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Conjugate function – Definition

• The conjugate function of f : Rn → R ∪ {∞} is defined as

f∗(s) := sup
x

(
sTx− f(x)

)
• Implicit definition via optimization problem
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Conjugate function properties

• Let ax(s) := sTx− f(x) be affine function parameterized by x:

f∗(s) = sup
x
ax(s)

is supremum of family of affine functions

• Epigraph of f∗ is intersection of epigraphs of (below three) ax

ax1 (s)

ax2 (s)

ax3 (s)

epif∗

• f∗ convex: epigraph intersection of convex halfspaces epi ax
• f∗ closed: epigraph intersection of closed halfspaces epi ax
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Conjugate interpretation

• Conjugate f∗(s) defines affine minorizer to f with slope s:

f(x)

sT x− f∗(s)

(s,−1)

x∗

−f∗(s)

where −f∗(s) decides constant offset to get support
• Why?

f∗(s) = sup
x

(
sTx− f(x)

)
⇔ f∗(s) ≥ sTx− f(x) for all x

⇔ f(x) ≥ sTx− f∗(s) for all x

• Maximizing argument x∗ gives support: f(x∗) = sTx∗ − f∗(s)
• We have f(x∗) = sTx∗ − f∗(s) if and only if s ∈ ∂f(x∗)
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Consequence

• Conjugate of f and envf are the same, i.e., f∗ = (envf)∗

f(x)

(s,−1)

sT x− f∗(s)

envf(x)

(s,−1)

sT x− f∗(s)

• Functions have same supporting affine functions

• Epigraphs have same supporting hyperplanes
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Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−2,−1)

−2

s

f∗(s)
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Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−2,−1)

−2 →∞

s

f∗(s)
∞
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Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−1,−1)

−1

s

f∗(s)
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Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−1,−1)

−1 = 0

s

f∗(s)
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Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−0.5,−1)

−0.5

s

f∗(s)
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Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−0.5,−1)

−0.5 = 0

s

f∗(s)

9



Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(0,−1)

0

s

f∗(s)
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Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(0,−1)

0 = 0

s

f∗(s)
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Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(0.5,−1)

0.5

s

f∗(s)
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Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(0.5,−1)

0.5 = 0

s

f∗(s)

9



Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(1,−1)

1

s

f∗(s)
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Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(1,−1)

1 = 0

s

f∗(s)
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Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(2,−1)

2

s

f∗(s)
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Example – Absolute value

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(2,−1)

2 →∞

s

f∗(s)

Conjugate is f∗(s) = ι[−1,1](s)
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A nonconvex example

• Draw conjugate of f (f(x) =∞ outside points)

(−1, 0)
(0, 0.2)

(1, 0)
x

f(x)

−s s

−0.2
s

f∗(s)

• Draw all affine ax(s) and select for each s the max to get f∗(s)

f∗(s) = sup
x
(sx− f(x)) = max(−s− 0, 0s− 0.2, s− 0)

= max(−s,−0.2, s) = |s|
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A nonconvex example

• Draw conjugate of f (f(x) =∞ outside points)

(−1, 0)
(0, 0.2)

(1, 0)
x

f(x)

−s s

−0.2
s

f∗(s)

• Draw all affine ax(s) and select for each s the max to get f∗(s)

f∗(s) = sup
x
(sx− f(x)) = max(−s− 0, 0s− 0.2, s− 0)

= max(−s,−0.2, s) = |s|

10



Example – Quadratic functions

Let g(x) = 1
2x

TQx+ pTx with Q positive definite (invertible)

• Gradient satisfies ∇g(x) = Qx+ p

• Fermat’s rule for g∗(s) = supx(s
Tx− 1

2x
TQx− pTx):

0 = s−Qx− p ⇔ x = Q−1(s− p)

• So

g∗(s) = sTQ−1(s− p)− 1
2 (s− p)

TQ−1QQ−1(s− p) + pTQ−1(s− p)
= 1

2 (s− p)
TQ−1(s− p)
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Example – A piece-wise linear function

