Conjugate Functions, Optimality Conditions, and Duality

Pontus Giselsson

Outline

- Conjugate function - Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

Conjugate Functions

Conjugate function - Definition

- The conjugate function of $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is defined as

$$
f^{*}(s):=\sup _{x}\left(s^{T} x-f(x)\right)
$$

- Implicit definition via optimization problem

Conjugate function properties

- Let $a_{x}(s):=s^{T} x-f(x)$ be affine function parameterized by x :

$$
f^{*}(s)=\sup _{x} a_{x}(s)
$$

is supremum of family of affine functions

- Epigraph of f^{*} is intersection of epigraphs of (below three) a_{x}

- f^{*} convex: epigraph intersection of convex halfspaces epi a_{x}
- f^{*} closed: epigraph intersection of closed halfspaces epi a_{x}

Conjugate interpretation

- Conjugate $f^{*}(s)$ defines affine minorizer to f with slope s :

where $-f^{*}(s)$ decides constant offset to get support
- Why?

$$
\begin{aligned}
f^{*}(s)=\sup _{x}\left(s^{T} x-f(x)\right) & \Leftrightarrow \quad f^{*}(s) \geq s^{T} x-f(x) \text { for all } x \\
& \Leftrightarrow \quad f(x) \geq s^{T} x-f^{*}(s) \text { for all } x
\end{aligned}
$$

- Maximizing argument x^{*} gives support: $f\left(x^{*}\right)=s^{T} x^{*}-f^{*}(s)$
- We have $f\left(x^{*}\right)=s^{T} x^{*}-f^{*}(s)$ if and only if $s \in \partial f\left(x^{*}\right)$

Consequence

- Conjugate of f and $\operatorname{env} f$ are the same, i.e., $f^{*}=(\operatorname{env} f)^{*}$

- Functions have same supporting affine functions
- Epigraphs have same supporting hyperplanes

Outline

- Conjugate function - Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

Example - Absolute value

- Compute conjugate of $f(x)=|x|$
- For given slope $s:-f^{*}(s)$ is point that crosses $|x|$-axis

$$
\text { Slope, } s=-2 \quad f^{*}(s)
$$

Example - Absolute value

- Compute conjugate of $f(x)=|x|$
- For given slope $s:-f^{*}(s)$ is point that crosses $|x|$-axis

Slope, $s=-2 \quad f^{*}(s) \rightarrow \infty$

Example - Absolute value

- Compute conjugate of $f(x)=|x|$
- For given slope $s:-f^{*}(s)$ is point that crosses $|x|$-axis

Example - Absolute value

- Compute conjugate of $f(x)=|x|$
- For given slope $s:-f^{*}(s)$ is point that crosses $|x|$-axis

Example - Absolute value

- Compute conjugate of $f(x)=|x|$
- For given slope $s:-f^{*}(s)$ is point that crosses $|x|$-axis

Example - Absolute value

- Compute conjugate of $f(x)=|x|$
- For given slope $s:-f^{*}(s)$ is point that crosses $|x|$-axis

Example - Absolute value

- Compute conjugate of $f(x)=|x|$
- For given slope $s:-f^{*}(s)$ is point that crosses $|x|$-axis

Example - Absolute value

- Compute conjugate of $f(x)=|x|$
- For given slope $s:-f^{*}(s)$ is point that crosses $|x|$-axis

Example - Absolute value

- Compute conjugate of $f(x)=|x|$
- For given slope $s:-f^{*}(s)$ is point that crosses $|x|$-axis

Example - Absolute value

- Compute conjugate of $f(x)=|x|$
- For given slope $s:-f^{*}(s)$ is point that crosses $|x|$-axis

Example - Absolute value

- Compute conjugate of $f(x)=|x|$
- For given slope $s:-f^{*}(s)$ is point that crosses $|x|$-axis

Example - Absolute value

- Compute conjugate of $f(x)=|x|$
- For given slope $s:-f^{*}(s)$ is point that crosses $|x|$-axis

