fermat’s rule gives that x is a global minimizer of f.

Solution 4.3
Note that

z 1= prox, (z — YV f(z))

= argmin z i z—(x — z))|?
—arguin (92 + 5 [~ (2 91D

Fermat’s rule and subdifferential calculus rules give that = satisfies

0 € dg(z) + i (= (@ — 4V f(2))).
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The fixed-point assumption z = z gives that
0 € 9g(x) + Vf(z). (7.42)
The subdifferential sum rule gives that
9g(x) + Vf(z) = dg(x) + 0 (x)
=0(g+ f)(x)

since Of(x) = {Vf(z)}. This combined with (7.42) gives that

0€d(g+ f)x).

Fermat’s rule gives that x is a global minimizer of [ + g.

Solution 4.4

1. The function is smooth so the gradient method works. No need to use the proxi-
mal gradient method.

2. The first two parts are smooth. The third part is not smooth but is separable
and therefore prox friendly. Thus, the proximal gradient method works but the
gradient method does not.

3. Both parts are smooth and the second part is separable and therefore prox friendly.
Thus, the gradient method and the proximal gradient method both work.

4. First part is smooth. The second part is prox friendly but not smooth. Thus, the
proximal gradient method works but not the gradient method.

5. Neither of the functions are differentiable, so none of the methods work.

6. The first part is differentible, but not smooth (it grows too quick for large x), and
the second is prox friendly but not differentiable. Thus, none of the methods
work.

7. First part is smooth. The second part is not smooth but is separable and there-
fore prox friendly. Thus, the proximal gradient method works but not the gradi-
ent method.

8. The second part is neither smooth nor prox friendly. Thus, none of the methods
work.

9. Both parts are smooth and the second part is separable and therefore prox friendly.
Thus, the gradient method and the proximal gradient method both work.

Solution 4.5
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. The part ||[Az — b|]3 is strongly convex if and only if A7 A is invertible. Since
A € R™*" with m < n, AT A has at most rank m and is therefore not invertible.
Therefore, the primal objective is not strongly convex. The dual objective will
therefore not be smooth. Thus, neither of the methods work.

. The part $27Qxz + bTz is strongly convex since @ € S, and therefore has a
smooth conjugate. The conjugate of ||z||, is prox friendly but not smooth. Thus,
the proximal gradient method works but not the gradient method.

. The first part is not strongly convex and will therefore have a nonsmooth con-
jugate. The conjugate of the first part is not prox friendly. However, if we let
f(y) = 1|y — b||3 and g(z) = ||z||3, the problem can be written as

min f(Az) + g(2)

and a dual can be written

min f*(u) + g*(—A"p).

pER™
The function f* is convex, smooth, separable and therefore prox friendly. The
function x +— g*(—AT 1) is smooth. Thus, the gradient method and the proximal
gradient method both work.

. The first part is not strongly convex and will therefore have a nonsmooth conju-
gate. The conjugate of the first part is not prox friendly. Doing the same trick
as for the previous problem does not work since ||z||2 is not strongly convex and
therefore it has a nonsmooth conjugate. Thus, neither of the methods work.

. Neither part is strongly convex, therefore neither of the conjugates are smooth.
Thus, neither of the methods work.

. Neither part is strongly convex (¢l?l" ~ 1 + ||2*|| for small z), therefore neither
of the conjugates are smooth. Thus, neither of the methods work.

. The first part is strongly convex and will therefore have a smooth conjugate. The
second part is proximable, and therefore the same is true for the dual. However,
the second part is not strongly convex and will therefore have a nonsmooth con-
jugate. Thus, the proximal gradient method works but not the gradient method.

. With f =4_4 4 and g(z) = %xTQa:, the primal problem can written as
min f(Lz) + g(z)
and has a dual

min f*(u) +g* (L")
pnER™

where ¢* (1) = 327 Q'x. Note that 1 — ¢g*(—Lpu) is smooth. The function f* is
prox friendly but not smooth. Thus, the proximal gradient method works but not
the gradient method.

. Neither part is strongly convex, therefore neither of the conjugates are smooth.
Thus, neither of the methods work.
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Solution 4.6

1. Exercise 3.6-1 gives that

2. Exercise 3.1-1 gives that

for each i € R™.
3. One possible dual problem is given by

minimize f*(u) + g*(—
inimize f (1) + 9" (—n)

(e.g., let L = I in Exercise 3.18). Similarly, another dual problem is given by

minimize f*(—p) + ¢ (p).
pER™

In the remainder of the exercise, we will only consider the first dual problem.

4. Under the assumptions on f and g, we know that f* is closed, convex and prox-
imable, and ¢* is closed convex and smooth. Therefore, for the dual problem

minimize f*(u) + g*(—p),
HER™

we get, for some appropriate v; > 0, that

fry1 = Prox., ¢« (e — V(9" o =I)(ur)),
is a computationally reasonable step for the proximal gradient method.

5. Consider our particular choice of f* and g*. Differentiation yields

V(g*o—I)(pr) = =Vg* (=) = Q" k-

By definition, the proximal operator of f* is

. 1 2>
prox., r«(2) = argmin | ¢j_ M)+ —lu—=z
o (2) = acgmin (110 + 5 s 215

— argmin [ — 2|2
}LG[—].,].]

n
= argmin Z(uz — z)?
pe[-1,1] 5

for each z = (z1, ..., z,) € R". Note that both the constraint set and the objective
function of this argmin-problem are separable, yielding

argming, e(—1 1] (11 — 21)?
prox., «(z) = :

argmin,, cr_q 1 (p1 — 21)?
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for each z = (z1,..., z,) € R". Note that

1 if z; > 1
argmin (u; — z)? ={ -1 ifz < —1
Hicl= L] z;  otherwise
for each z; € R and each i = 1,...,n. Thus, the proximal gradient method step

for the dual problem becomes
v = pur — WQ ™ ik
1 if (’Uk), > 1,
(Mk+1)i =< —1 lf(’t)k)l <-1, WVie {1,...,n}.
(vg); otherwise,

Solution 4.7
We start with

HEk+1 = PrOX., ¢ (Mk — V(g o —LT)(Mk)) :
Note that V(g*o— L") (u) = —LVg*(—L" j13,). Therefore, the proximal gradient method
step can be rewritten as
Ty = v.q*(_LT:uk)a
Ok = ik + YLy,
[h+1 = Proxy, r« (V) .

Using Moreau decomposition, we have
prox,, s«(2) =z — VKPLOX, 1 pe. (vel2)=2— 'ykproxﬂ/;f('yk_lz).

for each z € R™. The last equality holds since f = f**, by closed convexity of the
proper function f. Using this, we can write the proximal gradient method step as

T = v.q*(_LT:u’k)a
Uk = pg + YLy,
fks1 = Uk — /ykproxyk_lf(’)/];lvk)‘
Recall the subdifferential formula for ¢*, i.e.
99" (1) = Argmax (4" — g™ (x)
zeR”
= Argmax (,uT:U —g(z))
zeR”
for each 1 € R"™. The last equality holds since g = ¢**, by closed convexity of the
proper function g. However, we know that ¢* is smooth and convex, and therefore,
0g* () = {Vg*(1)}. Using this, we get that

Vg’ (u) = argmax (n'x—g(x))
TeR™

= argmin (g(z) — p’ 2)
TER”
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for each 1, € R™. This lets us write the proximal gradient method step as

z), = argmingcpn (9(2) + pf L) |
Vg = pii + Ve Ly,
P+t = Uk = YEPTOX. 1 £ (7 Uk),

as desired.

Solution 4.8
Recall that Exercise 4.6 gives the dual proximal gradient method step

U = ke — YeQ ™ i
1 if (Uk)z > 1,

(Hk41)i =< —1 if (vp); < =1, Vie{l,...,n}.
(vk); otherwise,

(7.43)

We must verify that

), = argmin, (g(z) + piz) ,
Vg = Mg+ YTk (7.44)

L1 = U — fykproxvglf(fyk—lvk),

gives the same step when f, g : R™ — R are given as
- 1
flz) ==l = Z; jzi| and g(z) = inQx

for each z = (x1,...,z,) € R™. To verify correctness, note that

zeR" ZeR"
—1
=—Q k.

