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Composite problem form

® Consider composite problems of the form

mlmmlze flx)+ E gi(zi)

A,_/
9(x)

where
® f:R"™ — R is smooth (will be refined)
® g:R" - RU{oco} is closed convex and separable
® Problem structure includes:

® Training problems with ||z||1 or ||z||3 regularization
® Dual SVM problem formulation



Coordinate proximal gradient descent

® Compute proximal gradient step, update random coordinate j:

j €{1,...,n} is randomly chosen with uniform probability
k
IjH = PIoXy,g, (xéc — 7 Vf(2");)
2Tt = 2k forall i £ 5

¢ Comments:

We use super-scripts for iteration and sub-script for coordinate
Can take blocks of coordinates (will treat single-coordinate case)
Algorithm analysis very similar to proximal gradient descent
Individual step-size y; for every coordinate



Coordinate proximal gradient descent — Reformulation

® Let I' := diag(1,...,7n), then we can write the z; update as

251 = (proxt Tk - IV f(z*)));

where prox!!(z) := argmin, (g(z) + 3= — 2%
® This holds since T" is diagonal, g and || - ||* are separable:
proxg_l(:ck — TV f(z*))
= argmin(g(z) + sllz — (@ =TV f(z*)E-)
— argmin(> " gu() + g (s — (o — %V F()))
® i=1

where optimal x; is found by optimizing only jth part of the sum

® Updates one coordnate of full scaled proximal gradient step



Efficient evaluation

® The core update is

k+1 _ k , kY .
Tj = ProX,.g. (@ =7 Vf(2");)
® Assume update cost roughly % compared to full proximal gradient
® Then n coordinate updates at same cost as one full update
® |n this scenario, coordinate gradient descent often faster
e Computational cost of Prox, g

® 1D optimization problem
® Often closed form solution or fast to evaluate
® Performed at cost % compared to full prox due to separability of g

® Compuational cost of Vf(x*); — element j of full gradient

® This is often the costly part of the algorithm
® Requires in general to compute full gradient, then pick element
® Method efficient if cost roughly % of full gradient cost



Efficient coordinate gradient evaluation — Quadratics

* Let f(z) = 327 Pz + ¢"x with P € R"*", then:
Vf(x); = (Pz);+q; = Pz +gq

where P; € R™ is jth column of P
® Uses one of n columns in P and one of n elements in ¢

® Coordinate gradient evaluated at cost % of full gradient



Efficient coordinate gradient evaluation

® et Vf(x) = LT (o(Lz) — b) with
® matrix L € R™*", L; € R™ is jth column in L, vector b € R™
® maximal monotone mapping o : R”™ — R™

then V f(x) is maximally monotone and f convex

® Coordinate gradient
Vf(@); = (L7 (o(Lx) = b)); = LT (o(La) - b)
® Assume we know z = Ly at point y = (Z1,..., Y1y ..., Tn):
Lo =Ly+ L(z —y) =z + Li(zi —u)
where x; — y; is a scalar, and coordinate gradient
Vf(x); = L;(O’(Z + Li(z —y1)) — b)

can be updated at roughly % of cost for a full gradient



Proximal gradient method — Convergence rates

® We will analyze coordinate method in different settings:
® Nonconvex

® O(1/k) convergence for squared residual
® Convex

® O(1/k) convergence for function values
® Strongly convex

® Linear convergence in distance to solution
® First two rates based on a fundamental inequality for the method

® Same rates as for proximal gradient, but improved constants
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Coordinate-wise smoothness

® For proximal gradient method we assume quadratic upper bound
® This is implied, for instance, by smoothness of f

® |n coordinate method, we will exploit coordinate-wise smoothness
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Coordinate-wise smoothness — Definition