Example - Absolute value

- Compute conjugate of $f(x)=|x|$
- For given slope $s:-f^{*}(s)$ is point that crosses $|x|$-axis

Slope, $s=2 \quad f^{*}(s)$

Example - Absolute value

- Compute conjugate of $f(x)=|x|$
- For given slope $s:-f^{*}(s)$ is point that crosses $|x|$-axis

Slope, $s=2 \quad f^{*}(s) \rightarrow \infty$

- Conjugate is $f^{*}(s)=\iota_{[-1,1]}(s)$

A nonconvex example

- Draw conjugate of $f(f(x)=\infty$ outside points)

A nonconvex example

- Draw conjugate of $f(f(x)=\infty$ outside points)

- Draw all affine $a_{x}(s)$ and select for each s the max to get $f^{*}(s)$

$$
\begin{aligned}
f^{*}(s) & =\sup _{x}(s x-f(x))=\max (-s-0,0 s-0.2, s-0) \\
& =\max (-s,-0.2, s)=|s|
\end{aligned}
$$

Example - Quadratic functions

Let $g(x)=\frac{1}{2} x^{T} Q x+p^{T} x$ with Q positive definite (invertible)

- Gradient satisfies $\nabla g(x)=Q x+p$
- Fermat's rule for $g^{*}(s)=\sup _{x}\left(s^{T} x-\frac{1}{2} x^{T} Q x-p^{T} x\right)$:

$$
0=s-Q x-p \quad \Leftrightarrow \quad x=Q^{-1}(s-p)
$$

- So

$$
\begin{aligned}
g^{*}(s) & =s^{T} Q^{-1}(s-p)-\frac{1}{2}(s-p)^{T} Q^{-1} Q Q^{-1}(s-p)+p^{T} Q^{-1}(s-p) \\
& =\frac{1}{2}(s-p)^{T} Q^{-1}(s-p)
\end{aligned}
$$

Example - A piece-wise linear function

- Consider

$$
g(x)= \begin{cases}-x-1 & \text { if } x \leq-1 \\ 0 & \text { if } x \in[-1,1] \\ x-1 & \text { if } x \geq 1\end{cases}
$$

- Subdifferential satisfies

$$
\partial g(x)= \begin{cases}-1 & \text { if } x<-1 \\ {[-1,0]} & \text { if } x=-1 \\ 0 & \text { if } x \in(-1,1) \\ {[0,1]} & \text { if } x=1 \\ 1 & \text { if } x>1\end{cases}
$$

Example cont'd

- We use $g^{*}(s)=s x-g(x)$ if $s \in \partial g(x)$:
- $x<-1: s=-1$, hence $g^{*}(-1)=-1 x-(-x-1)=1$
- $x=-1: s \in[-1,0]$ hence $g^{*}(s)=-s-0=-s$
- $x \in(-1,1): s=0$ hence $g^{*}(0)=0 x-0=0$
- $x=1: s \in[0,1]$ hence $g^{*}(s)=s-0=s$
- $x>1: s=1$ hence $g^{*}(1)=x-(x-1)=1$
- That is

$$
g^{*}(s)= \begin{cases}-s & \text { if } s \in[-1,0] \\ s & \text { if } s \in[0,1]\end{cases}
$$

- For $s<-1$ and $s>1, g^{*}(s)=\infty$:
- $s<-1$: let $x=t \rightarrow-\infty$ and $g^{*}(s) \geq((s+1) t+1) \rightarrow \infty$
- $s>1$: let $x=t \rightarrow \infty$ and $g^{*}(s) \geq((s-1) t+1) \rightarrow \infty$

