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Composite problem form

• Consider composite problems of the form

minimize
x

f(x) +

n∑
i=1

gi(xi)︸ ︷︷ ︸
g(x)

where
• f : Rn → R is smooth (will be refined)
• g : Rn → R ∪ {∞} is closed convex and separable

• Problem structure includes:
• Training problems with ‖x‖1 or ‖x‖22 regularization
• Dual SVM problem formulation
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Coordinate proximal gradient descent

• Compute proximal gradient step, update random coordinate j:

j ∈ {1, . . . , n} is randomly chosen with uniform probability

xk+1
j = proxγjgj (xkj − γj∇f(xk)j)

xk+1
i = xki for all i 6= j

• Comments:
• We use super-scripts for iteration and sub-script for coordinate
• Can take blocks of coordinates (will treat single-coordinate case)
• Algorithm analysis very similar to proximal gradient descent
• Individual step-size γj for every coordinate
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Coordinate proximal gradient descent – Reformulation

• Let Γ := diag(γ1, . . . , γn), then we can write the xj update as

xk+1
j = (proxΓ−1

g (xk − Γ∇f(xk)))j

where proxHg (z) := argminx(g(x) + 1
2‖x− z‖

2
H)

• This holds since Γ is diagonal, g and ‖ · ‖−1
Γ are separable:

proxΓ−1

g (xk − Γ∇f(xk))

= argmin
x

(g(x) + 1
2‖x− (xk − Γ∇f(xk))‖2Γ−1)

= argmin
x

(

n∑
i=1

gi(xi) + 1
2γi

(xi − (xki − γi∇f(xk)i))
2)

where optimal xj is found by optimizing only jth part of the sum

• Updates one coordnate of full scaled proximal gradient step

5



Efficient evaluation

• The core update is

xk+1
j = proxγjgj (xkj − γj∇f(xk)j)

• Assume update cost roughly 1
n compared to full proximal gradient

• Then n coordinate updates at same cost as one full update
• In this scenario, coordinate gradient descent often faster

• Computational cost of proxγjgj
• 1D optimization problem
• Often closed form solution or fast to evaluate
• Performed at cost 1

n
compared to full prox due to separability of g

• Compuational cost of ∇f(xk)j – element j of full gradient
• This is often the costly part of the algorithm
• Requires in general to compute full gradient, then pick element
• Method efficient if cost roughly 1

n
of full gradient cost
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Efficient coordinate gradient evaluation – Quadratics

• Let f(x) = 1
2x

TPx+ qTx with P ∈ Rn×n, then:

∇f(x)j = (Px)j + qj = PTj x+ qj

where Pj ∈ Rn is jth column of P

• Uses one of n columns in P and one of n elements in q

• Coordinate gradient evaluated at cost 1
n of full gradient
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Efficient coordinate gradient evaluation

• Let ∇f(x) = LT (σ(Lx)− b) with
• matrix L ∈ Rm×n, Lj ∈ Rm is jth column in L, vector b ∈ Rm
• maximal monotone mapping σ : Rm → Rm

then ∇f(x) is maximally monotone and f convex

• Coordinate gradient

∇f(x)j = (LT (σ(Lx)− b))j = LTj (σ(Lx)− b)

• Assume we know z = Ly at point y = (x1, . . . , yl, . . . , xn):

Lx = Ly + L(x− y) = z + Ll(xl − yl)

where xl − yl is a scalar, and coordinate gradient

∇f(x)j = LTj (σ(z + Ll(xl − yl))− b)

can be updated at roughly 1
n of cost for a full gradient

8



Proximal gradient method – Convergence rates

• We will analyze coordinate method in different settings:
• Nonconvex

• O(1/k) convergence for squared residual
• Convex

• O(1/k) convergence for function values
• Strongly convex

• Linear convergence in distance to solution

• First two rates based on a fundamental inequality for the method

• Same rates as for proximal gradient, but improved constants

9



Outline

Coordinate proximal gradient method

Coordinate-wise smoothness

Examples

A fundamental inequality

Nonconvex setting

Convex setting

Strongly convex setting

Rate comparison to proximal gradient method

10



Coordinate-wise smoothness

• For proximal gradient method we assume quadratic upper bound

• This is implied, for instance, by smoothness of f

• In coordinate method, we will exploit coordinate-wise smoothness
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Coordinate-wise smoothness – Definition