Coordinate-wise 3;-Lipschitz continuity, let y; = z; for all i # j

IVf(z); — VW)l < Bjlzj —yjl
Similar to for smoothness, this is equivalent to that
Fy) < @) + V@) — a5) + 5 (05— y5)?
F) = f(@) + YV f(@);(y; — 25) — B @y —y5)°
for all x and y such that y; = z; for all i # j
We can explicitly express coordinate with y = x + te;
e+ te)) < f(2) + V@)t + G2
Fla+tey) > f(2) + Vf(a);t — B2

where ¢; is jth standard basis vector in R"

We will assume that such [3; exist
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Coordinate descent — Interpretation

® In proximal gradient, f replaced by smoothness upper bound

® In coordinate gradient, replace by coordinate-smoothness:

ot = argmin(f (a*) + Vf(2*);(y; — 2}) + o7 (Wi —25)° + 9;(y;)

Yi

— argymiﬂ(gj(yj) + oo (g — (@f — 1V F(@h);))%)
= prox,, . (ac;C - fijf(;vk)j)

which is the jth component update
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Comparison to smoothness

® By [-smoothness of f we have for all z,y € R™:

fy) < f@) + V@) (y = 2) + §lle - yl3

® |f we restrict y and z so that y; = x; for all 7 £ j then

F) < f@)+ Vi@);(y; — ) + 5z — y;)?

® So f3 is coordinate-wise smoothness constant, we have for all j:

B; < B
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Coordinate smoothness for quadratics

® Suppose that f(z) = 227 Pz + Tz is a convex quadratic
® Then f is pj;-coordinate-wise smooth, let y = x 4 te;, then

flz+tej) = i(x+te))" Pz +te;) + ¢ (z + te;)

= 32" Px + ¢ a4+ (Px)" (te;) + ¢ te; + 3t%€] Pe;
12T Pr+ q"x + (P + q)jt + 2242
f(z) + Vf(x)t+ Bit?

which proves the claim

® Note that we have equality, which also implies

Fy) = f(@) + V() (y; — ;) + B (y; — x5)°

for all y and x such that y; = x; for i # j
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Coordinate descent for quadratics

® Let f(z) = 327 Pz + q" 'z and use v; = i in algorithm
® The coordinate descent method becomes, with y = k4 tej:

ay = angmin(f(x) + V£ (@); (45 — 25) + B (g5 — 25)° + 95(05)
Y5
= argmin(f(a") + Vf(@");t + BH7 + g;(2f + 1))
t
= argmin(f (" + te;) + g;(a +1))
t

= argmin(f(z" + te;) + g(a* + te;))
t

® This choice of 7; gives here coordinate-wise minimization
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Example — Uniform smoothness constant

® Coordinate descent on (3-smooth quadratic problem

winimige L [E1] [ 01 —0.1] [;n
T z 2 |2 —0.1 1 T2

® Step-sizes 7| = 75 = %
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Example — Individual smoothness constants

® Coordinate descent on (3-smooth quadratic problem

winimige L [E1] [ 01 —0.1] [;n
T z 2 |2 —0.1 1 T2

® Step-size v; = p;; = 10 and 7 = pyy = 1
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Lasso

® The convex Lasso problem
minimize || Az — b|3 + Al|z|1
T —_— ——

f(z) g(z)

where A € R™*™ has quadratic f and separable g

® One iteration of
® Randomized proximal coordinate gradient descent
® Proximal gradient method

can be implemented efficiently
® 1 epoch of coordinate method at cost of one full iteration
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Convergence comparison — Lasso

® Problem data
® Problem A € R'%9%5% (500 features, 100 examples)

* x= g5l

ATb||e (71 out of 500 nonzero elements in solution)

® Convergence comparison
® — Coord prox grad method v; = ﬁ (coordinate minimization)

® — Prox

distance to (unique) solution

grad method v =

1
AT Al

10710 |k

1012

L L L L
0 1000 2000 3000 4000 5000

# epochs
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SVM

® The Tikhonov regularized SVM problem is

minimize 17 max(0,1 — (X4 yw + Yb)) + wli3
——

w,b

F(L(w,b)) g(w,b)

where L = [X4y,Y] containes features input data and labels
® Nonsmooth composed with L and strongly convex g = solve dual

e AT 4T T T
Imnlumlzel vti1o(W) + oy Xoy Xy yv + 0y (Yv)

f*(v) g*(=LTv)
but we will split problem as

miniumize 170 + %VTX¢7yX$Yy +ti—1,0(¥) + L0} (YTu)

fa(v) ga(v)

where fy convex quadratic but g4 not separable due to L{()}(YTV)
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SVM no bias