• Consider

g(x) =


−x− 1 if x ≤ −1
0 if x ∈ [−1, 1]
x− 1 if x ≥ 1

g(x)

x

• Subdifferential satisfies

∂g(x) =



−1 if x < −1
[−1, 0] if x = −1
0 if x ∈ (−1, 1)
[0, 1] if x = 1

1 if x > 1

∂g(x)

x
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Example cont’d

• We use g∗(s) = sx− g(x) if s ∈ ∂g(x):
• x < −1: s = −1, hence g∗(−1) = −1x− (−x− 1) = 1
• x = −1: s ∈ [−1, 0] hence g∗(s) = −s− 0 = −s
• x ∈ (−1, 1): s = 0 hence g∗(0) = 0x− 0 = 0
• x = 1: s ∈ [0, 1] hence g∗(s) = s− 0 = s
• x > 1: s = 1 hence g∗(1) = x− (x− 1) = 1

• That is

g∗(s) =

{
−s if s ∈ [−1, 0]
s if s ∈ [0, 1]

• For s < −1 and s > 1, g∗(s) =∞:
• s < −1: let x = t→ −∞ and g∗(s) ≥ ((s+ 1)t+ 1)→∞
• s > 1: let x = t→∞ and g∗(s) ≥ ((s− 1)t+ 1)→∞
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Example – Separable functions

• Let f(x) =
∑n
i=1 fi(xi) be a separable function, then

f∗(s) =

n∑
i=1

f∗i (si)

is also separable
• Proof:

f∗(s) = sup
x
(sTx−

n∑
i=1

fi(xi))

= sup
x
(

n∑
i=1

(sixi − fi(xi)))

=

n∑
i=1

sup
xi

(sixi − fi(xi))

=

n∑
i=1

f∗i (si)
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Example – 1-norm

• Let f(x) = ‖x‖1 =
∑n
i=1 |xi| be the 1-norm

• It is a separable sum of absolute values

• Use separable sum formula and that | · |∗ = ι[−1,1]:

f∗(s) =

n∑
i=1

f∗i (si) =

n∑
i=1

ι[−1,1](si) =

{
0 if maxi(|si|) ≤ 1

∞ else

• We have maxi(|si|) = ‖s‖∞, let

B∞(r) = {s : ‖s‖∞ ≤ r}

be the infinity norm ball of radius r, then

f∗(s) = ιB∞(1)(s)

is the indicator function for the unit infinity norm ball
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Biconjugate

• Biconjuate f∗∗ := (f∗)∗ is conjugate of conjugate

f∗∗(x) = sup
s
(xT s− f∗(s))

• For every x, it is largest value of all affine minorizers

f(x)

xx0

f(x0)

f∗∗(x0)

• Why?:
• xT s− f∗(s): supporting affine minorizer to f with slope s
• f∗∗(x) picks largest over all these affine minorizers evaluated at x

17



Biconjugate and convex envelope

• Biconjugate is closed convex envelope of f

x

f∗∗(x)

• f∗∗ ≤ f and f∗∗ = f if and only if f (closed and) convex
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Biconjugate – Example

• Draw the biconjugate of f (f(x) =∞ outside points)

x

f(x)

(−1, 0)
(0, 0.2)

(1, 0)

x

f∗∗(x)

• Biconjugate is convex envelope of f

• We found before f∗(s) = |s|, and now (f∗)∗(x) = ι[−1,1](x)

• Therefore also ι∗[−1,1](s) = |s|
(since f∗ = (envf)∗ = (f∗∗)∗ =: f∗∗∗)
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Biconjugate – Example

• Draw the biconjugate of f (f(x) =∞ outside points)

x

f(x)

(−1, 0)
(0, 0.2)

(1, 0)
x

f∗∗(x)

• Biconjugate is convex envelope of f

• We found before f∗(s) = |s|, and now (f∗)∗(x) = ι[−1,1](x)

• Therefore also ι∗[−1,1](s) = |s|
(since f∗ = (envf)∗ = (f∗∗)∗ =: f∗∗∗)
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Fenchel-Young’s inequality

• Going back to conjugate interpretation:

f(x)

sT x− f∗(s)

(s,−1)

x∗

• Fenchel-Youngs’s inequality: f(x) ≥ sTx− f∗(s) for all x, s

• Follows immediately from definition: f∗(s) = supx(s
Tx− f(x))
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Fenchel-Young’s equality

• When is do we have equality in Fenchel-Young?

f(x) = sTx− f∗(s)

f(x)

sT x− f∗(s)

(s,−1)

x∗

• Fenchel-Young’s equality and equivalence:

f(x∗) = sTx∗ − f∗(s) holds if and only if s ∈ ∂f(x∗)
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Proof – Fenchel-Young’s equality

f(x) = sTx− f∗(s) holds if and only if s ∈ ∂f(x)