1
argmin (g(a:) + uZw) = argmin <2xTQﬂs + xT,uk>

Thus, we can write (7.44) as

. -1
{vk M — Y@ ik, (7.45)

Pht1 = Vg — %Proka—lf(ﬁlvk)-

Since f is separable, so is prox, ;, see Exercise 2.16. From Exercise 2.15-3 we get that

zi+y ifz; < —7,
(prox,s(2)), =40 if —y<z <y, Vie{l,...,n}
2 — if z; >,
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We can then calculate ;11 in (7.45) as

()i = ()i = e (prox, 1 (o))

i
Yook + vt i (k)i < =
= (k)i =M 4 0 if — vt <o) < v
Yo or)i = by (k)i >
(vp)i + 1 if (vg); < —1,
= (k)i — 0 if —1<(v)i <1,
(vg); — 1 if (vg); > 1,

-1 if(Uk)i < -1,
= (Uk)z if —1< ('Uk:)z <1, Vie {1, .. .,n}.
1 if (o) > 1,

This establishes the desired equality.

Solution 4.9
Using the hint with z = x;, we get that

F(w) < Fla) + 9 Fn) (o — ) + 5y — mal

< Flaw) + V) (y — o) + 2; ly — o2

for each y € R™. The function g : R — R U {oco} given by
T 1 2
9(y) = flzr) + V(ze) (y — k) + o ly — @[3
for each y € R™ is then a majorizer to f, i.e., f < g. What remain to be shown is that

Tp+1 = argmin g(y).
yeR?

By Fermat’s rule and convex differentiability of g, we know this holds if and only if

Vg(@k41) = 0.

Straight forward calculations show that this is equivalent to

Tpy1 = Tk — %V f(2g)

as desired.
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Solutions to chapter 5

Solution 5.1
Rearranging the objective function in (5.1) yields

N N +b
_ wlz;+b L4+e™ ™
= Z log (1 +e ) + Z lo ( P
=1 =1
s.t. yi=—1 s.t. y;=
N N N
T
_ Z log <1+€w xﬁ-b) i Z log (1+ew zﬁ-b) Z log (ew xﬁ-b)
i=1 i=1 i=
s.t. yi=—1 s.t. yi=1 s.t. yi=
N
= Z log (1 +e¥ xi+b) — Z log (ew "“H’)
i=1 i=1
s.t. yi—l
N N
T,..
= Z log (1 +e¥ I’+b) — Z wlz; 4 b.
i=1 i=1
s.t. y¢=1
From here, we can go over to the new labels, y;, =1 — g, = land y; = —1 — ; = 0.
We get that

N ; N
Zlog (1 +ev mi“’) — Z wlz; +b
i=1

=1 =
s.t. yizl

N
log (1 + ewT””i+b) — Z Ui (wT:L‘i +b)
i=1

I
.MZ

@
Il
—

M-

@
Il
-

(log (1 + ewai+b) — Ui (wai + b))

as desired.

Solution 5.2
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Note that each term in the sum in (5.2) is positive for each (w,b) € R” x R. Why is
this true? Well, let (w,b) € R* xR, i =1,..., N and u; = v w + b. Then

log (1 + e“”iT“’er) -y (a:;rw + b) =log (1 + ") — yu; (7.46)
For y; = 0, (7.46) becomes

log (14+¢€“) >0

since 1 + e% > 1. For y; = 1, (7.46) becomes

1 i
10g(1+eui)—ui:10g< T )>0

eli

. Ug
since 2% > 1.

Therefore, the objective function in (5.2) is positive for each (w,b) € R" x R, since it is
a sum of positive terms.

Let (w,b) = t(w, b) for some t € R. Suppose thati = 1,..., N is such that y; = 0. Then
log (1 + e””;'[“”rb) —y; (27w +b) =log (1 + et(xiTmB))

N
= log (1—1— (eIiTw+b) ) —0 as t— .

The limit above follows from % ®+0 ¢ (0,1), since 27w + b < 0 by assumption on i.
Suppose instead that i = 1,..., N is such that y; = 1. Then

log (1 + e‘”;‘rwﬂ’) — Y (x?w +b) =log (1 + et(xiTU_’%)) —t (mZTfLD +b)

| 1 _|_€t(zZTu7+l_))
=\ e
= log (1 + e_t(z?“”g))
Y
= log (1 + (e_(xiTwJ“b)) > —0 as t— o0.

The limit above follows from e~ (21 1?) ¢ (0,1), since 2w + b > 0 by assumption on i.
In either case, the term goes to zero.

We conclude that the optimal value of (5.2) is 0, which is not attained, since the objec-
tive function is positive for each (w,b) € R” x R.

Solution 5.3
First, consider the case when A\ = 0. Then (5.3) becomes

1
minimize = |laz — b|3.
FASIN 2
By Fermat’s rule, we get that the optimal point in this case is

a’b

0=al(azrs—b) or mz= -
lall2
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Now, consider the case when XA > 0. Using Fermat’s rule and the subdifferential cal-
culus rules (CQ holds since both functions have full effective domain), the optimality
condition for (5.3) is given by

if 0
0 € flaf2e — aTb + 1 4 8°@) HT A0,
[-1,1] ifz=0.
Thus, « = 0 is an optimal point if and only if a”b € [\, A] or equivalently \ > }aTb‘.
It remains to consider the case \ < ‘aTb‘. But then = # 0 by necessity, and z is an
optimal point if and only if
a’b A
0=|lalj3z —a’b+ Asgn(z) or z=— — sgn(z).
? lall3  llall3

However, since |a”b| > X by assumption, sgn(z) = sgn(a’b) = sgn(zjs) must hold by
necessity. Therefore, the solution in this case is given by

A

T =T — m sgn(zs)-

This concludes the proof.

Solution 5.4

¢ Alternative 1:
Optimality conditions for (5.4) are given by

9(951)
0e AT(Az —b) + X

g(xm)
where

(-1} ifz; <0,
g(z;) = ¢ [-1,1] ifz; =0,
{1} if x; > 0.

Thus, the optimality conditions above give that x = 0 is an optimal point to (5.4)
if

0€ —ATb+ \[-1,1]™
This holds if and only if
A > max ‘(ATb)i‘

i=1,....m

= [[A%0]] -
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¢ Alternative 2:
Let f : R™ — R such that

1
f@) = 5 14z = bl + Az,

for each x € R™. Using Holder’s inequality, we get the lower bound

1
f(2) > 5 Az = bll5 + [[ATo| Nzl
1
> 5 1Az = bll3 + [[b" Az,
> % | Az — b2 + b7 Az

1 2 L0
5 I4all3 + 5 I3

AV

Lo
013

for each z € R™. Furthermore, the lower bound is attained at = = 0, i.e. f(0) =
i ||b||§. Therefore, x = 0 is an optimal point to (5.4).

Solution 5.5

CQ holds since both functions in (5.5) have full domain. Fermat’s rule then gives that
r = (21, 72) € R? is an optimal point of (5.5) if and only if

0 AT Az — ATh 4+ 20(||-||,)(x)
54

aj ajry —ai b+ A(| - |)(x:), Vie{1,2}.

2
=1

0e
J

The equivalence hold since ||z||; = |z1| + |z2|. Inserting the subdifferential of | - | gives

sgn(zy) ifx; #0
[-1,1] ifx; =0
sgn(za) ifxe #0
[—1,1] ifza=0

0€x+ a{agxg — a{b + A
(7.47)
0e aQTalzvl + x0 — aQTb + A

where the assumption ||a;||, = ||az|l, = 1 was used. With the optimality conditions in
place, we can now look at the four cases.

* Assume that 2 € X . Then (7.47) is equivalent to

alb e \[-1,1]
alb e A\[-1,1].

This in turn is equivalent to
A > max |a;fpb‘
i=1,2

= |47 -
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We conclude that

Moo = {A>0:Az@%\a$b\}.

Assume that © € X g. Then (7.47) is equivalent to

0=ux1 —alb+ Asgn(r)
0 € alarzy —alb+ A\[-1,1].

If aTb = 0 the first condition can’t be satisfied since ¥; # 0 by assumption. We
conclude that

Aio=10
ifalb = 0.
From here on, we assume a] b # 0. The first condition can be re-written as

0 = sgn(x1) 21| — a1 b+ Asgn(z1)

Since A > 0, we get that sgn(z1) = sgn (af b) and
0< A= ‘ar{b‘ — |z1] < ‘a{b|

since 1 # 0 by assumption. Multiplying both rows in the original condition with
_ Ty _ lalt] .
sgn(x1) = sgn (al b) = 1y 8ives

|z1| = ‘a{b‘ -

T 751 030
0€alay|zi| - |a] b} — + A[=1,1]
ay b

T
=0¢c {alTb’ (agal - Z%Z) - A (a2Ta1 +[-1,1]).
1

The last inclusion can be written as

T
A (agal — 1) < ‘aipb‘ <aga1 — a2Tz> <A (agal + 1)
ay

T T
This implies that ZQTZ < 1, since 0 < A < |ab| and a] b # 0. Thus, if %
1 1

> 1

b

we must have A o = 0.