• Coordinate-wise βj-Lipschitz continuity, let yi = xi for all i 6= j

|∇f(x)j −∇f(y)j | ≤ βj |xj − yj |

• Similar to for smoothness, this is equivalent to that

f(y) ≤ f(x) +∇f(x)j(yj − xj) +
βj

2 (xj − yj)2

f(y) ≥ f(x) +∇f(x)j(yj − xj)− βj

2 (xj − yj)2

for all x and y such that yi = xi for all i 6= j

• We can explicitly express coordinate with y = x+ tej

f(x+ tej) ≤ f(x) +∇f(x)jt+
βj

2 t
2

f(x+ tej) ≥ f(x) +∇f(x)jt− βj

2 t
2

where ej is jth standard basis vector in Rn

• We will assume that such βj exist
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Coordinate descent – Interpretation

• In proximal gradient, f replaced by smoothness upper bound

• In coordinate gradient, replace by coordinate-smoothness:

xk+1
j = argmin

yi

(f(xk) +∇f(xk)j(yj − xkj ) + 1
2γj

(yj − xkj )2 + gj(yj))

= argmin
yi

(gj(yj) + 1
2γj

(yj − (xkj − γj∇f(xk)j))
2)

= proxγkgj (xkj − γj∇f(xk)j)

which is the jth component update
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Comparison to smoothness

• By β-smoothness of f we have for all x, y ∈ Rn:

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖

2
2

• If we restrict y and x so that yi = xi for all i 6= j then

f(y) ≤ f(x) +∇f(x)j(yj − xj) + β
2 (xj − yj)2

• So β is coordinate-wise smoothness constant, we have for all j:

βj ≤ β
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Coordinate smoothness for quadratics

• Suppose that f(x) = 1
2x

TPx+ qTx is a convex quadratic

• Then f is pjj-coordinate-wise smooth, let y = x+ tej , then

f(x+ tej) = 1
2 (x+ tej)

TP (x+ tej) + qT (x+ tej)

= 1
2x

TPx+ qTx+ (Px)T (tej) + qT tej + 1
2 t

2eTj Pej

= 1
2x

TPx+ qTx+ (Px+ q)jt+
pjj
2 t2

= f(x) +∇f(x)jt+
pjj
2 t2

which proves the claim

• Note that we have equality, which also implies

f(y) = f(x) +∇f(x)j(yj − xj) +
pjj
2 (yj − xj)2

for all y and x such that yi = xi for i 6= j
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Coordinate descent for quadratics

• Let f(x) = 1
2x

TPx+ qTx and use γj = 1
pjj

in algorithm

• The coordinate descent method becomes, with y = xk + tej :

xk+1
j = argmin

yj

(f(xk) +∇f(xk)j(yj − xkj ) +
pjj
2 (yj − xkj )2 + gj(yj))

= argmin
t

(f(xk) +∇f(xk)jt+
pjj
2 t2 + gj(x

k
j + t))

= argmin
t

(f(xk + tej) + gj(x
k
j + t))

= argmin
t

(f(xk + tej) + g(xk + tej))

• This choice of γj gives here coordinate-wise minimization
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Example – Uniform smoothness constant

• Coordinate descent on β-smooth quadratic problem

minimize
x

1

2

[
x1

x2

]T [
0.1 −0.1
−0.1 1

] [
x1

x2

]
• Step-sizes γ1 = γ2 = 1

β
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Example – Individual smoothness constants

• Coordinate descent on β-smooth quadratic problem

minimize
x

1

2

[
x1

x2

]T [
0.1 −0.1
−0.1 1

] [
x1

x2

]
• Step-size γ1 = p−1

11 = 10 and γ2 = p−1
22 = 1
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Lasso

• The convex Lasso problem

minimize
x

1
2‖Ax− b‖

2
2︸ ︷︷ ︸

f(x)

+λ‖x‖1︸ ︷︷ ︸
g(x)

where A ∈ Rm×n has quadratic f and separable g

• One iteration of
• Randomized proximal coordinate gradient descent
• Proximal gradient method

can be implemented efficiently

• 1 epoch of coordinate method at cost of one full iteration
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Convergence comparison – Lasso

• Problem data
• Problem A ∈ R100×500 (500 features, 100 examples)
• λ = 1

10
‖AT b‖∞ (71 out of 500 nonzero elements in solution)

• Convergence comparison
• Coord prox grad method γi = 1

AT
i Ai

(coordinate minimization)

• Prox grad method γ = 1
‖ATA‖2
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SVM

• The Tikhonov regularized SVM problem is

minimize
w,b

1T max(0,1− (Xφ,Y w + Y b))︸ ︷︷ ︸
f(L(w,b))

+ λ
2 ‖w‖

2
2︸ ︷︷ ︸

g(w,b)

where L = [Xφ,Y , Y ] containes features input data and labels

• Nonsmooth composed with L and strongly convex g ⇒ solve dual

minimize
ν

1T ν + ι[−1,0](ν)︸ ︷︷ ︸
f∗(ν)