• s ∈ ∂f(x) if and only if (by defintion of subgradient)

f(y) ≥ f(x) + sT (y − x) for all y

⇔ sTx− f(x) ≥ sT y − f(y) for all y

⇔ sTx− f(x) ≥ sup
y

(
sT y − f(y)

)
⇔ sTx− f(x) ≥ f∗(s)

which is Fenchel-Young’s inequality with inequality reversed

• Fenchel-Young’s inequality always holds:

f∗(s) ≥ sTx− f(x)

so we have equality if and only if s ∈ ∂f(x)
23



A subdifferential formula for convex f

Assume f closed convex, then ∂f(x) = Argmaxs(s
Tx− f∗(s))

• Since f∗∗ = f , we have f(x) = sups(x
T s− f∗(s)) and

s∗ ∈ Argmax
s

(xT s− f∗(s)) ⇐⇒ f(x) = xT s∗ − f∗(s∗)

⇐⇒ s∗ ∈ ∂f(x)

• The last equivalence is from previous slide
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Subdifferential formulas for f ∗

• For general f , we have that

∂f∗(s) = Argmax
x

(sTx− f∗∗(x))

by previous formula and since f∗ closed and convex

• For closed convex f , we have, since f = f∗∗, that

∂f∗(s) = Argmax
x

(sTx− f(x))
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Relation between ∂f and ∂f ∗ – General case

s ∈ ∂f(x) implies that x ∈ ∂f∗(s)

• Since f∗∗ ≤ f and s ∈ ∂f(x), Fenchel-Young’s equality gives:

0 = f∗(s) + f(x)− sTx ≥ f∗(s) + f∗∗(x)− sTx ≥ 0

where last step is Fenchel-Young’s inequality

• Hence f∗(s) + f∗∗(x)− sTx = 0 and FY ⇒ x ∈ ∂f∗(s)
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Inverse relation between ∂f and ∂f ∗ – Convex case

Suppose f closed convex, then s ∈ ∂f(x)⇐⇒ x ∈ ∂f∗(s)

• Using implication on previous slide twice and f∗∗ = f :

s ∈ ∂f(x)⇒ x ∈ ∂f∗(s)⇒ s ∈ ∂f∗∗(x)⇒ s ∈ ∂f(x)

• Another way to write the result is that for closed convex f :

∂f∗ = (∂f)−1

(Definition of inverse of set-valued A: x ∈ A−1u⇐⇒ u ∈ Ax)
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Example 1 – Relation between ∂f and ∂f ∗

• What is ∂f∗ for below ∂f?

s

x

s ∈ ∂f(x)

s

x

x ∈ ∂f∗(s)
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Example 1 – Relation between ∂f and ∂f ∗

• What is ∂f∗ for below ∂f?

s

x

s ∈ ∂f(x)

s

x

x ∈ ∂f∗(s)

Since ∂f∗ = (∂f)−1, we flip the figure
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Example 2 – Relation between ∂f and ∂f ∗

s

x

s ∈ ∂f(x)

s

x

x ∈ ∂f∗(s)

• region with slope σ in ∂f(x) ⇔ region with slope 1
σ in ∂f∗(s)

• Implication: ∂f σ-strong monotone ⇔ ∂f∗(s) σ-cocoercive?
(Recall: σ-cocoercivity ⇔ 1

σ -Lipschitz and monotone)
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Cocoercivity and strong monotonicity

∂f : Rn → 2R
n

maximal monotone and σ-strongly monotone
⇐⇒

∂f∗ = ∇f∗ : Rn → Rn single-valued and σ-cocoercive

• σ-strong monotonicity: for all u ∈ ∂f(x) and v ∈ ∂f(y)

(u− v)T (x− y) ≥ σ‖x− y‖22 (1)

or equivalently for all x ∈ ∂f∗(u) and y ∈ ∂f∗(v)
• ∂f∗ is single-valued:

• Assume x ∈ ∂f∗(u) and y ∈ ∂f∗(u), then lhs of (1) 0 and x = y

• ∇f∗ is σ-cocoercive: plug x = ∇f∗(u) and y = ∇f∗(v) into (1)

• That ∂f∗ has full domain follows from Minty’s theorem
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Duality correspondance

Let f : Rn → R ∪ {∞}. Then the following are equivalent:

(i) f is closed and σ-strongly convex

(ii) ∂f is maximally monotone and σ-strongly monotone

(iii) ∇f∗ is σ-cocoercive

(iv) ∇f∗ is maximally monotone and 1
σ -Lipschitz continuous

(v) f∗ is closed convex and satisfies descent lemma (is 1
σ -smooth)

where ∇f∗ : Rn → Rn and f∗ : Rn → R
Comments:

• (i) ⇔ (ii) and (iii) ⇔ (iv) ⇔ (v): Previous lecture

• (ii) ⇔ (iii): This lecture

• Since f = f∗∗ the result holds with f and f∗ interchanged

• Full proof available on course webpage
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Example – Proximal operator is 1-cocoercive

Assume g closed convex, then proxγg is 1-cocoercive

• Prox definition proxγg(z) = argminx(g(x) +
1
2γ ‖x− z‖

2
2)

• Let r = γg + 1
2‖ · ‖

2
2, then

proxγg(z) = argmin
x

(g(x) + 1
2γ ‖x− z‖

2
2)

= argmax
x

(−γg(x)− 1
2‖x− z‖

2
2)

= argmax
x

(zTx− ( 12‖x‖
2
2 + γg(x)))

= argmax
x

(zTx− r(x))

= ∇r∗(z)

where last step is subdifferential formula for r∗ for convex r

• Now, r is 1-strongly convex and ∇r∗ = proxγg is 1-cocoercive
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Example – Proximal operator for strongly convex g

Assume g is σ-strongly convex, then proxγg is (1 + γσ)-cocoercive

• Let r = γg + 1
2‖ · ‖

2
2, and use proxγg(z) = ∇r∗(z)

• r is (1 + γσ)-strongly convex and ∇r∗ is (1 + γσ)-cocoercive

34
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Moreau decomposition – Statement

Assume g closed convex, then proxg(z) + proxg∗(z) = z

• When g scaled by γ > 0, Moreau decomposition is

z = proxγg(z) + prox(γg)∗(z) = proxγg(z) + γproxγ−1g∗(γ
−1z)

(since prox(γg)∗ = γproxγ−1g∗ ◦ γ−1Id)

• Don’t need to know g∗ to compute proxγg∗

36



Moreau decomposition – Proof

• Let u = z − x
• Fermat’s rule: x = proxg(z) if and only if

0 ∈ ∂g(x) + x− z ⇔ z − x ∈ ∂g(x)
⇔ u ∈ ∂g(x)
⇔ x ∈ ∂g∗(u)
⇔ z − u ∈ ∂g∗(u)
⇔ 0 ∈ ∂g∗(u) + u− z

if and only if u = proxg∗(z) by Fermat’s rule

• Using z = x+ u, we get

z = x+ u = proxg(z) + proxg∗(z)
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Optimality Conditions and Duality
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Composite optimization problem

• Consider primal composite optimization problem

minimize f(Lx) + g(x)

where f, g closed convex and L is a matrix

• We will derive primal-dual optimality conditions and dual problem

40



Primal optimality condition

Let f : Rm → R, g : Rn → R, L ∈ Rm×n with f, g closed convex
and assume CQ, then:

minimize f(Lx) + g(x)

is solved by x? ∈ Rn if and only if x? satisfies

0 ∈ LT∂f(Lx?) + ∂g(x?)

• Optimality condition implies that vector s exists such that

s ∈ LT∂f(Lx?) and − s ∈ ∂g(x?)

• So CQ implies a subgradient exists for both functions at solution

41



Primal-dual optimality condition 1

• Introduce dual variable µ ∈ ∂f(Lx), then optimality condition

0 ∈ LT ∂f(Lx)︸ ︷︷ ︸
µ

+∂g(x)

is equivalent to

µ ∈ ∂f(Lx)
−LTµ ∈ ∂g(x)

• This is a necessary and sufficient primal-dual optimality condition

• (Primal-dual since involves primal x and dual µ variables)

42



Primal-dual optimality condition 2

• Primal-dual optimality condition

µ ∈ ∂f(Lx)
−LTµ ∈ ∂g(x)

• Using subdifferential inverse:

µ ∈ ∂f(Lx) ⇐⇒ Lx ∈ ∂f∗(µ)

gives equivalent primal dual optimality condition

Lx ∈ ∂f∗(µ)
−LTµ ∈ ∂g(x)