We can re-formulate these conditions as

T
‘al b‘ alb\ —
ala +s Tap — 2=
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Further simplification and including the \ < ]a}rb‘ condition give

aldb
‘a{b| ﬁ —alay
L <A< |afb]. (7.48)
T azb T
1 —ajazsgn @ —aj az
To summarize this case, we have
o if 20| > 7|
ho {A > 0:(7.48) is satisfied} otherwise.

Note that if af b = 0 then |ab| > |a{b
above.

, therefore, this cases is implicitly included

By symmetry, the set Ay is the same as A;, but with the indices 1 and 2

swapped Le. if

asz
Ty

1-— a{ag sgn <Zérb — alTag)

T

}asz’ —aj az

<\ < a3 (7.49)

then

A01:

)

0 if 78] > [aTb]
{A > 0:(7.49) is satisfied} otherwise.

Assume that € X; ;. Then (7.47) is equivalent to the condition
0=A"Az — AT+ A [Sgn(“’”l)]
sgn(zz)
where matrix A” A and its inverse is given by
T 1 T
il e g L

z |-
ajaz 1 1— (afay aj a2

The inverse exists by assumption since |af az| < 1. Multiplying the condition
from the left with (A7 A)~! gives

z=(ATA)1ATh — A(ATA)? Eiiggi] .

Define the matrix

[0 o)

Multiply with S from the left gives

|21]

0< {
|z2]

] = S(ATA)T1ATH — AS(ATA)~! [ziﬁgg] .
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The last term is

S(AT 4)1 [Sgn(:rl)] B 1 sgn (1) 0 } [ 1 —a{ag] [sgn(xl)}
sgn(za) 1— (a{ag)z 0 sgn(za)| |—afas 1 sgn(za)

11— al ag sgn (i)

1-— (alTa2)2

>0
since |a] az| < 1. In order for the condition to have a solution we need
S(ATA)1ATL > 0

In other words, sgn(z;) = sgn (#;) for i = 1,2 where & = (AT A)~'ATb is the leasts
squares solution. Inserting this back into the condition yields

0 < |:‘f1’:| o 1-— ar{ag Sgn (i‘li‘g)
- 2
|2 1-— (alTag)
To summarize this case, we have
1— (aTa 2
A1=¢A>0:)< = (a1 Q)A — min (|21], |#2]), 2 = (ATA)"1ATH } .
1 — aj azsgn (&122)

In order to show the statement that the sets A; ; are disjoint and that the amount of
sparsity is nondecreasing with A\, we need to consider different cases with respect to
the data A and b. The case A”b = 0 gives that MNo=Ryrand Aig=Ag1 =A11=10
and statement holds. Thus, we consider A”b # 0 in the following. We can further
divide into the cases

‘a’{b‘ > ‘asz‘, ‘agb| > ‘a{b| and ‘a{b‘ = ‘agb‘.

* One of Ay and Ag; is empty since |a] b| > |ab| and |ab| > |a{b| can not hold
at the same time. By symmetry, it is enough to consider only one of these cases.
Here we consider the case |a{ b| > [a]b|.

Note that A is nonempty and |afb| > 0. Let Ao € Ao, Ao € Argand Ay €
Aq 1. If we can show that

A1 < A0 < Aoy

we can conclude that the sets A; ; are disjoint and the amount of sparsity is
nondecreasing with . Since A1 o < |a?'b| and |aTb| < \g o we have \; o < Ao . For
A1,1 and A o we have

T agb T
T \2 ‘al b} 7 —ajaz
1— (af a2) et e a b
A1 < T —— min ([&1], [£2]) , T < A10
1 — aj agsgn (£122) . ay b T
1 —ajazsgn m—alag

and we will show that the upper bound of A\;; and the lower bound of A, are
equal, proving that \;; < A1 o. We start by showing that min (|Z], |Z2|) = |Z2],
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i.e., |Z2] < |Z1]. Using the definition of %, we have that
&= (ATA)~1 AT
B 1 [a{b — a{agagb]
1 (aTay)? lasb — afazafd]”
This implies that |Z3| < |Z;] is equivalent to

‘agb — alTagalTb‘ < ‘alTb — alTagaQTb‘

=
T T T
a3 T T b T Gyb
——— —aja| < |l —ajas—-|=1—ajas——.
ald Lo _' ! 2ar{b ! 2ar{b
T
The last equality holds since |a] az| < 1 and Z?TZ < 1 by assumption. The last
inequality can equivalently be written as
) )
QQT atay <1—af agagp
1b ayb
T ag <1 T a’éﬂb
ayag — —— —ay ay——
152 a{ - 1 2a1Tb
54
) Ty Ty
0< 1+ar{a2—ar{a2a%—a% = (1+afay) < _a%>
a%b alrb a%b
0< 1—aTa2—aTa2aLb+aib: (l—aTag) 1—1—@
- ! ! a{b alTb ! aF{b
T
But this holds since ‘alTag} < 1land ZZTZ < 1 by assumption. The upper bound
1
on A1 can now be written as
T
T (%20
ai bl | —aja
1 (afaz)® o] alo 177
1 —al'agsgn (2142) 1 —afagsgn (£142)

This is the same as the lower bound on \; ¢ since

sgn (£121) = sgn ((alTb — a{agagb) (agb — alTaza{b))

ald aldb
_ I R LAWAC L ))
sgn(( alaQa?b) <a1Tb aj az

T

azb T

=sgn| = —aja
g (a?b ! 2)

T
az b
T
ajb

case when |a{ b| > |alb|.

< 1 by assumption. This concludes the proof for the

since |afaz| < 1 and ‘

* Next, we consider the case |a] b| = |ab|. Then |afb| = |adb| > 0 since ATb # 0.
Moreover, Ao = Ap1 = 0. Let \go € App and A ; € A; ;. We want to show that
1-— ((11T0L2)2
A min (|#4], |2 = laTbl = laXb] < Noo.
11 T oTaysgn (172) (1], [22)) = |a1b|=]azb] < Ao
known unknown known
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We know that

1 . 1 o lafb
1| = arb| |—= —aja
1 — al'agsgn (2142) &l 1 —atagsgn (2142) 2 ’ alb 172
T
ab T
sen | = —ata
_ & (agb ' 2) T aclpb T
= T PN 20| { =7 —ata
1 — aj azsgn (£122) ayb
1 T alTb T
= Tb ‘GQ b} (Tb — a1 a2
sgn “uo_ aTas | —aTas @2
a2Tb ! 1
. AoA N al'b T afb
where it was used that sgn (Z122) = sgn T —ajaz). We now note that T =
2 2
T
sen (42 since |a?b| = |ad'b|. Furthermore, we then also have
al b 1 2

T T

aib T ayb T
Sgn — — a7 a = Ssen | segn { ——— — a3 a
g <a2Tb 1 2> g <g <a2Tb> 1 2>

since |af az| < 1. This yields

1 . 1 T ald T
I = arsbl[sgn| — | —aja
1 —al'agsgn (2142) 1] <a1Tb> T { 2 ‘ < & (agb 12
sgn 77 | — al a9
asb

= ’aQTb‘.

By symmetry, the analogue holds for m | o], i.e.

1 . T
—— |22 = |a1 b .
1 —atagsgn (2142) & ‘ 1 ‘
This gives us the desired inequality
)\171 < )\070.

This concludes the proof for the |a{ b| = |a]b|.

We have now covered all cases.

Note that, in all cases, the distances |\; o — Ao 0| and |A; 1 — A1 o] can be made arbitrary
small. This is expected since otherwise there would be A for which no solution exists.
Since problem (5.5) is strongly convex for all A > 0, we know that this is not possible.

Solution 5.6
Note that (5.6) is always bounded below by zero.
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1. Let ¢ > 0. Then ¢(w,b) also separates the data. Inserting this into the cost
function of (5.6) gives that

n
Zmax 1—tyl x; w+b Zmax —t‘:L‘ZTw—I—bD.