+ 1
2λν

TXφ,YX
T
φ,Y ν + ι{0}(Y

T ν)︸ ︷︷ ︸
g∗(−LT ν)

but we will split problem as

minimize
ν

1T ν + 1
2λν

TXφ,YX
T
φ,Y ν︸ ︷︷ ︸

fd(ν)

+ ι[−1,0](ν) + ι{0}(Y
T ν)︸ ︷︷ ︸

gd(ν)

where fd convex quadratic but gd not separable due to ι{0}(Y
T ν)
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SVM no bias

• Without bias, the hyperplane constraint ι{0}(Y
T ν) in dual is gone

minimize
ν

1T ν + 1
2λν

TXφ,YX
T
φ,Y ν︸ ︷︷ ︸

fd(ν)

+ ι[−1,0](ν)︸ ︷︷ ︸
gd(ν)

where fd is convex quadratic and gd separable

• One iteration of
• Randomized proximal coordinate gradient descent
• Proximal gradient method

can be implemented efficiently

• 1 epoch of coordinate method at cost of one full iteration
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Decision boundary – SVM no bias

• Problem data
• Laplacian kernel with σ = 1
• Regularization parameter λ = 1

• Data and decision boundary
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Convergence comparison – SVM no bias

• Problem data
• Laplacian kernel with σ = 1
• Regularization parameter λ = 1

• Convergence comparison (denote Hessian H := 1
λXφ,YX

T
φ,Y )

• Coord prox grad method, γi = 1
Hii

(coordinate minimization)

• Prox grad method, γ = 1
‖H‖2
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SVM with bias

• SVM with bias has dual problem

minimize
ν

1T ν + 1
2λν

TXφ,YX
T
φ,Y ν︸ ︷︷ ︸

fd(ν)

+ ι[−1,0](ν) + ι{0}(Y
T ν)︸ ︷︷ ︸

gd(ν)

with hyperplane constraint in gd that couples all variables

• Full prox of gd can be implemented quite efficiently

• Coordinate-wise minimization does not work since

νi = argmin
νi

(
1T ν + 1

2λν
TXφ,YX

T
φ,Y ν + ι[−1,0](ν) + ι{0}(Y

T ν)
)

due to ι{0}(Y
T ν), which implies that the algorithm would stall
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SVM with bias – Two-coordinate descent method

• SVM with bias has dual problem

minimize
ν

1T ν + 1
2λν

TXφ,YX
T
φ,Y ν︸ ︷︷ ︸

fd(ν)

+ ι[−1,0](ν) + ι{0}(Y
T ν)︸ ︷︷ ︸

gd(ν)

with hyperplane constraint in gd that couples all variables

• We can instead optimize over two random coordinates:

(ν+
i , ν

+
j ) = argmin

νi,νj

(
1T ν + 1

2λν
TXφ,YX

T
φ,Y ν + ι[−1,0](ν) + ι{0}(Y

T ν)
)

which is 2D quadratic problem with equality constraint

Yiνi + Yjνj = −
∑
l 6=i,j

Ylνl

where all but νi and νj are fixed, which allows new νi, νj
• Algorithm called Sequential minimization optimization (SMO)
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Decision boundary – SVM with bias

• Problem data
• Laplacian kernel with σ = 1
• Regularization parameter λ = 1

• Data and decision boundary
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Decision boundary – SVM with bias

• Problem data
• Laplacian kernel with σ = 1
• Regularization parameter λ = 1

• Convergence comparison (denote Hessian H := 1
λXφ,YX

T
φ,Y )

• SMO
• Proximal gradient descent, γ = 1/‖H‖2
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Coordinate proximal gradient descent

• Consider separable composite problems of the form

minimize
x

f(x) +

n∑
i=1

gi(xi)︸ ︷︷ ︸
g(x)

• Will analyze coordinate proximal gradient method:

j ∈ {1, . . . , n} is randomly chosen with uniform probability

xk+1
j = proxγjgj (xkj − γj∇f(xk)j)

xk+1
i = xki for all i 6= j
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Assumptions for fundamental inequality

(i) f : Rn → R is continuously differentiable (not necessarily convex)

(ii) f is βj-coordinate smooth, i.e., we have

f(y) ≤ f(x) +∇f(x)j(yj − xj) +
βj

2 (xj − yj)2

for all x, y ∈ Rn such that yi = xi for all i 6= j

(iii) g : Rn → R ∪ {∞} closed convex and separable

(iv) A minimizer x? exists and p? = f(x?) + g(x?) is optimal value

(v) Algorithm parameters γj > 0

• Similar assumptions as for proximal gradient method

• Also results and proofs similar, but a bit more technical
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A fundamental inequality