® Without bias, the hyperplane constraint ¢(g; (YTv) in dual is gone

miniymize 17y + %VTth)yX;Yy +u-1,0(V)
———

fa(v) ga(v)

where f; is convex quadratic and g4 separable
® One iteration of

® Randomized proximal coordinate gradient descent
® Proximal gradient method

can be implemented efficiently

® 1 epoch of coordinate method at cost of one full iteration
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Decision boundary — SVM

® Problem data

® Laplacian kernel with 0 =1

® Regularization parameter A =1
® Data and decision boundary

no bias

24



Convergence comparison — SVM no bias

® Problem data

® Laplacian kernel with 0 =1
® Regularization parameter A =1
® Convergence comparison (denote Hessian H := %X(ﬁ’ngy)
® — Coord prox grad method, 7v; = Hi” (coordinate minimization)

1
[H]|2

® — Prox grad method, v = ‘

distance to (unique) solution

10710 |

1012 L L L L
0 2000 4000 6000 8000 10000

# epochs
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SVM with bias

® SVM with bias has dual problem

miniumize 17w + %Z/TX(b’YX;—:Yy +u—1,0@) + L{O}(YTZ/)

fa(v) ga(v)

with hyperplane constraint in g4 that couples all variables
® Full prox of g4 can be implemented quite efficiently

® Coordinate-wise minimization does not work since

v; = argmin 1"y + %I/TXQng’yV + 1-1,0/(V) + {0y (YT V)

Vi

due to ¢03(Y"v), which implies that the algorithm would stall
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SVM with bias — Two-coordinate descent method

® SVM with bias has dual problem

miniumize 17w + %Z/TX(b’ng:yV +u—1,0(¥) + L{O}(YTZ/)

fa(v) ga(v)
with hyperplane constraint in g4 that couples all variables

® \We can instead optimize over two random coordinates:

(v, v]) = argmin (17w + %VTX¢7yX(£Yy + 1-1,0/(V) + {0y (YT V)

i ] Vi, Vi
iV
which is 2D quadratic problem with equality constraint
Yiv, +Yv; = — Z Yy
l#1,5

where all but v; and v; are fixed, which allows new v;, v;
® Algorithm called Sequential minimization optimization (SMO)
27



Decision boundary — SVM with bias

® Problem data

® Laplacian kernel with 0 =1

® Regularization parameter A =1
® Data and decision boundary
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Decision boundary — SVM with bias

® Problem data
® Laplacian kernel with 0 =1
® Regularization parameter A =1
® Convergence comparison (denote Hessian H := %X(ﬁ’ngy)
¢ — SMO
® —— Proximal gradient descent, v = 1/||H||2

distance to (unique) solution

L L L L
2000 4000 6000 8000 10000

# epochs
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Coordinate proximal gradient descent

® Consider separable composite problems of the form

mlmmlze flz)+ Z gi(x;)

%/—/
g(x)

e Will analyze coordinate proximal gradient method:

j€{1,...,n} is randomly chosen with uniform probability

k k k
xj“ = prox. . (z7 =V f(z");)

k+1
Ty

:xfforalli;éj



Assumptions for fundamental inequality

(1) f:R™ — R is continuously differentiable (not necessarily convex)

(12) fis Bj-coordinate smooth, i.e., we have

Fy) < fx) + V@) —a5) + 2 (25— y5)?

for all z,y € R™ such that y; = z; for all i # j
(#31) g:R™ = R U {oo} closed convex and separable
(iv) A minimizer z* exists and p* = f(z*) 4+ g(z*) is optimal value
(v) Algorithm parameters v; > 0