Choosing any
1

b= ming—1,..n ‘;p;fw + b‘

gives a cost of 0 and therefore ¢(w,b) must be an optimal point. The set of
optimal points is unbounded since |t(w,b)||2 = t||(w,b)|2, ||(w,b)|l2 > 0 and
t > (min; [#7'w + b|)~! can be made arbitrary large.

2. Choosing an arbitrary w € R™ and inserting into the cost function of (5.6) gives
Zmax (0,1 —Yi (xiTuH—b)) = Zmax (0,1 —xlw - b) .
i= i=1
Choosing

b>1— min z]w
i=1,....n

gives a cost of 0 and therefore (w, b) is an optimal point. The set of optimal points
is unbounded since ||(w, b)|% = ||w||3 + |b]?, where b > 1 — min;—; _, 2] w, can be
made arbitrary large.

3. Letting w = 0 and inserting into the cost function of (5.6) gives
Zmax (0,1 — yi(zj w+b)) + §Hw||2 = Zmax (0,1—-0)>0.
i=1 i=1

Any b > 1 yields a cost of 0 and (w,b) is therefore an optimal point. The set
of optimal points is unbounded since ||(w, b)||2 = |b|, where b > 1, can be made
arbitrary large.

Solution 5.7
Note that the regularization term is the same. Woking with the sum of hinge-losses
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we get that

Zmax (0,1 — Vi (xiTw—}—b)) =17

=1

We can now identify

max (0,1 — y1 (2] w+b))]

max (0, 1-— yn (fvgw + b))_

1=y (zTw+0b)]
17 )

max | 0,

1—yn (J:Zw + b)_
11 (.CU{U} + b)-
=17 max 0,1— :

o (27w +0) |

[yt w [y1b

max | 0,1 — : +

_ynfzgw _ynb
(127 i

=1"max [ 0,1 - D lw+b

YnX Z Yn

1T

Y1

X=yz1 - yorn] and ¢ =

Solution 5.8

Yn

1. The function f is a sum of hinge-losses and in particular separable, i.e.

for each u = (uy, ...

for each = (1, ...

flu) = Z max (0,1 — u;)
i=1

,up) € R™. Using Exercises 3.1 and 3.5, we get that

n

FH(u) = (max(0,1 )" (us)

=1
= i+ 1,0 (i)
i=1

=175+ y_19(w)

, in) € R™. Using Exercise 3.1, we get that the conjugate of
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gis

. A
5w = s () ) - 5 )
(w,b)ER™ xR

A
= sup <1/£w -3 Hw||§> + 2uﬂ1§(ubb)
€

weR™
1
= Sl + 1oy ().

for each (v, 1) € R™ x R. Note that

* * X
g (—L"p) =g (— |:¢T:| u>
1 2
= o =X pllz + ey (=97 1)
1 2
= o5 IXulls + epoy (6" 1)
for each 1 € R™. Thus, the dual problem
minimize f*(u) + g*(—L7 )
peR™
becomes

1
e T 2 T
minimize 174 + o | X pllz + e-1,0/(1) + 10} (¢" 1)

or written differently

1

mlllllel%}ze um+ 5 )\,u 0
subjectto —1< <0,
¢ =0.

. We claim that CQ holds for the dual problem, i.e.
relint dom f* N relint dom g* o —LT # 0. (7.50)
Indeed, we have that
relint dom f* = (—1,0).
Since we have examples from both classes, we know that
Y1
Yn

has both 1 and —1 as elements. Thus, pick indices i,j = 1,...,n, i # j such that
¢; =1 and ¢; = —1. Note that

{p€R™: ;= pj, = 0forl € {1,...,n}\ {i,j}} € domg*o LT
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and therefore
{peR™: p; = pj, y=0forl € {1,...,n}\ {i,j}} C relint dom g* o — L7

This show that the intersection in (7.50) is nonempty, as claimed.

Suppose that ;, € R" is an optimal point for the dual problem. By Fermat’s rule,
closed convexity of f and g, and since CQ holds for the dual problem, we know
that

0€df*(p) — Ldg*(—L" )
=
{L<w, b) € Of* ()
(w,b) € dg* (L")
4
{ € 0f(L(w,b))
—LT € dg(w, b)
4
0 e LTof(L(w,b)) + dg(w,b)
=
0€d(foL+g)(wb).

(The last implication and be strengthened to an equivalence since CQ clearly
holds for the primal problem, but the implication suffices to show what follows.)
Hence, such a point (w,b) € R™ x R must be an optimal point to the primal
problem.

We can recover w from the second condition of

{L(w,b) € 0f (n)

7.51
(w,b) € dg*(—L" p). (750

Indeed, note that

R ifvr=0
Oy () = {@ ify =R\ {0}

Therefore,

0" (o) = { 2] 50, € 0 (55 1B ) (), o0 € dugo o)}
1
N

b
{[ ”“’] ‘a GR} if (v, ) € R™ x {0}
= a
0 if (v, 1) € R™ x (R {0})
Moreover, note that
T _ | —Xp
. Lcﬁj



where we must have that —¢” ;x = 0 since y is assumed to be an optimal point
for the dual problem. Thus, we have that

QQT—LTM%:{[_%fﬂ}MZGR}

and using the second condition of (7.51) we can uniquely determine w as

1
= —— .
w )\X,u

However, this does not allow us to uniquely determine b.

Next, we determine b. Note that

0 if p; < —1
[—o0, 1] if p = -1,
@F ()= {1} if —1 < <0,
[1,00] if u; = 0,
0 if u; >0

for each 4 € R™ and each i = 1,...,n. The first condition of (7.51) gives the
requirement

XTw+bp € 0f* (1), (7.52)
Recall that
Y1
X = [ylwl T ynxn] and ¢ =
Yn
Thus, under the condition that there exists an index i =1,...,n such that —1 <

1; < 0, we can uniquely determine b from
yiwfw—i—byi:l = b:yi_l—x?w:yi—x;rw.
. Suppose that p* € R" is an optimal point for the dual problem and that (w*, b*) €

R™ x R in an extracted optimal point for the primal problem. Clearly, it must
hold that —1 < p* < 0.

First, we show that if i = 1,...,n is an index such that —1 < pf < 0, then z;
must be a support vector. Thus, let 7 be such an index. We repeat (7.52):

XTw* +b*¢ € af ().

The ith coordinate of this inclusion is

0 if uf < -1

[_007 1] if,u'? =-1,
yi(xlw* +b%) € ¢ {1} if —1<puf<0,

oo if =0,

0 if 7 >0
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Since —1 < uf < 0, we get that
yz(:L'ZTw* +0b") <1
or equivalently
0<1—y(xfw* +b*)
and we conclude that z; is a support vector.

Second, we show that we can recover (w*, b*) € R™ xR only using support vectors.
From the previous subproblem, we know that we can determine the optimal
w* € R™ by

1 n
= _X Z YiZi [y
i=1

1 n
= - X Z YiZi i
s.t.ZTLil;éO

i.e. we only utilize support vectors. The optimal parameter b* can then be recov-
ered as in the previous subproblem where a nonzero element of ;* was utilized,
i.e. a support vector.

Solution 5.9

1. True. Consider the model m,,(z) = w? ¢(x) as a function of w instead of » and
note that it is linear in w since ¢(z) does not depend on w. Since y; also does not
depend on w,

w — L(may(x;), yi)

is a convex function composed with a linear function and therefore itself convex.
We see that the objective function is a sum of convex functions, and therefore
itself convex.

2. False. Consider a two layer network, i.e. D = 2, with
d=l=k=fi=1
and o1, 09 as identity functions. Then
my () = wiwax

for each x € R™. Take the L as the square error loss and consider a single (n = 1)
data point x; = 1 with response variable y; = 0. Then we get the loss (and
objective) function

L(ma(21), 1) = [lwiwal|?

= (w1w2)2.
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We claim that this is not convex as a function of w = (w;,w2) € R x R. The points
(0,1) and (1, 0) both have value 0 but the convex combination

%(o, 1)+ %(1, 0) = (0.5,0.5)

has a positive value. Therefore, the objective function is not convex in general.
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Solutions to chapter 6

Solution 6.1
To estimate the overall computational cost of an algorithm, we can roughly use

(iterations count) x (per-iteration cost).

This quantity for the first algorithm is 5 x 10® and for the second one is 10%. Hence,
the second algorithm had a better performance.