For all z ∈ Rn, the coordinate proximal gradient method satisfies

E[f(xk+1) + g(xk+1)|xk]

≤ f(xk) + 1
ng(z) + 1

n∇f(xk)T (z − xk) + n−1
n g(xk)

+ 1
2E[(βj − γ−1

j )(xk+1
j − xkj )2|xk]

+ 1
2 (E[γ−1

j (xkj − zj)2|xk]− E[γ−1
j (xk+1

j − zj)2|xk])
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A fundamental inequality - Proof (1/3)

Using

(a) βj-coordinate smoothness of f , i.e., Assumption (ii)
(b) Prox optimality condition: There exists sk+1

j ∈ ∂gj(xk+1
j )

0 = sk+1
j + γ−1

j (xk+1
j − (xkj − γj∇f(xk)j))

(c) Subgradient: ∀zj , gj : gj(zj) ≥ gj(xk+1
j ) + sk+1

j (zj − xk+1
j )

f(xk+1) + gj(x
k+1
j )

(a) ≤ f(xk) +∇f(xk)j(x
k+1
j − xkj ) +

βj

2 (xk+1
j − xkj )2 + gj(x

k+1
j )

(c) ≤ f(xk) +∇f(xk)j(x
k+1
j − xkj ) +

βj

2 (xk+1
j − xkj )2

+ gj(zj)− sk+1
j (zj − xk+1

j )

(b) = f(xk) +∇f(xk)j(x
k+1
j − xkj ) +

βj

2 (xk+1
j − xkj )2

+ gj(zj) + γ−1
j (xk+1

j − (xkj − γj∇f(xk)j))(zj − xk+1
j )

= f(xk) + gj(zj) +∇f(xk)j(zj − xkj ) +
βj

2 (xk+1
j − xkj )2

+ γ−1
j (xk+1

j − xkj )(zj − xk+1
j ) 34



A fundamental inequality – Proof (2/3)

• Now, let us use the equality

(xk+1
j − xkj )(zj − xk+1

j ) = 1
2 ((xkj − zj)2 − (xk+1

j − zj)2 − (xkj − xk+1
j )2)

• Applying to previous inequality gives

f(xk+1) + gj(x
k+1
j )

≤ f(xk) + gj(zj) +∇f(xk)j(zj − xkj ) +
βj

2 (xk+1
j − xkj )2

+ γ−1
j (xk+1

j − xkj )(zj − xk+1
j )

= f(xk) + gj(zj) +∇f(xk)j(zj − xkj ) +
βj

2 (xk+1
j − xkj )2

+ 1
2γj

((xkj − zj)2 − (xk+1
j − zj)2 − (xkj − xk+1

j )2)

= f(xk) + gj(zj) +∇f(xk)j(zj − xkj ) +
βj−γ−1

j

2 (xk+1
j − xkj )2

+ 1
2γj

((xkj − zj)2 − (xk+1
j − zj)2)
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A fundamental inequality – Proof (3/3)

• Now, take expected value conditioned on xk:

E[f(xk+1) + g(xk+1)|xk] = E[f(xk+1) + gj(x
k+1
j ) +

∑
i 6=j

gi(x
k
i )|xk]

≤ E[f(xk) + gj(zj) +∇f(xk)j(zj − xkj ) +
βj−γ−1

j

2 (xk+1
j − xkj )2

+ 1
2γj

((xkj − zj)2 − (xk+1
j − zj)2)|xk] + n−1

n

n∑
i=1

gi(x
k
i )

= f(xk) + 1
ng(z) + 1

n∇f(xk)T (z − xk)

+ 1
2E[(βj − γ−1

j )(xk+1
j − xkj )2|xk] + n−1

n g(xk)

+ 1
2 (E[γ−1

j (xkj − zj)2|xk]− E[γ−1
j (xk+1

j − zj)2|xk])

• This is the fundamental inequality that we wanted to prove
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Nonconvex setting

• We will analyze the coordinate proximal gradient method

j ∈ {1, . . . , n} is randomly chosen with uniform probability

xk+1
j = proxγjgj (xkj − γj∇f(xk)j)

xk+1
i = xki for all i 6= j

in a nonconvex setting for solving

minimize
x

f(x) +

n∑
i=1

gi(xi)︸ ︷︷ ︸
g(x)

• Will show sublinear convergence

• Analysis based on A fundamental inequality
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Nonconvex setting – Assumptions

(i) f : Rn → R is continuously differentiable (not necessarily convex)

(ii) f is βj-coordinate smooth, i.e., we have

f(y) ≤ f(x) +∇f(x)j(yj − xj) +
βj

2 (xj − yj)2

for all x, y ∈ Rn such that yi = xi for all i 6= j

(iii) g : Rn → R ∪ {∞} closed convex and separable

(iv) A minimizer x? exists and p? = f(x?) + g(x?) is optimal value

(v) Algorithm parameters γj ∈ (0, 2
βj

)