® Similar assumptions as for proximal gradient method

® Also results and proofs similar, but a bit more technical
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A fundamental inequality

For all z € R™, the coordinate proximal gradient method satisfies

E[f(z"*) + g(a**1)]2"]
< f@h) + 59(2) + 2VF@EMT (2 = ah) + 2 g(ah)
+ 3E[(8) — 77 (@)t — )22t

+ 3 (Ely; (@ — 2)?2"] = Ely; (@]~ 2)?)2")
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A fundamental inequality - Proof (1/3)

Using

(a) Bj-coordinate smoothness of f, i.e., Assumption (i7)
(b) Prox optimality condition: There exists sk+1 € 0gj(x k+1)

0= 85 97 (25" = (af = VF(25);)
(¢) Subgradient: Vz;, g;: g;(zj) > g;(x ’““)—i—sk“( zj — ¥t

f(l,k+1) ( k+1)
< f(@F) + VIR @8 = ab) + B @ - ak)? 4 g(ahth
<f( B4V f (") (kT x§)+%(x§+1 )2
+9J(ZJ) k+1(ZJ i

®) = f(a*) + Vf(ab);(ah k+1 x])+5f(x§+1—x§)2
+9;(25) 5 (’“+1 (zF — 3V (@*);)) (25 — 2T
= f(2*) + g;(2;) + VF(@");(z; — o) + (25T — k)2

£ (@ — o)z — o) %



A fundamental inequality — Proof (2/3)

® Now, let us use the equality

5+ = o)z = ah*) = (k= 2)? — @5+ - 2y)

® Applying to previous inequality gives

FH) + gy (ah ™)
B (a1 — k)2

< f(@®) + g5(z) + V()25 — =) + F () ;
+,y] ( k+1 xf)(z]kaﬂ)

=ﬂxﬂwmm+Vﬂzm@—ﬁwﬁ%ﬁ“—ﬁf
g (= )7 — (@5 - 2)? — () — b))
=ﬂkwwﬂm+Vﬂﬂ»@~m®+@$iwﬁhm§

+ 3 ((xk - 21)2 (x ;Hl - ZJ)Q)

)2
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A fundamental inequality — Proof (3/3)

® Now, take expected value conditioned on z*:

E[f (@) + g(@")[a] = B[f (") + g () + Y galal) ]
i

< E[f(a%) + g5(25) + VI (2); (25 — 2% + 20 (ah 1 — )2

n

— k

+ (@) = 2)7 = (@ = 2) D)k + 2 Y gi(ah)
i=1

J

=f(@") + Lg(z) + 2V (") T (2 — 2")
+ 3E[(B; — 7 (T — 28)? 2" + 2=Lg(a®)
+ 3 (Bly; (= — 25)%)2%] — Efy; (25T — 25)%]a*)

® This is the fundamental inequality that we wanted to prove

36



Outline

e Coordinate proximal gradient method
¢ Coordinate-wise smoothness

e Examples

e A fundamental inequality

¢ Nonconvex setting

e Convex setting

e Strongly convex setting

e Rate comparison to proximal gradient method

37



Nonconvex setting

® \We will analyze the coordinate proximal gradient method

j €{1,...,n} is randomly chosen with uniform probability
k
'Tj+1 = pI'OX,ngj (‘2:_]; - ,ij‘f(a:k)-?)
ab Tt = 2k forall i #£ 5

in a nonconvex setting for solving

mlnlmlze flx)+ Z gi(zi)

W
g(z)

o Will show sublinear convergence

® Analysis based on A fundamental inequality
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Nonconvex setting — Assumptions

(i) f:R™ — R is continuously differentiable (not necessarily convex)

(#) fis Bj-coordinate smooth, i.e., we have

) < Fl@)+ Vi@)ly — ) + (x5 —y5)?

for all z,y € R™ such that y; = z; for all i # j
(791) g :R™ - RU {oo} closed convex and separable
(tv) A minimizer x* exists and p* = f(a*) 4+ g(«*) is optimal value
(v) Algorithm parameters ~; € (0, %)