Solution 6.2

O(p}) < A2 (linear)

O(p5) + A4 (linear)
O(1/log(k)) +» A3 (sublinear)
O(1/k) <+ Al (sublinear)
O(1/k?) > A5 (sublinear)

A A

Solution 6.3

1. From the Q-linear rate definition, we have that
Vi < pVie1 < pViea < ... < M
or
Vi, < 0"V

holds inductively for each integer £ > 0. This implies an R-linear rate with
pr = pand Cp, = Vj.
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2. From the Q-quadratic rate definition, we have that
Vi <V
Vo < oV < pp?VE
Vs < pVE < pp?p* V¥
Vi < pVE < pp*p® P VE
Vi < PVk2—1 < pp2p22p23 . 'pzk—lvozk _ pz’thOQk _ kaVOQkpfl
or
Vi < (pVo)* p !
holds inductively for each integer k& > 0. Here, we used that
142422 4. 42kt =2k 1

We get that (6.2) holds with pg = pVp > 0 and Cg = p~! > 0 since Vp > 0 and
p > 0 by assumption.

3. If pVy < 1 or equivalently Vj < p~!, we get pg = pVp € [0, 1).

Solution 6.4

1. Let n = 1 and consider the function f : R — R such that

f(x) ==

for each € R and z;, = —F for each integer £ > 0. Clearly, ()72, is a descent
sequence and

f(zg) > —c0 as k — oo.

L.e. the sequence of function values (f(z));2, does not converge in R.

2. Solution 1: Note that the sequence (f(x1));°, is monotone, by construction. More-
over, (f(xx))32, is bounded — from above by f(z() and from below by B. Then,
by the monotone convergence theorem, the sequence (f(z))7°, converges in R.

Solution 2: First, note that the nonempty set {f(x;) : ¥ € Ny} in R is bounded
from below by B or equivalently, {—f(zy) : £ € Ny} is bounded from above by —B.
By the least-upper-bound property of R, there exists a real number, say b € R,
such that

sup{—f(z): ke No} = b
or equivalently

inf {f(zx): k€ Ny} =b
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where b = —b. The least-upper-bound property of R can be taken as a complete-
ness axoim of R, or, proven as a theorem from some other completeness axoim,
e.g., the convergence of every Cauchy sequence.

Second, recall that the definition of the infimum of a set is the greates lower
bound of that set. In particular, for any ¢ € R that is a lower bound of {f(x) :
k € No}, i.e. ¢ < f(zy) for each integer & > 0, it holds that ¢ < b.

Third, we claim that (f(x;))32, converges to b, or written differently,
flxzg) —b as k— oo.
This, by definition, means that for each ¢ > 0, there exists an N € Ny such that
|fzk) —b] <€
for each integer £ > N, or equivalently,
b—e< flap) <b+e

for each integer £k > N. Indeed, let ¢ > 0 be arbitrary. Since b is the greates
lower bound of { f(zx) : k € Ny}, we get that

b—e<b< f(xy)
for each integer k£ > 0. Moreover, there exists an N € Ny such that
flzn) <b+e

Why does such an N exist? If there did not exists any such N, b + ¢ would be a
lower bound of the set { f(x) : k € Np}. But this would contradict the fact that b
is the greates lower bound of { f(xy) : k € Ny}, since b < b + e. Finally, note that

flap) < flan) <b+e

for each integer £ > N, by construction of the sequence (x;);2,. I.e. we estab-
lished that

b—e< flxp) <b+e
for each integer k¥ > N, as claimed.

. The most basic example would be to consider any function f that is bounded from
below and let x; = z for each k € Ny, where x € R" is not an optimal point. A
slightly more interesting example would be f : R> — R such that

flz,y) =2+ ¢

for each (z,y) € R? and the sequence

= (1 D)k (14 1) st

for each integer k£ > 0. We see that

1\2
f(xr,uk) = <1 + k)
is decreasing but does not converge to the optimum f(0,0) = 0. There are plenty

more examples. Function value decrease is a very weak (read: useless) condition
for a minimization algorithm.
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Solution 6.5

Below you see an expanded table with the asked for ratios. We see that the linear
ratio is steadily decreasing while the quadratic ratio is more stable (up until machine
precision is achieved). Clearly, the sequence appear to converge Q-quadratically. The

parameter is given by the worst case ratio, i.e., p =~ 0.24.

b

L

|z — ¥ = dy

dit1/dr

diy1/d;

I Tt WN -=O

©

5.000000000000000
3.960109873126804
2.888130487596392
1.799138129515975
0.849076217909656
0.379763183818023
0.315791881094192
0.314923211324986
0.314923057845411
0.314923057845406

4.685076942154594
3.645186815281398
2.573207429750986
1.484215071670569
0.534153160064250
0.064840125972617
0.000868823248786
0.000000153479580
0.000000000000005
0.000000000000000

0.77804204
0.70591922
0.57679574
0.35988932
0.12138864
0.01339947
0.00017665
0.00000003
0.00000000
NA

0.16606815
0.19365790
0.22415439
0.24247788
0.22725437
0.20665396
0.20332357
0.21226031
0.00000000
NA

For the interested: The gradient and Hessian are

Vix)=¢€e"—2+2z
V2f(z) =e® 42
for each x € R, which shows that f is strongly convex and thus has a unique minimizer.
The Newton iteration is then explicitly written as

etk — 2+ 2$k
€T = r, — ——
LT ek + 2

for each integer k£ > 0.

Solution 6.6

1. Note that

D
Ong§L+7—>O as k — oo.

vi(k)  a(k)
Therefore, Q. — 0 as k — oo, by the squeeze theorem.

2. Since we have two terms (both converging to zero as k£ — oo) on the r.h.s. of the
inequality, the slower term is the bottleneck and decides the rate of convergence,
that is, the smaller between /1 and ), determines the rate of convergence. When
comparing we can ignore the constant terms. With that in mind, the rates are
as follows:

(a) O(log(k)/v'k) sublinear rate of convergence.

(b) We should compare O(1/k'~) and O(W) = O(1/k%). Since o €
(0,0.5), O(1/k%) is the rate of convergence.
(c) We should compare O(1/k'~%) and O(;r—sbr—s) = O(1/k%). Since a €

kl—a/kl—Qa
(0.5,1), O(1/k'~%) is the rate of convergence.
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3. The cases in (b) and (c) are similar. We just need to compare them with case (a).
Let a € (0,0.5) and note that

log(k)/Vk  log(k)
1/ka T k05—a

We conclude that case (a) gives the faster rate.

—0 as k — oco.

Solution 6.7

1. Note that

IN
m
o

0 < flax) — f(z7)

IN

— =0 as k — oo.

The squeeze theorem gives that
flzg) — f(@*) -0 as k—oo
or equivalently
flzr) = f(z*) as k— oo
as desired.

2. In both cases, the function ¢ : R, — R, such that
o(i) =i

for each ¢ > 0 is decreasing. Therefore, we obtain the following bound:

k k
0< /0 o(t)dt < ;qﬁ(z)

k
= Z Yi
i=0

for each integer k£ > 0. Similarly, we also get the bound
k k
Y i =) k)
i=0 i=0
k
< / G2 (t)dt + ¢*(0)
0

o 2 2
gA S2(1)dt + ¢2(0)
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for each integer k£ > 0. Combining these bounds with the inequality given by the
convergence analysis, we get the new inequality

k
V+D Z v2
flar) = f(@") < =0
b Z Yi
i=0
V+D ( > (t)dt + ¢2(0)>
< S
b | o(t)dt
0
for each integer k > 0.
(a) Let
C
o0 =

for each ¢ > 0. Note that

/qs )dt + ¢*(0) = ¢

(Lo
([

and
k kg
t)dt = —dt
/0 b(t)dt = c /O —
= c[log(t + 1)]i,
=clog(k +1).
We conclude that
V +2Dc?

fla) — f(a") < belog(k 1+ 1)

for each integer £ > 0, which shows a O(1/log k) sublinear rate of conver-
gence.

(b) Let
C
(t+ 1)«

for each t > 0, where o € (0.5,1). Note that

/OOO ¢*(t)dt + ¢*(0) = </Ooo (1+1t)2adt + 1)

- ([(1 - 2a)(:; +t)2“‘1]:0 : 1>

2ac?
20— 1

o(t) =
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and

k k 1
/0 ¢(t)dt:c/0 T

1 k
— ¢ {u —a)(t+ 1)),

= —— ((k+1)*=1).

l—«

We conclude that

202
200 — 1

(k+1)!>—1)

V+D
Flan) = fa*) < —5

l—«o

for each integer k£ > 0, which shows a O(1/k'~%) sublinear rate of conver-
gence.