• Same as for fundamental inequality but restricted step-sizes
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Nonconvex setting – Analysis

• Use fundamental inequality

E[f(xk+1) + g(xk+1)|xk]

≤ f(xk) + 1
ng(z) + 1

n∇f(xk)T (z − xk) + n−1
n g(xk)

+ 1
2E[(βj − γ−1

j )(xk+1
j − xkj )2|xk]

+ 1
2 (E[γ−1

j (xkj − zj)2|xk]− E[γ−1
j (xk+1

j − zj)2|xk])

• Set z = xk to get

E[f(xk+1) + g(xk+1)|xk] ≤ f(xk) + g(xk)

− 1
2E[( 2

γj
− βj)(xk+1

j − xkj )2|xk]

40



Expected value of residual

• Let B = diag(β1, . . . , βn) and recall Γ = diag(γ1, . . . , γn)

• The expected value of the residual satisfies

E[( 2
γj
−βj)(xk+1

j − xkj )2|xk]

= 1
n

n∑
i=1

( 2
γi
− βi)(proxγigi(x

k
i − γi∇f(xk)i)− xki )2

= 1
n

n∑
i=1

( 2
γi
− βi)(proxΓ−1

g (xk − Γ∇f(xk))− xk)2
i

= 1
n‖proxΓ−1

g (xk − Γ∇f(xk))− xk‖22Γ−1−B
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Step-size requirement

• Fundamental inequality with z = xk and previous expected value:

E[f(xk+1) + g(xk+1)|xk] ≤ f(xk) + g(xk)

− 1
2n‖proxΓ−1

g (xk − Γ∇f(xk))− xk‖22Γ−1−B

• The step-size requirement γj ∈ (0, 2
βj

) implies 2Γ−1 −B � 0

• Subtract p?, take expectation, use law of total expectation:

E[f(xk+1) + g(xk+1)− p?]︸ ︷︷ ︸
Vk+1

≤ E[f(xk) + g(xk)− p?]︸ ︷︷ ︸
Vk

− E[ 1
2n‖proxΓ−1

g (xk − Γ∇f(xk))− xk‖22Γ−1−B ]︸ ︷︷ ︸
Rk

where the bounds on the step-sizes make Rk nonnegative
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Lyapunov inequality consequences

• We showed Lyapunov inequality Vk+1 ≤ Vk −Rk with quantities

Vk = E[f(xk) + g(xk)− p?]

Rk = E[ 1
2n
‖proxΓ−1

g (xk − Γ∇f(xk))− xk‖22Γ−1−B ]

• Consequences (similar to for proximal gradient method):
• Expected function value is decreasing (may not go to p?)
• Expected residual is summable, since 2Γ−1 −B � 0:

∞∑
l=0

E[‖proxΓ−1

g (xl − Γ∇f(xl))− xl‖2] <∞

and residual converges almost surely to 0
• Expected value of best residual squared converges as O(1/k):

E[ min
l={0,...,k}

‖proxΓ−1

g (xl − Γ∇f(xl))− xl‖2
2Γ−1−B ] ≤

2n(f(x0) + g(x0)− p?)

k + 1

where Jensen’s inequality used to swap E and minl
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Expected fixed-point residual convergence

What does E[‖proxΓ−1

g (xk − Γ∇f(xk))− xk‖2]→ 0 imply?

• Since expected residual is nonegative and summable

‖proxΓ−1

g (xk − Γ∇f(xk))− xk‖2 → 0

a.s., meaning algorithm realizations satisfy this with probability 1

• Let vk = proxΓ−1

g (xk − Γ∇f(xk)), then

∂g(vk) +∇f(vk) 3 Γ−1(xk − vk) +∇f(vk)−∇f(xk)→ 0

• So:
• vk sequence satisfies fixed-point characterization in limit
• xk is arbitraily close to vk

• if xk (sub)sequence converges to x̄, so does vk, and we have

∂g(x̄) +∇f(x̄) 3 0

(by closedness of graphs of maximal monotone operators)
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Convex setting

• We will analyze the coordinate proximal gradient method

j ∈ {1, . . . , n} is randomly chosen with uniform probability

xk+1
j = proxγjgj (xkj − γj∇f(xk)j)

xk+1
i = xki for all i 6= j

in the convex setting for solving

minimize
x

f(x) +

n∑
i=1

gi(xi)︸ ︷︷ ︸
g(x)

• Will show sublinear O(1/k) rate for expected function values

• Analysis based on A fundamental inequality
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Convex setting – Assumptions