Example - Separable functions

- Let $f(x)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right)$ be a separable function, then

$$
f^{*}(s)=\sum_{i=1}^{n} f_{i}^{*}\left(s_{i}\right)
$$

is also separable

- Proof:

$$
\begin{aligned}
f^{*}(s) & =\sup _{x}\left(s^{T} x-\sum_{i=1}^{n} f_{i}\left(x_{i}\right)\right) \\
& =\sup _{x}\left(\sum_{i=1}^{n}\left(s_{i} x_{i}-f_{i}\left(x_{i}\right)\right)\right) \\
& =\sum_{i=1}^{n} \sup _{i}\left(s_{i} x_{i}-f_{i}\left(x_{i}\right)\right) \\
& =\sum_{i=1}^{n} f_{i}^{*}\left(s_{i}\right)
\end{aligned}
$$

Example - 1-norm

- Let $f(x)=\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$ be the 1-norm
- It is a separable sum of absolute values
- Use separable sum formula and that $|\cdot|^{*}=\iota_{[-1,1]}$:

$$
f^{*}(s)=\sum_{i=1}^{n} f_{i}^{*}\left(s_{i}\right)=\sum_{i=1}^{n} \iota_{[-1,1]}\left(s_{i}\right)= \begin{cases}0 & \text { if } \max _{i}\left(\left|s_{i}\right|\right) \leq 1 \\ \infty & \text { else }\end{cases}
$$

- We have $\max _{i}\left(\left|s_{i}\right|\right)=\|s\|_{\infty}$, let

$$
B_{\infty}(r)=\left\{s:\|s\|_{\infty} \leq r\right\}
$$

be the infinity norm ball of radius r, then

$$
f^{*}(s)=\iota_{B_{\infty}(1)}(s)
$$

is the indicator function for the unit infinity norm ball

Outline

- Conjugate function - Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

Biconjugate

- Biconjuate $f^{* *}:=\left(f^{*}\right)^{*}$ is conjugate of conjugate

$$
f^{* *}(x)=\sup _{s}\left(x^{T} s-f^{*}(s)\right)
$$

- For every x, it is largest value of all affine minorizers

- Why?:
- $x^{T} s-f^{*}(s)$: supporting affine minorizer to f with slope s
- $f^{* *}(x)$ picks largest over all these affine minorizers evaluated at x

Biconjugate and convex envelope

- Biconjugate is closed convex envelope of f

- $f^{* *} \leq f$ and $f^{* *}=f$ if and only if f (closed and) convex

Biconjugate - Example

- Draw the biconjugate of $f(f(x)=\infty$ outside points)

Biconjugate - Example

- Draw the biconjugate of $f(f(x)=\infty$ outside points)

- Biconjugate is convex envelope of f
- We found before $f^{*}(s)=|s|$, and now $\left(f^{*}\right)^{*}(x)=\iota_{[-1,1]}(x)$
- Therefore also $\iota_{[-1,1]}^{*}(s)=|s|$ (since $\left.f^{*}=(\operatorname{env} f)^{*}=\left(f^{* *}\right)^{*}=: f^{* * *}\right)$

Outline

- Conjugate function - Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

Fenchel-Young's inequality

- Going back to conjugate interpretation:

- Fenchel-Youngs's inequality: $f(x) \geq s^{T} x-f^{*}(s)$ for all x, s
- Follows immediately from definition: $f^{*}(s)=\sup _{x}\left(s^{T} x-f(x)\right)$

Fenchel-Young's equality

- When is do we have equality in Fenchel-Young?

$$
f(x)=s^{T} x-f^{*}(s)
$$

- Fenchel-Young's equality and equivalence:

$$
f\left(x^{*}\right)=s^{T} x^{*}-f^{*}(s) \text { holds if and only if } s \in \partial f\left(x^{*}\right)
$$