3. Note that « € (0.5, 1) implies that 1 — « € (0,0.5). Therefore, we get that

1/k*=*  logk
1/logk  kl-@

—0 as k— oo.

Thus, step-size (b) gives the fastest convergence rate.

Solution 6.8
The Lyapunov inequality (6.3) gives that

k
lze — 2*13 < llzo — 2*13 — 2v D _(f(wi) — f(a*))

=1

holds inductively for each integer k > 1. Therefore,

k

i=1 27 (7.53)
_ o —=*I3
> %

for each integer k > 1, since ||z}, — 2*||3 > 0 for each integer k > 1. Furthermore,

k
R(f(xx) = f(a¥) < (f(xi) = f(2*)) (7.54)
i=1

for each integer k > 1, since (x1)72, is a descent sequence for f. Combining (7.53) and
(7.54) gives

 llwo — 3

0< f(zg) — fz¥) < ok —0 as k— oo (7.55)
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The squeeze theorem gives that
flzg) — f(2*) -0 as k— oo
or equivalently
f(zr) = f(z*) as k— oo.

Moreover, we identify a O(1/k) sublinear rate of convergence from (7.55).

Solution 6.9

1. We start from the inequality
E[llexir — 2[5 | @] < llww — 213 = 29 (f(zx) — F(2¥)) +77G?
for each integer & > 0. By monotonicity and linearity of expectation, we get that
E [E [[lzgs1 — 2*[I3 | 2x]] <E [llog — 2*(3 — 20(f (z1) — F(27)) +27G7]
= E [[lzx — 2*[3] — E [2%(f(zx) — f(=*))] + E [1{G?]
=E [|lzx — 2*[3] = 2w E[f(z1) — f(2")] + 217G,

for each integer k > 0, since G and ~;, for each integer k£ > 0, are deterministic.
The law of total expectation gives that

E [[lzg+1 — 2*[3] < E[llog — 23] — 2w E[f(zx) — f(2*)] + 72 G®
for each integer k£ > 0. This is the Lyapunov inequality we pick.

2. The Lyapunov inequality above gives that

k k
E [lap — 2*[3] S E[llwo — 23] =2 wE[f(:) = f@)] + G ) A7
1=0

i=0
k k

= oo —a*[3 =2 wE[f(x:) = F@)] +G* Y A7
i=0 i=0

holds inductively for each integer k > 0, since ||z¢ — 2*||3 is deterministic. Again,
by monotonicity of expectation, we know that

0 <E [[legr — 2*[|3]
for each integer k& > 0 since
0 < Jlzpyr — 273

for each integer k£ > 0. We conclude that
k

k
0< oo —a*3 = 2) WE[f(z:) = fl@)] + G
1=0

i=0
for each integer k£ > 0, or by rearranging

k k
2> WELf (@) - f@)] < lloo - 2* 3 + G247
=0

=0

for each integer k£ > 0, as desired.
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Solution 6.10

1. First, we prove the claim provided in the hint, i.e.
k

for each integer k£ > 0. Clearly, (7.56) holds for £ = 0. Note that

1+ /1+4X2_,
A =

2

1
D VI
_2+ k—1

holds for each integer k& > 1. This gives that

1
)\ka§+>\0
k
=1 —
+2

holds inductively for each integer k > 1. This establishes (7.56).

Next, rearranging (6.4) and recursive application gives

2
B

2
gm—wﬂ+ﬁ%wm—ﬂﬂ»

2
Vi Vi + 22 (f () — f))

2%,

5 (f (zr) = f(z9))

(f(@rr1) = f(27) < Vi = Vigr +

B
207
<Vi+ M) - £6)
for each integer k > 1, since V;, > 0 for each integer £ > 1. Using (7.56), we get
that
272
Vit FHf) - fa)
flzp) — f(@") <
224
B
2%

IN
iy

for each integer k > 1, or equivalently

28V + 403 (f (21) — f(a*))
(2 o (7.57)

flxg) = f(2*) <
for each integer k£ > 2. Note that

28V1 + 4X(f (21) — f(2*))

(k+2)2 —0 as k— oo.

0< flar) — f(2*) <
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The squeeze theorem gives that
flzr) — f(z") =0 as k— oo
or equivalently
f(zg) = f(z*) as k— oo.

Moreover, we identify a O(1/k?) sublinear rate of convergence.

. From (7.57), if k£ > 2, we know that

28V1 + 4N (f(21) — f(z¥))
(k+2)?

flag) = f(a") <
Therefore, if the integer k£ > 2 is so large such that

28V1 + 4N (f(21) — f(2¥))
(k +2)?

<e

we obtain an e-accurate objective value. This is equivalently to

. { \/w AN (@) — fl@) 4

and k£ >2
€

or simply

€

- ({ \/wv] AN (f(an) —J(@) 2} 72> |
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Solutions to chapter 7

Solution 7.1

1. We know that the inequality

Flaie) < Jlaw) + VFx) (o —26) + 5 i — nal

holds since f is S-smooth. Using the update rule (7.1) we get that

fanga) < flaw) + V()" (2 =V f(21) — ) + g (k= 7V f (1)) — ll3
— o) = (1- ) 9@
Subtracting f(z*) from both sides gives that

(floasr) — 1) < (Flar) — F()) - (1 - ﬁ”) 19 )

as desired.

2. The Lyapunov inequality (7.2) can be written as

<1ﬁ7> IVF@IE < (Fa) — ) — (i) — F(a))

for each integer i > 0. Summing over ¢ =0, ...,k gives that

k
<1_>Zuw )3 < S ((f o)~ (flaicr) — f(a*)))

=0

f(xo) = f(27)) = (f(zrs1) — f(27))

(zo) — f(z")

for each integer £ > 0, since f(zr11) — f(2«*) > 0 by assumption. Suppose that
0<y< % Then we get that

IN I
k’ﬁ N S,

Z IV )2 < L@ = /@) (7.58)

08
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for each integer k& > 0. In particular, we see that

fjuw@i)”g < f@o) = f@7)
i=0 y (1 - 57>
2

and conclude that
IVf(zi)l? =0 as k— oo

as desired.
. Using inequality (7.58), we get that

k
(k+1) min [[Vf()l3 <D V)l

1=0,..., “—o

flwo) = f(a*)
e

for each integer k£ > 0. Dividing by k + 1 gives that
f(xo) — f(z)

<

O 7(1—57)(1%1).

2

for each integer & > 0. We identified a O(1/k) sublinear rate of convergence.

Solution 7.2

1. Plugging in the update rule (7.3) into ||z — :U*Hg and expanding gives that

|zt — 2|2 = |log — YV f (x) — 272

= [lzx — 2*)|5 — 29V f (@) T (@ — 2%) + 72 |V f(2x)3.-

The first order condition for convexity gives that

f@*) = flax) + V) (@ —ap)

which is equivalently to that

Therefore,

=V flzr) (zr — ) < — (f(2r) — f(2¥)).

a1 = 25 < o — 2*[5 = 29 (f(@x) = F(@*) + 72 IV f )5

From Exercise 7.1, we have the Lyapunov inequality (7.2), i.e.

(o) = £a) < () = £ =2 (1= ) I9A@0IB.
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Adding f(z*) to both sides, multiplying by 2y and rearranging gives that
—2yf (k) < =27/ (zh11) = V(2= BV IV f (@) l3 - (7.60)
Inserting this into (7.59) gives that

|2kt — 2*[f5 < lon — 2*|5 — 29(F(rt1) — F(@*) + 2By = 1) |V f(@)|l5
as desired.