(i) f : Rn → R is continuously differentiable and convex

(ii) f is βj-coordinate smooth, i.e., we have

f(y) ≤ f(x) +∇f(x)j(yj − xj) +
βj

2 (xj − yj)2

for all x, y ∈ Rn such that yi = xi for all i 6= j

(iii) g : Rn → R ∪ {∞} closed convex and separable

(iv) A minimizer x? exists and p? = f(x?) + g(x?) is optimal value

(v) Algorithm parameters γj ∈ (0, 1
βj

]

• Same as for fundamental inequality but
• restricted step-sizes
• convexity of f

• Smaller γj range than nonconvex, can be done with same range
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Convex setting – Analysis

• Use fundamental inequality with z = x?, where x? is a solution

E[f(xk+1) + g(xk+1)|xk]

≤ f(xk) + 1
ng(x?) + 1

n∇f(xk)T (x? − xk) + n−1
n g(xk)

+ 1
2E[(βj − γ−1

j )(xk+1
j − xkj )2|xk]

+ 1
2 (E[γ−1

j (xkj − x?j )2|xk]− E[γ−1
j (xk+1

j − x?j )2|xk])

• Using 1
nf(x?) ≥ 1

n (f(xk) +∇f(xk)T (x?− xk)) by convexity of f

E[f(xk+1) + g(xk+1)|xk]

≤ n−1
n f(xk) + 1

n (g(x?) + f(x?)) + n−1
n g(xk)

+ 1
2E[(βj − γ−1

j )(xk+1
j − xkj )2|xk]

+ 1
2 (E[γ−1

j (xkj − x?j )2|xk]− E[γ−1
j (xk+1

j − x?j )2|xk])
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Anaylsis – Step-size requirement

• Restating what we just had

E[f(xk+1) + g(xk+1)|xk]

≤ n−1
n f(xk) + 1

n (g(x?) + f(x?)) + n−1
n g(xk)

+ 1
2E[(βj − γ−1

j )(xk+1
j − xkj )2|xk]

+ 1
2 (E[γ−1

j (xkj − x?j )2|xk]− E[γ−1
j (xk+1

j − x?j )2|xk])

• Using γj ∈ (0, 1
βj

] and p? = f(x?) + g(x?), rearrangement gives

n−1
n E[f(xk+1) + g(xk+1)|xk] + 1

2E[γ−1
j (xk+1

j − x?j )2|xk]

≤ n−1
n (f(xk) + g(xk)) + 1

2E[γ−1
j (xkj − x?j )2|xk]

− 1
n (E[f(xk+1) + g(xk+1)|xk]− p?)
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Lyapunov inequality

• Subtract n−1
n p?, take expectation, use law of total expectation:

n−1
n E[f(xk+1) + g(xk+1)− p?] + 1

2E[γ−1
j (xk+1

j − x?j )2)]︸ ︷︷ ︸
Vk+1

≤ n−1
n E[f(xk) + g(xk)− p?] + 1

2E[γ−1
j (xkj − x?j )2]︸ ︷︷ ︸

Vk

− 1
n (E[f(xk+1) + g(xk+1)]− p?)︸ ︷︷ ︸

Rk

• Lyapunov inequality sequences Vk and Rk are nonnegative
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Lyapunov inequality consequences

• Lyapunov inequality Vk+1 ≤ Vk −Rk with

Vk = n−1
n E[f(xk) + g(xk)− p?] + 1

2E[γ−1
j (xkj − x?j )2]

Rk = 1
n (E[f(xk+1) + g(xk+1)]− p?)

and V0 = n−1
n (f(x0) + g(x0)− p?) + 1

2n‖x
0 − x?‖2Γ−1

• Consequences (similar to for proximal gradient method):
• Since expected function value is decreasing:

E[f(xk+1) + g(xk+1)]− p? ≤
(n− 1)(f(x0) + g(x0)− p?) + 1

2
‖x0 − x?‖2

Γ−1

k + 1

• Expected function value suboptimality summable

∞∑
l=0

E[f(xl+1) + g(xl+1)− p?] <∞

so function value converges to p? with probability 1
• Can show almost sure sequence convergence to an optimal point

51



Outline

Coordinate proximal gradient method

Coordinate-wise smoothness

Examples

A fundamental inequality

Nonconvex setting

Convex setting

Strongly convex setting

Rate comparison to proximal gradient method

52



Strongly convex setting

• We will analyze the coordinate proximal gradient method

j ∈ {1, . . . , n} is randomly chosen with uniform probability

xk+1
j = proxγjgj (xkj − γj∇f(xk)j)

xk+1
i = xki for all i 6= j

in a strongly convex setting for solving

minimize
x

f(x) +

n∑
i=1

gi(xi)︸ ︷︷ ︸
g(x)