® Same as for fundamental inequality but restricted step-sizes
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Nonconvex setting — Analysis

® Use fundamental inequality

E[f(a"*1) + g(a™*1)]2"]
< f@h) + 59(2) + 2VF@EM)T (2 - ah) + 2t g(ah)
+3E[(8 — 77 (@)™ - 2f)?|a"]
+ 3 (Ely; ' (@F = 2)?[2"] = Ely (@ = 2)%)2"))

® Set z = 2" to get
E[f(z"") 4+ g(z"*1)[2*] < f(a*) + g(2")
— 3E[(Z — B)) (=™ — a})?|z"]

Vi



Expected value of residual

® Let B =diag(f,...,0,) and recall T' = diag(y1,...,vn)
® The expected value of the residual satisfies

E[(Z ~8;)(a} " — o5)?[*]

(2 = Bi)(prox,, g, (zf —uV f(z");) — a})?

1
n

v

Il
-

7

v

@
Il
_

(2 - B;)(proxy (2" ~TVf (")) - ab)?

1
n

—1
= L|prox; (aF —TVf(2")) — 2|31 _p
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Step-size requirement

® Fundamental inequality with z = z* and previous expected value:

E[f (") + g(a"*)|2"] < f(2") + g(a"

-1
= gnllproxg (2" =TV f(z") = 2*|5p-1_p

® The step-size requirement 7; € (0, 7-) implies 2I' ™" — B >~ 0
J
® Subtract p*, take expectation, use law of total expectation:
E[f (") + g(a"*!) — p*] <E[f(a") + g(«*) — p"]
Vit Vi
-1
— Els[lproxy (¢ =TV f(2")) — 2*[|5p-1_p)]

Ry

where the bounds on the step-sizes make Rj nonnegative
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Lyapunov inequality consequences

® We showed Lyapunov inequality Vi1 < Vi, — Ry with quantities

Vi = E[f(2") + g(z") — p"]
Ry = B[ |lprox) (" = TV f(z*)) = 231 5]

e Consequences (similar to for proximal gradient method):

® Expected function value is decreasing (may not go to p*)
® Expected residual is summable, since 2I'"* — B > 0:

oo

S E[fproxt (@' TV f(a")) — a'[l2] < o0

=0

and residual converges almost surely to 0
® Expected value of best residual squared converges as O(1/k):

2n(f(z°) + g(z°) — p*)
k41

. —1
B[,_gmin lproxy (2! —=TVf(@h) =o' l3r-1_pl <

where Jensen's inequality used to swap E and min;
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Expected fixed-point residual convergence

What does E[||pr0x1;_1(:rk — TV f(2*)) — 2||a] — 0 imply?
® Since expected residual is nonegative and summable
Iproxh " (2% — TV f(2*)) — 2*]|2 — 0
a.s., meaning algorithm realizations satisfy this with probability 1
® let vk = proxg_l(xk — TV £(z")), then
Ag(W®) + V(P 5 T Hak —o*) + VF(F) = Vf(z*) =0

* So:
® v* sequence satisfies fixed-point characterization in limit
® 2F is arbitraily close to v*
e if z* (sub %, sod d we h
if z° (sub)sequence converges to Z, so does v, and we have

99(z) + V(%) 30

(by closedness of graphs of maximal monotone operators)
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Convex setting

® \We will analyze the coordinate proximal gradient method

j €{1,...,n} is randomly chosen with uniform probability
k
J"j+1 :pI'OX,Y gJ( ,-ijf( ) )
xf“ = zF for all i # j

in the convex setting for solving

mmlmlze flx)+ Z gi(zi)

W
g(z)

® Will show sublinear O(1/k) rate for expected function values

® Analysis based on A fundamental inequality
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Convex setting — Assumptions

(1) f:R™ — R is continuously differentiable and convex

(i) fis Bj-coordinate smooth, i.e., we have

F) < f@)+ VI@)(y; — o) + D (a; - yy)?