. The inequality (7.4) can be written as

2y(f(@is1) — f(2%) < [lwi — 2*|5 — lwier — 2*)|5 + 2By — 1) [V £ ()3

for each integer i > 0. Summing over ¢ =0, ..., k gives that

k k
29 (i) = F@) <3 (llmi = 213 = lwisa — 213 +92(87 = 1) V£ (@)I13)
=0 =0

k
= [lzo — 2*[I3 — llzasr — 25 + 7By — 1) D IV F()ll3
i=0
k
< flwo — 25 + 7By — 1) ) IV F(3)ll3
i=0
for each integer k£ > 0. Note that
<2
TS5
implies that
By—1<1.
Therefore,
k k
27 (f(mit1) — F(@) < llwo — 2|3+ D IV F(@)l3
i=0 i=0
< lwo —2* )13+ D IV F()ll3 (7.61)
i=0

for each integer £ > 0. Note that inequality (7.2) implies that (z;)5°, is a decent
sequence for f,i.e. (f(z;))2; is nonincreasing. This implies that

29(k + 1(f(ze1) — f(27)) < 2v Z(f(im) — f(z))

which combined with (7.61) gives that

2o — %13 + 72 320 IV £ ()3
27(/{: +1)

since Y°°, ||V f(;)||3 is bounded. We conclude that

0 < f(zgyr) — fa¥) < —0 as k— o

flzr) = f(z*) as k— oo

and identify a O(1/k) sublinear rate of convergence.
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Solution 7.3

1. Note that

|zrer — 2*)5 = ||(zx — YV f(zx) — 25
= |log — 2*|3 — 29V f ()T (21, — 2*) + 72 |V f () |l5 -

The first order condition for strong convexity gives that

J@*) = ) + Vi) (@ = o) + 5 lle* - ax
which is equivalently to that

~Vf (@) (o —2%) < = (flon) = f@") = 2 " =l
Therefore,
ki1 — 2[5 = (1= 09) [lzn — 2*[|5 — 27 (f(2r) = F(*) + 27 |V f (@) (7.62)

Recall inequality (7.60) from Exercise 7.2, i.e.

~2yf(x1) < =27f (k1) =722 = B [V f (@n)3
Using inequality (7.60) in (7.62) gives that

1 = 25 = (1= o)l — 2* )13 = 29 (f (za11) = (@) +7°(By = D |V S (wr)ll3

>0 <0 since y<1/8

< (1= 09) lax — 2*;

as desired. The fastest convergence rate is obtained when 1 — o is minimized
which in turn happens when v is maximized. Since ~ is upper bounded by 1/4,
the fastest convergence rate is obtained when

Y=2

which gives the convergence rate

o_B-o
BB

1—

2. Let g : R — R such that

g9(v) = max(1l — o7, By — 1)

for each v € R. The step-size that gives the fastest convergence rate is the one
that minimizes g. Since g is the maximum of two affine functions it is closed and
convex. Fermat’s rule then give that the best step-size ~ satisfies

{-=0o} ifl—0y>py—1,
0€dg(v) =< {8} ifl—oy<py-—1,
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Clearly, this holds only when 1 — oy = v — 1, i.e., when

which gives the convergence rate
< +2 ) +
g 8+o B+o’

3. From the analysis earlier in the previous subproblem, we get that the fastest
convergence rate is given by

8—o
p

From the analysis in the lectures we get that the fastest convergence rate is given

by
2
2 B—o 2
v o8 < (G50 ) o a3

|zhs1 — 2*])3 < |z — 2|3 -

Since 0 < o < 3, we have that

(6—0>2§6—0§5—0_
B+o B+o B

Thus, the convergence analysis in the lectures yields a faster convergence rate.

Solution 7.4

1. Let f : R™ — R such that
f(z) = %xTQa: +q'x
for each x € R™. We have that
Vi(z) =Qz+q
and

sz(l') = Q = )\min(Q)I

for each x € R", where \,,;,(Q) > 0 since Q € S . The second order condition
for strong convexity gives that z* is the unique global minimizer of f. Fermat’s
rule gives that z* is the global minimizer of f if and only if

Vi(z*)=0.
Note that
Tp1 = xk — YV f(xk)
= —vQ)xr —vq
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and

zt =1t =V f(z")
= (I —1Q)z" —q.

Therefore,

ki1 — 2™y = [(T = Q) (2x — 27l
< M =@y [lze = 2"l -

Note that
Aill —9Q) =1 =y An-i+1(Q)
and therefore
1< NI -9Q) <1
foreach i =1,...,n, since v € (0,2/3) where

B =1Ql,
— )\maX(Q)

since Q € S’ , . We see that

HI - 'YQ”Q = Jmax(I - ’YQ)
= \/)‘max ((I - 7@)2)
= max [N(I —1Q)

.....

and conclude that

0< I —1@Qll, <1

. Suppose that v = 1/3. This implies that
0<M(I—9Q) <1
by (7.63). Therefore I —yQ € S, and

HI - 'YQHQ = /\max(I - ’YQ)

=1- /VAmln(Q)
—1_ )\mln(Q)
)\max(Q) .

. Note that

Amin(Q) =€ and  A\pax(Q) =1

and therefore

p=1-7Ql,
=1—e.
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If ¢ = 0, then z* = 0 is the unique global minimizer of f. If we pick

v

[0

then

0
and the linear convergence rate is achieved, i.e. the inequality
g — ¥ < p" [lwo — 27|

becomes an equality. In particular, if € is very small compared to 1, we get a slow

convergence.
4. Let
1
T v
0 1
Then

T 1 15
10 1

5. VTQV has the eigenvalues 0.99 and 1.01. The convergence will therefore be very
fast. Indeed, with

1
7T 101
we get the linear rate of convergence
0.99
=1—-———=0.02.
P 1.1

6. Suppose that V is not diagonal. The proximal operator is often computed on
some function g that is separable. With the change of variables to z = Vy, we
need compute the proximal operator of the function g o V' which in general is
no longer separable. Computing the proximal operator on this term generally
becomes computationally expensive.

Solution 7.5

1. Recall that

. 1 2
prox. s(x) = argmin | f(z) + — ||z — 2 )
o) = angin (1) + ol - 513
for each x € R". Thus, if

Tgy1 = Prox. ¢(T)
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then
1 2 1 2
f(zpy1) + 2 lzkr1 — zilly < f2) + % |2 — zkl3
for each z € R". Setting z = z;, gives that
1
f(@rs1) + 2 ki1 — 23 < f(ax)
or equivalently
1 2
f(@ps1) < flag) — % zk+1 — 23

as desired.

. Inequality (7.64) can be written as

1
> |21 — 2kl < Flor) — F(@re1)

Summing over £ = 0, ...,[ gives that
1 !
oo D wken =@kl < 3 (Flan) = Flan)
~
k=0 k=0
< f(@o) — f(z111)
< f(zo) — B

and therefore

l

D llwkra — kll3 < 2 (f(wo) — B)

k=0

for each integer [ > 0. In particular, we see that

o0
S Nkt — zxll3 < 29 (f(zo) — B) < 00
k=0

and conclude that
|Zps1 —x]l3 =0 as  k — oo

as desired.

. Suppose that
|zpr —zkl3 =0 as  k — oo.

Fermat’s rule gives that

Lh+1 = pFOX«,f(l'k)

is equivalent to

1
0 € 0f(Try1) + 5 (Tht1 — 7)
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or equivalently

1

5 (zk—1 — xx) € Of ().
This implies that

i 1
0 < distgf(z,)(0) < H7 (Th—1 — %) = 0

2
1
=—||lap_1 — x|, =0 as k— oo
Y
The squeeze theorem gives that
diStaf(mk)(O) -0 as k— o

as desired.

. Note that f is lower bounded by f(z*). Therefore,
ey — k-1l =0 as &k — o0
by a previous subproblem. The o-strong convexity of f implies that
F) = f@)+"(y— )+ 5 ly 2l

for each =,y € R™ and each s € df(x). In particular, we have that

~(onr = 20) € Of(an) = £(&7) 2 Flaw) + 2 (oxr = 2)" (" =) + § o = o}

0€0f (@) = flan) = () + 3 lax — "3

Adding these two inequalities together and unsing the Cauchy-Schwarz inequal-
ity gives that

1
* 12 T *
_ < — —

|2k — HQ_W (T — 1) (7 — )

<L | o [|=* |
— |z — zp— -z

=30 k k—11l2 kll2

and therefore
1

0 <||zg — 2|, < —||lzg — Th—1ll; =0 as Kk — oo.