43



Dual optimality condition

• Using subdifferential inverse on other condition

−LTµ ∈ ∂g(x) ⇐⇒ x ∈ ∂g∗(−LTµ)

gives equivalent primal dual optimality condition

Lx ∈ ∂f∗(µ)
x ∈ ∂g∗(−LTµ)

• This is equivalent to that:

0 ∈ ∂f∗(µ)− L∂g∗(−LTµ)︸ ︷︷ ︸
x

which is a dual optimality condition since it involves only µ

44



Dual problem

• The dual optimality condition

0 ∈ ∂f∗(µ)− L∂g∗(−LTµ)

is a sufficient condition for solving the dual problem

minimize f∗(µ) + g∗(−LTµ)

• Have also necessity under CQ on dual, which is mild
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Why dual problem?

• Sometimes easier to solve than primal

• Only useful if primal solution can be obtained from dual

46



Solving primal from dual

• Assume f, g closed convex and CQ holds

• Assume optimal dual µ known: 0 ∈ ∂f∗(µ)− L∂g∗(−LTµ)
• Optimal primal x must satisfy any and all primal-dual conditions:{

µ ∈ ∂f(Lx)
−LTµ ∈ ∂g(x)

{
Lx ∈ ∂f∗(µ)
−L∗µ ∈ ∂g(x){

µ ∈ ∂f(Lx)
x ∈ ∂g∗(−LTµ)

{
Lx ∈ ∂f∗(µ)
x ∈ ∂g∗(−LTµ)

• If one of these uniquely characterizes x, then must be solution:
• g∗ is differentiable at −LTµ for dual solution µ
• f∗ is differentiable at dual solution µ and L invertible
• · · ·

47



Optimality conditions – Summary

• Assume f, g closed convex and that CQ holds

• Problem minx f(Lx) + g(x) is solved by x if and only if

0 ∈ LT∂f(Lx) + ∂g(x)

• Primal dual necessary and sufficient optimality conditions:{
µ ∈ ∂f(Lx)
−LTµ ∈ ∂g(x)

{
Lx ∈ ∂f∗(µ)
−LTµ ∈ ∂g(x){

µ ∈ ∂f(Lx)
x ∈ ∂g∗(−LTµ)

{
Lx ∈ ∂f∗(µ)
x ∈ ∂g∗(−LTµ)

• Dual optimality condition

0 ∈ ∂f∗(µ)− L∂g∗(−LTµ)

solves dual problem minµ f
∗(µ) + g∗(−LTµ)

48
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Concave dual problem

• We have defined dual as convex minimization problem

minimize
µ

f∗(µ) + g∗(−LTµ)

• Dual problem can be written as concave maximization problem:

maximize
µ

−f∗(µ)− g∗(−LTµ)

• Same solutions but optimal values minus of each other

• Concave formulation gives nicer optimal value comparisons

• To compare, we let the primal and dual optimal values be

p? = inf
x
(f(Lx) + g(x)) and d? = sup

µ
(−f∗(µ)− g∗(−LTµ))

50



Weak duality

Weak duality always holds meaning p? ≥ d?

• We have by Fenchel-Young’s inequality for all µ and x:

f∗(µ) + g∗(−LTµ) ≥ µTLx− f(Lx) + (−LTµ)Tx− g(x)
= −f(Lx)− g(x)

• Negate, maximize lhs over µ, minimize rhs over x, to get

d? = sup
µ
(−f∗(µ)− g∗(−LTµ)) ≤ inf

x
(f(Lx) + g(x)) = p?
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Strong duality

Assume f, g closed convex, solution x? exists, and CQ
then strong duality holds meaning p? = d?

• Dual µ? and primal x? solutions exist such that

µ? ∈ ∂f(Lx?) and − LTµ? ∈ ∂g(x?)

• We have by Fenchel-Young’s equality:

p? = f(Lx?) + g(x?)

= (µ?)TLx? − f∗(µ?) + (−LTµ?)Tx? − g∗(−LTµ?)
= −f∗(µ?)− g∗(−LTµ?) = d?
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Dual problem gives lower bound

• Consider again concave dual problem with optimal value

d? = sup
µ
(−f∗(µ)− g∗(−LTµ))

• We know that for all dual variables µ

p? ≥ d? ≥ −f∗(µ)− g∗(−LTµ)

• So can find lower bound to p? by evaluating dual objective
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