for all z,y € R™ such that y; = z; for all i #£ j
(791) g:R™ = RU {oo} closed convex and separable
(iv) A minimizer z* exists and p* = f(z*) + g(x*) is optimal value

(v) Algorithm parameters ~; € (0, 5-]
J

® Same as for fundamental inequality but

® restricted step-sizes
® convexity of f

® Smaller 7; range than nonconvex, can be done with same range
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Convex setting — Analysis

® Use fundamental inequality with z = z*, where z* is a solution

E[f(a"*1) + g(a™*1)]2"]
< f@@®) + pg(@®) + 1 VN (@ = ab) + 2otg(a®)

SEI(B) = D@ —af)?|at]
3Bl ! (@f — 27)?|2%] = Bl ' (2§ = 27)?|2"])

® Using L f(z*) = L(f(z*) + Vf(z*)T (z* — 2*)) by convexity of f

E[f(z ’““) + (@ )a"]

< L f(ak) + i(g(a?*) + f(a) + 2 tg(ah)
+ %E[( 7O = a)? |2t
+ 3 (Bl 1(%? @) k] — Ebyy (25 = 25)%]a))
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Anaylsis — Step-size requirement

® Restating what we just had

[ ( k+1) ( k+1)|$k]
")+ l(9(93*) + f(a) + 2 tg(ah)
+ %E[( O = a)? ]
+ 3 (Bl 1(%“ z5)?|ek] — Ely; (2§ - a7)?|z")
€ (0, A o | and p* = f(z*) + g(z*), rearrangement gives

® Using ;

BELR[f (a4 ) + 9ot ) 2] + SEpy Lt — o)t

< H(f(h) +g(a") + %E[vj_l(fv? - z3)*|a"]
= 5 (E[f (") + g(a"T)|2*] — p*)
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Lyapunov inequality

® Subtract "T_llp*, take expectation, use law of total expectation:

PHE[f (2 + g(@) = p'] 4 3Bl (2T — 25)?)]

J J
Vier1
< 2LR[f(aF) + g(a) — p*] + SB[y (2] — 25)?)
Vi
— HE[f(«") + g(a" )] - p*)
Ry

® Lyapunov inequality sequences V), and Ry are nonnegative
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Lyapunov inequality consequences

® | yapunov inequality Vi1 < Vi — Ry with

Vi = BB (F) + g(a*) — )+ SE - 2)?)
Ry, = LE[f (@) + g )] - )
and Vo = 2 (F(2°) + 9(2) — ) + S lla® — 27

® Consequences (similar to for proximal gradient method):
® Since expected function value is decreasing:

(n =D (f(°) +9(°) —p*) + 5[|2° — 2

3

E[f(z"*!) +g(a" )] - p* < )

® Expected function value suboptimality summable
Z]E l+1 ( l+1)_p*] < 0o
=0

so function value converges to p* with probability 1
® Can show almost sure sequence convergence to an optimal point
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Strongly convex setting

® We will analyze the coordinate proximal gradient method

je€{1,...,n} is randomly chosen with uniform probability
k+1 k k
xj+ = pYOX,ngj (.’L'J - Vjvf(‘r )J)
af T = 2k forall i # 5

in a strongly convex setting for solving

mlmrmze flx) + Z gi(x)

\‘,_./
9(z)

® Will show linear convergence for E[||z*+! — 2*||5]
® Analysis based on properties of gradient
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Strongly convex setting — Assumptions

(1) f:R™ — R is continuously differentiable and o-strongly convex

)

(i) fis 8 smooth

(#4i) g:R™ = RU{oo} closed convex and separable

(iv) A minimizer z* exists and p* = f(z*) 4+ g(z*) is optimal value
)

(v) Algorithm parameters v; =y € (0, B)

o Differs from assumption for fundamental inequality in

® restricted step-sizes
® strong convexity of f
® smoothness instead of coordinate-wise smoothness

® Will reduce analysis to analysis for proximal gradient method

® Analysis with coordinate-wise smoothness can improve rate
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Strongly convex setting — Analysis