~o

The squeeze theorem gives that
|z — 2%, =0 as k— oo
or equivalently
T — 2" as k— oo

as desired.
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Solution 7.6
The complete procedure is given below:

1. The goal is to get a Lyapunov inequality on the form

Vier1 < Vi — Q

for each integer k > 0, where (Q1);2, is some nonnegative convergence measure
and

Vi = [|lzk — 2*|3

for each integer £ > 0. We further define the residual mapping R : R" — R"
such that

Rz =z — prox,,(z — vV f(z))
for each z € R™. The proximal gradient update can then be written as
Trt1 = Tk — Rak. (7.65)
We can use this to relate Vj.; to Vi by

Virt = loess — 2*[f3
= [|(zx — Ray) — 2%
= [lzgp — 2*||5 — 2(zk — 2) T (Ray) + | Rawll3

= Vi — 2(zx — o) (Ray) + |Raxl)3 .-

(7.66)

2. Next, we wish to upper bound the quantity —2(z), — 2*)T (Rxy) + |Rai|3. We
start by using (7.65) to rewrite it as

(7.67)

3. We now turn to bounding —2(zj,1 — 2*)’(Rx;). Using Fermat’s rule on the
proximal gradient update gives that

0 € Dg(zrsy) + ,1y (@hs1 — (2k — YV F (1))

which is equivalent to that

v Ray = Vf(ax) € dg(xp41)

The definition of a subgradient then gives that

9(z*) > g(zps1) + (v ' Ray, — Vf(z)T (2% — 2p41)

which implies that

—2(zpq1 — o) (Rag) < =2y(g(zrt1) — 9(2%) — 29V f(2)" (241 — 2¥).  (7.68)
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4. We continue to bound —27V f(23)” (211 —2*). Using the definition of 3-smoothness
of f and the first-order condition of convexity on f gives the two following inequal-
ities:

Florn) < Fox) + VI e — 2+ 5z — 2l
= flan) + Vf(zr)" (2h1 — 2n) + §||R$k||g

f@*) = flar) + V) (" —ap).

Adding these two together and rearranging gives that

Flken) < @)+ V() (e —a%) + 5 Rl
which implies that

29V f(zx) (@1 — 2%) < =29(f(2rs1) — fF(2%)) + VB | Ral3- (7.69)

5. Inserting (7.69) into (7.68), (7.68) into (7.67), and (7.67) into (7.66) gives that
Virr = Vi — 2(zy, — o) (Ra) + | R |13
= Vi — | Ryl — 2(zp 41 — *)" (Ray)
< Vi — [Rall3 — 29(g(wrir) — g(&*)) = 29V f (r) " (wr 11 — 2%)
< Vi = [Ragll; — 2v(g(zr41) — 9(2*) = 29(f(za11) — f(a*)) + 75 | Ral3
< Vi — (1= 8) [Rall; — 2v(9(@pr1) + flznsa) — g(a*) = f(*)).

6. Using the assumption v < 37! gives that

Vit < Vi — (1= 9B) [R5 — 2v(9(zps1) + f(@ns1) — 9(a*) — f(2%))
< Vi = 29(9(xp11) + flap1) — g(a") — f(27))
= Vi — Qg

where
Qr = 2v(9(k+1) + f(wh41) — g(a¥) — f(z7))

which is nonnegative since v > 0 and g(zg+1) + f(2g+1) > g(z*) + f(2*) by as-
sumption on z*.

7. Since Vi, > 0 and @, > 0 we we know that
Qr—0 as k— o
which implies that

flzg) +g(zr) — f(@*) +g(z*) as k— oo.

Solution 7.7
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1. Following the steps gives that

* *[12
i1 — a3 = [Jprox, (z =7V f(ar)) — 2|5
= Hproxw(xk — YV f(zg)) — prox, (2" —yVf(x H2
< 1o ok = 1) — 0" £V
1

If’y>

k1 = 2*l5 <

1404y

Z%N)W%—ﬁw—v( 2
B+op 2 B+oy

(Il = 27113 = 29(9 £ ) = VF @) (e — 27+ 42 |V ) -

“rran (0
1404y

VI)3)

—1) 19 £e0) = V1))

, then the last term is positive, and we can use 3-Lipschitz continuity
of Vf to get that

].

Q&WV)ka—wﬂF—ﬂy(fz
B+oy 2 B+op

1 280 ¢y 232
1- o - 4 6292 ) o —
1+o4v B+or B+oy
1 2804y +28%7 | o o 12
1— + Tp— X
o (1= P ) =7
1
1 _ 2 2.2 _ * 12
o (1= 287 +8%97) = 'l
By —1)?
< Oy .
1+o0yy
If0<vy <5757 + , then the last term is negative, and we can use
IVf(zr) = VI@)lly = of o — 27,
to get that
1 250f7> 2 ( 2
T - 1- T — x5 — —_—
foss =218 < o (1= 202 Y low ="l =7 (5
1 280y 209y
= 1- L9207 ) e — 2113
1+o4v B+oy 5+af
1 2B0py + 202’y
= 1- =720} | e — I3
1+ o4y B+oy
1 2 2 * |12
=7 o (1 — 2057+ Uf) |z, — ™5
_ (1 O—f’)/) || x*||2 ‘
1404y 2

To write these on one common form we use the fact that

1—0o if v € (0, 72—
max(l . O'f’Y,,B’Y . 1) _ { bl ( ,BJraf]
By —1 1f7€[5+0f 00)
which gives the desired inequality, i.e.
X2 max(l - Uf’%B’y - 1)2 2
fonn =l < S -
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2. From the previous subproblem we see that
r, — ¥ as k— oo
with linear convergence if

max(1 —apy, By — 1)°

< 1. 7.71
e (7.71)

* Assume that oy > 0.

-Ifo<y< ﬁ, (7.70) gives that

max(l —osy, By =1)* (1 —0s7)?

1+ o4y 1404y
<(1-op)?
2
9f
< max | 1, (1 -2 )
B—Fdf
=1.
- Ify> ﬂ%af, (7.70) gives that
max(1 — oy, By —1)2 _ (By—1)2 <1
1+o04y 1+o04y
<~
By—-1)2%<1 + o4y
=
1+ 8%9* =28y <1+ o0yy
~
B2y* — B2 + %) <0
~
o
By<2+-2
p
=
< 2 + Oy
< =+ =
B B2

The case oy > 0 can be summarize by that the proximal gradient method

converges linearly if 0 < v < % + %, since ﬁ%af < % + %

* Assume that o0y = 0. Then (7.71) becomes

max(l, ,B’Y — 1)2

<1
1404y

which is impossible if o, = 0.

* Assume that o, > 0.

165



-Ifo<y< ﬁ, then (7.70) gives that

max(1 — oy, By —1)* (1 —o0p7)?

1+o04y 1+ogy

We have that
2

2 <2
B+op — B
=

2
0§0’f7§%<2

0<y<

=
-1<l-0opy<1
=
(1—om)?<1
Thus, (7.71) holds since 1 + o,y > 1.
- Ify> 5%%, (7.70) gives that

max(l — oy, By — 1)2 (By — 1)2

= <1
1+o04y 1+ o4y
=
2
y< S+ 2
BB

where the equivalence is shown exactly as in the o > 0 case above.

The case o, > 0 can be summarize by that the proximal gradient method

converges linearly if 0 < v < % + %, since 5%(” < % + %

To summarize all cases, the proximal gradient method converges linearly if 0 <
v < % + % and at least one of o > 0 and ¢, > 0 holds.

* Let 6 =1. Then f = L + 0, 05 = 0 and 0, = 0. The linear convergence rate
is then given by

max(1 — oy, (L 4 o)y — 1)

In Exercise 7.3 we have already shown that this is minimized by
2
L+ 20
which is a valid step-size by the analysis above, and results in the linear

convergence rate
1 20 2 B L 2
L+20) \L+2) °

* Let § = 0. Then 8 = L, 0y = 0 and 0, = 0. The linear convergence rate is
then given by

"}/:

max(1, Ly — 1)?
1+ o7y '
Next, we split this up into two subcases with respect to valid step-sizes:
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— Suppose that 0 < v < % The rate is then

1
1+oy

Hence, v should be chosen as large as possible, i.e. v = %, giving the
linear convergence rate

L
L+20

- Suppose that # < < 2 + 2. The rate is then

(Ly — 1)
1+oy

Taking the derivative of the rate gives

d (Ly—1)? _2L(Iy—1)  o(Ly— 1)2

dy 1+ov 1+ oy (14 07)?
Ly —1
:m@l/(l‘f“”)—‘f@’Y—l))
_ Ly-1
(14 07)2
> 0.

(2L + Loy + o)

Hence, the rate increasing in v and the step-size should be chosen as
small as possible, i.e. v = %, again giving the linear convergence rate

L
L+20

To summarize, the best linear convergence rate we can get for the case § =0
is
L
L+20

Note that

L L \?
>
L+ 20 L+ 20

since L > 0 and o > 0. It is therefore advantageous two put the strong convexity
in the gradient step.
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