• Will show linear convergence for E[‖xk+1 − x?‖2]

• Analysis based on properties of gradient
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Strongly convex setting – Assumptions

(i) f : Rn → R is continuously differentiable and σ-strongly convex

(ii) f is β smooth

(iii) g : Rn → R ∪ {∞} closed convex and separable

(iv) A minimizer x? exists and p? = f(x?) + g(x?) is optimal value

(v) Algorithm parameters γj = γ ∈ (0, 2
β )

• Differs from assumption for fundamental inequality in
• restricted step-sizes
• strong convexity of f
• smoothness instead of coordinate-wise smoothness

• Will reduce analysis to analysis for proximal gradient method

• Analysis with coordinate-wise smoothness can improve rate
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Strongly convex setting – Analysis

Use that

(a) the coordinate proximal gradient method, after selection of j, is:

xk+1
j = (proxγg(x

k − γ∇f(xk)))j

(b) the proximal gradient mapping satisfies in this setting

‖proxγg(x
k − γ∇f(xk))− x?‖2 ≤ max(1− σβ, βγ − 1)‖xk − x?‖2

to get

E[‖xk+1 − x?‖22|xk] = E[(xk+1
j − x?j )2|xk] + E[

∑
i 6=j

(xki − x?i )2|xk]

= E[(proxγg(x
k − γ∇f(xk))− x?)2

j |xk] + n−1
n ‖x

k − x?‖22
= 1

n‖proxγg(x
k − γ∇f(xk))− x?‖22 + n−1

n ‖x
k − x?‖22

≤ 1
n max(1− σβ, βγ − 1)2‖xk − x?‖22 + n−1

n ‖x
k − x?‖22

≤ (1− 1
n (1−max(1− σγ, βγ − 1)2))‖xk − x?‖22
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Analysis – Total expectation

• Taking expecation and using law of total expectation gives

E[‖xk+1 − x?‖22] ≤ (1− 1
n (1−max(1− σγ, βγ − 1)2))︸ ︷︷ ︸

ρ

E[‖xk − x?‖22]

• Consequences:
• E[‖xk − x?‖22] converges linearly whenever

max(1− σγ, βγ − 1)2 ∈ [0, 1)

which is same condition as for proximal gradient method
• Since expected value is summable,

k∑
l=0

E[‖xl − x?‖22] ≤ ‖x
0 − x?‖22
1− ρ <∞

algorithm realizations converge to x? with probability 1
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Comparison to proximal gradient method

Setting Quantity Proximal Coordinate

Nonconvex ‖∇f(x̄k)‖22 O(1/k) O(1/k)

Convex f(xk) + g(xk)− p? O(1/k) O(1/k)

Strongly convex ‖xk − x?‖2 O(ρkpg) O(ρkcpg)

• Same order of magnitude in convergence for all classes

• Compare constants or linear rate to decide which is faster

• Will compare for convex and strongly convex settings assuming:
• Problem dimension n: f : Rn → R and g : Rn → R ∪ {∞}
• That n coordinate steps at cost of 1 full step
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Comparison – Convex setting

• Assume nk coordinate steps at cost of k full steps
• Assume in the different setups:

(a) f is βj-coordinate smooth and γj = 1
βj

(b) f is β-smooth and γ = 1
β

(c) f is βH -smooth w.r.t. ‖ · ‖H and γ = 1
βH

• Assume (a): Rate for nk coordinate proximal gradient steps

E[f(xnk+1) + g(xnk+1)]− p? ≤
(n− 1)(f(x0) + g(x0)− p?) + 1

2
‖x0 − x?‖2B

nk + 1

where Γ = diag(γ1, . . . , γn) and B = Γ−1 = diag(β1, . . . , βn)
• Assume (b): Rate for k full proximal gradient steps

f(xk+1) + g(xk+1)− p? ≤
β‖x0 − x?‖22

2(k + 1)

• Assume (c): Rate for k full proximal gradient steps

f(xk+1) + g(xk+1)− p? ≤
βH‖x0 − x?‖2H

2(k + 1)
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Step-sizes for quadratics

• Consider convex f(x) = 1
2x

TPx+ qTx and g = 0
• Coordinate descent under Assumption (a)

• Have shown βj = pjj-coordinate smoothness
• So B = diag(P ) and coordinate update:

xk+1
j = (proxBg (xk −B−1∇f(xk)))j

• Full proximal gradient under Assumption (b)
• Have β = λmax(P )-smoothness
• Algorithm

xk+1 = prox 1
β
g
(xk − 1

β
∇f(xk))