Use that

(a) the coordinate proximal gradient method, after selection of j, is:

= (prox, 4 (a* =7V f(z")));

(b) the proximal gradient mapping satisfies in this setting
Iprox. o (z* =1V f(2*)) — 2*l2 < max(1 — 0B, By — 1)[|2* — 2*|2
to get
E[a**! — 2*|[3]2"] = E[(@} ! — 23)*[a"] + E[D_(«F — 27)%|2"]
i#j
= E[(prox, (2" =V f(z")) — a*)]|a*] + 2t [la* — a3
sllprox, (2% =4V f(zh)) = a* (|3 + 25t 2® — 2|3
Fmax(l —of, By — 1)?[|2" — 2|5 + 22 " — 2*13

(1 - £(1 = max(l — oy, By = 1)*) 2" —a*|3

k+1

VAN VAN
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Analysis — Total expectation

® Taking expecation and using law of total expectation gives

Ef|z** —a*|3] < (1 - (1 - max(1 — o, By — 1)*)) E[]2" — 2*|3]

p

¢ Consequences:

® E[||lz* — 2*||3] converges linearly whenever
max(1 — o7, 3y —1)* € [0,1)

which is same condition as for proximal gradient method
® Since expected value is summable,

k 0 _ ..x|2
S Ellet -2t s 12T <o
1=0 -r

algorithm realizations converge to z* with probability 1
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Comparison to proximal gradient method

Setting Quantity Proximal Coordinate
Nonconvex IV £(z*)]13 O(1/k) O(1/k)
Convex  f(uy) +glp)—p* OQ/k)  O(/k)
Strongly convex lzx — z*|2 O(pky) O(pk,e)

® Same order of magnitude in convergence for all classes
® Compare constants or linear rate to decide which is faster

o Will compare for convex and strongly convex settings assuming:

® Problem dimension n: f:R® - Rand g: R" - RU {0}
® That n coordinate steps at cost of 1 full step



Comparison — Convex setting

Assume nk coordinate steps at cost of k full steps
Assume in the different setups:

(a) f is Bj-coordinate smooth and ~; = %
(b) f is B-smooth and v = %

(c) fis Bu-smooth w.r.t. || -|lm and v = i
Assume (a): Rate for nk coordinate proximal gradient steps

E[f(.’[’nIH—I) +g(1nk+l)} 7p* S (’I’L - 1)(f(x0) + g(IO) _p*) + %Hmo - x*H2B
nk+1

where I' = diag(71,...,7,) and B =T~ = diag(81,...,3,)

Assume (b): Rate for k full proximal gradient steps

k41 b1y ox o Bl —2¥|3
F@"T) +g(z") pSiQ(k—i-l)

Assume (c): Rate for k full proximal gradient steps

0 * (|12
k+1 k+ly _ % o Brllz® — =* 1%
FE) + gl —pt < TS
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Step-sizes for quadratics

Consider convex f(z) = %ITPJJ +q'rand g=0
Coordinate descent under Assumption (a)

® Have shown f3; = pj;-coordinate smoothness

® So B = diag(P) and coordinate update:

;= (prox («" — BTV f(2")));

Full proximal gradient under Assumption (b)
® Have 8 = Amax(P)-smoothness
® Algorithm

P = prox; (e — LV (")
Bg

Full scaled proximal gradient under Assumption (c)
® Use same scaling as in coordinate case H = B = diag(P)
® Algorithm

" = prox®  (zF - L%B_IVf(xk))
Bg Y B

® Same step-length as coordinate if 8 =1
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Quantifying example — Step-sizes

® We generate P and ¢ in f(z) = 327 Pz + q"z as follows:
e P=CTC and C € R?**1% and all ¢;; ~ N(0,1)
® g~ N(07 1)

® Coordinate method and Assumption (a): 3; € [10,43]

® Full method and Assumption (b): 8 = 193

® Full method and Assumption (c): What is 8y = 57
® Since f quadratic with Hessian P, we have

f) = f@) + Vi) (y—z)+ 3le—yl?
® So f is Bp-smooth if BB = Bp diag(P) = P, since then:
f) = (f@) + V@) (y— ) = 3l —ylP < 22|z — yldiag(r)

which in this example holds for fp = 9.1
® Individual smoothness parameters satisfy Sg03; € [91, 392]

® Step-sizes are inverse of s, much longer steps in coordinate case
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Rates for quadratics

Consider again convex f(z) = %xTPx +qTrand g=0

Coordinate upper bound (with g = 0) after nk iterations
(n— D) —p) + 3ll2® — eI} _ “52 2% — o[} + §lla® — 2”13
nk+1 nk+1
_nlle® — a3 ~ [0 — z*]|B
2(nk + 1) 2(k + 1)

Full and scaled proximal gradient upper bounds after k iterations:

An)ax(P)H$O_$*H§ BBH'TO_x*‘FB
2(k+1) 2(k+1)

We know that rates are the same, but constants differ
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Quantifying example — Rate constants

® Quantify rate constants with same convex quadratic as before

Coordinate, full, and scaled full proximal gradient rate constants:
20 — z*||% Amax (P)|J2® — z*|3 Bellz’ — z*|%

*

First two constants equal if z° — 2* is eigenvector to Apax (P)

Quantification: average constants (X) for N = 10000 random z°
|20 — 2*]|2, ~ 2100
19320 — 2*(|3 &~ 19300
91|20 — 2*||3;0g(py ~ 18900

Conclusions:
® Coordinate does not improve worst case, but average performance
® Coordinate descent almost 10 times smaller average constant here
® No improvement in using diag(P) for full method in this example
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Comparison — Toy example

® Coordinate descent on B-smooth quadratic problem

1w [0l —01] =
T2 9 2] [~01 1 | |2

® Step-size parameters y; = 57, 72 = 1
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Comparison — Toy example

® Coordinate descent on B-smooth quadratic problem

1w [0l —01] =
mlnlﬁmlze 5 o —01 1 To

® Step-size parameters y; = 57, 72 = 1

|
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Toy example — Gradient descent

® Gradient descent on -smooth quadratic problem

1w [0l —01] =
T2 9 2] [~01 1 | |2

® Step-size parameter y =
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Toy example — Gradient descent

® Gradient descent on -smooth quadratic problem

1w [0l —01] =
T2 9 2] [~01 1 | |2

® Step-size parameter y =
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Toy Example — Scaled gradient descent

® Diagonal scaled gradient descent on -smooth quadratic problem

1w [0l —01] =
T2 9 2] [~01 1 | |2

® Step-size parameters y; = ﬁ and v = ﬁ%{ with Sy = 1.32
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Toy Example — Scaled gradient descent

® Diagonal scaled gradient descent on -smooth quadratic problem

1w [0l —01] =
T2 9 2] [~01 1 | |2

® Step-size parameters y; = ﬁ and v = ﬁ%{ with Sy = 1.32
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Comparison — Strongly convex setting

® Assumptions:

® nk coordinate steps at cost of k full steps
® All step-sizes fixed to be the same, also in coordinate

® Rates for k proximal and nk coordinate proximal steps

|z — 2*[]2 < max(By — 1,1 — ov)*||zo — 2*|2

Effagn —a*llo] < (1= (1 = max(8y = 1,1 = 09))*)"* /2 zg — ¥
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Strongly convex comparison — Example

® Comparison on f(z) = 37 Pz + ¢"x and arbitrary convex g
® P=C7C and C € RM0%10 3nd all ¢;; € N(0,1)
® We have f = Amax(P) = 399 and 0 = Amin(P) =~ 0.007
® We let v = % and compare for k£ = 10000 steps (epocs)
(By — 1,1 — o7)" ~ 0.837686
(1— L1 —max(8y — 1,1 —07))*)"™/? ~ 0.837689

® Comments:
® With identical step-sizes, rates are very similar
® Coordinate method can take longer steps to get better rate
(but not covered by our strongly convex analysis)
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