• Full scaled proximal gradient under Assumption (c)
• Use same scaling as in coordinate case H = B = diag(P )
• Algorithm

xk+1 = proxB1
βB

g
(xk − 1

βB
B−1∇f(xk))

• Same step-length as coordinate if βB = 1
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Quantifying example – Step-sizes

• We generate P and q in f(x) = 1
2x

TPx+ qTx as follows:

• P = CTC and C ∈ R20×100 and all cij ∼ N (0, 1)
• qi ∼ N (0, 1)

• Coordinate method and Assumption (a): βj ∈ [10, 43]

• Full method and Assumption (b): β = 193

• Full method and Assumption (c): What is βH = βB?
• Since f quadratic with Hessian P , we have

f(y) = f(x) +∇f(x)T (y − x) + 1
2
‖x− y‖2P

• So f is βB-smooth if βBB = βB diag(P ) � P , since then:

f(y)− (f(x) +∇f(x)T (y − x)) = 1
2
‖x− y‖2P ≤ βB

2
‖x− y‖2diag(P )

which in this example holds for βB = 9.1
• Individual smoothness parameters satisfy βBβj ∈ [91, 392]

• Step-sizes are inverse of βs, much longer steps in coordinate case
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Rates for quadratics

• Consider again convex f(x) = 1
2x

TPx+ qTx and g = 0

• Coordinate upper bound (with g = 0) after nk iterations

(n− 1)(f(x0)− p?) + 1
2
‖x0 − x?‖2B

nk + 1
=

(n−1)
2
‖x0 − x?‖2P + 1

2
‖x0 − x?‖2B

nk + 1

≈
n‖x0 − x?‖2P

2(nk + 1)
≈
‖x0 − x?‖2P

2(k + 1)

• Full and scaled proximal gradient upper bounds after k iterations:

λmax(P )‖x0 − x?‖22
2(k + 1)

βB‖x0 − x?‖2B
2(k + 1)

• We know that rates are the same, but constants differ
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Quantifying example – Rate constants

• Quantify rate constants with same convex quadratic as before
• Coordinate, full, and scaled full proximal gradient rate constants:

‖x0 − x?‖2P λmax(P )‖x0 − x?‖22 βB‖x0 − x?‖2B
• First two constants equal if x0 − x? is eigenvector to λmax(P )

• Quantification: average constants (X) for N = 10000 random x0

‖x0 − x?‖2P ≈ 2100

193‖x0 − x?‖22 ≈ 19300

9.1‖x0 − x?‖2diag(P ) ≈ 18900

• Conclusions:
• Coordinate does not improve worst case, but average performance
• Coordinate descent almost 10 times smaller average constant here
• No improvement in using diag(P ) for full method in this example
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Comparison – Toy example

• Coordinate descent on β-smooth quadratic problem

minimize
x

1

2

[
x1

x2

]T [
0.1 −0.1
−0.1 1

] [
x1

x2

]
• Step-size parameters γ1 = 1

0.1 , γ2 = 1
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Toy example – Gradient descent

• Gradient descent on β-smooth quadratic problem

minimize
x

1

2

[
x1

x2

]T [
0.1 −0.1
−0.1 1

] [
x1

x2

]
• Step-size parameter γ = 1

β
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Toy Example – Scaled gradient descent

• Diagonal scaled gradient descent on β-smooth quadratic problem

minimize
x

1

2

[
x1

x2

]T [
0.1 −0.1
−0.1 1

] [
x1

x2

]
• Step-size parameters γ1 = 1

0.1βH
and γ2 = 1

βH
with βH = 1.32
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Comparison – Strongly convex setting

• Assumptions:
• nk coordinate steps at cost of k full steps
• All step-sizes fixed to be the same, also in coordinate

• Rates for k proximal and nk coordinate proximal steps

‖xk − x?‖2 ≤ max(βγ − 1, 1− σγ)k‖x0 − x?‖2
E[‖xkn − x?‖2] ≤ (1− 1

n (1−max(βγ − 1, 1− σγ))2)nk/2‖x0 − x?‖2
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Strongly convex comparison – Example

• Comparison on f(x) = 1
2x

TPx+ qTx and arbitrary convex g

• P = CTC and C ∈ R100×100 and all cij ∈ N (0, 1)
• We have β = λmax(P ) ≈ 399 and σ = λmin(P ) ≈ 0.007
• We let γ = 1

β
and compare for k = 10000 steps (epocs)

(βγ − 1, 1− σγ)k ≈ 0.837686

(1− 1
n

(1−max(βγ − 1, 1− σγ))2)nk/2 ≈ 0.837689

• Comments:
• With identical step-sizes, rates are very similar
• Coordinate method can take longer steps to get better rate

(but not covered by our strongly convex analysis)
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