Proof - Fenchel-Young's equality

$$
f(x)=s^{T} x-f^{*}(s) \text { holds if and only if } s \in \partial f(x)
$$

- $s \in \partial f(x)$ if and only if (by defintion of subgradient)

$$
\begin{array}{rlrl}
& f(y) & \geq f(x)+s^{T}(y-x) \text { for all } y \\
\Leftrightarrow & s^{T} x-f(x) & \geq s^{T} y-f(y) \text { for all } y \\
\Leftrightarrow & s^{T} x-f(x) \geq \sup _{y}\left(s^{T} y-f(y)\right) \\
& \Leftrightarrow & s^{T} x-f(x) \geq f^{*}(s)
\end{array}
$$

which is Fenchel-Young's inequality with inequality reversed

- Fenchel-Young's inequality always holds:

$$
f^{*}(s) \geq s^{T} x-f(x)
$$

so we have equality if and only if $s \in \partial f(x)$

A subdifferential formula for convex f

$$
\text { Assume } f \text { closed convex, then } \partial f(x)=\operatorname{Argmax}_{s}\left(s^{T} x-f^{*}(s)\right)
$$

- Since $f^{* *}=f$, we have $f(x)=\sup _{s}\left(x^{T} s-f^{*}(s)\right)$ and

$$
\begin{aligned}
s^{*} \in \underset{s}{\operatorname{Argmax}}\left(x^{T} s-f^{*}(s)\right) & \Longleftrightarrow f(x)=x^{T} s^{*}-f^{*}\left(s^{*}\right) \\
& \Longleftrightarrow s^{*} \in \partial f(x)
\end{aligned}
$$

- The last equivalence is from previous slide

Subdifferential formulas for f^{*}

- For general f, we have that

$$
\partial f^{*}(s)=\underset{x}{\operatorname{Argmax}}\left(s^{T} x-f^{* *}(x)\right)
$$

by previous formula and since f^{*} closed and convex

- For closed convex f, we have, since $f=f^{* *}$, that

$$
\partial f^{*}(s)=\underset{x}{\operatorname{Argmax}}\left(s^{T} x-f(x)\right)
$$

Relation between ∂f and ∂f^{*} - General case

$$
s \in \partial f(x) \text { implies that } x \in \partial f^{*}(s)
$$

- Since $f^{* *} \leq f$ and $s \in \partial f(x)$, Fenchel-Young's equality gives:

$$
0=f^{*}(s)+f(x)-s^{T} x \geq f^{*}(s)+f^{* *}(x)-s^{T} x \geq 0
$$

where last step is Fenchel-Young's inequality

- Hence $f^{*}(s)+f^{* *}(x)-s^{T} x=0$ and $\mathrm{FY} \Rightarrow x \in \partial f^{*}(s)$

Inverse relation between ∂f and ∂f^{*} - Convex case

Suppose f closed convex, then $s \in \partial f(x) \Longleftrightarrow x \in \partial f^{*}(s)$

- Using implication on previous slide twice and $f^{* *}=f$:

$$
s \in \partial f(x) \Rightarrow x \in \partial f^{*}(s) \Rightarrow s \in \partial f^{* *}(x) \Rightarrow s \in \partial f(x)
$$

- Another way to write the result is that for closed convex f :

$$
\partial f^{*}=(\partial f)^{-1}
$$

(Definition of inverse of set-valued $A: x \in A^{-1} u \Longleftrightarrow u \in A x$)

Example 1 - Relation between ∂f and ∂f^{*}

- What is ∂f^{*} for below ∂f ?

Example 1 - Relation between ∂f and ∂f^{*}

- What is ∂f^{*} for below ∂f ?

- Since $\partial f^{*}=(\partial f)^{-1}$, we flip the figure

Example 2 - Relation between ∂f and ∂f^{*}

- region with slope σ in $\partial f(x) \Leftrightarrow$ region with slope $\frac{1}{\sigma}$ in $\partial f^{*}(s)$
- Implication: $\partial f \sigma$-strong monotone $\Leftrightarrow \partial f^{*}(s) \sigma$-cocoercive? (Recall: σ-cocoercivity $\Leftrightarrow \frac{1}{\sigma}$-Lipschitz and monotone)

Outline

- Conjugate function - Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

Cocoercivity and strong monotonicity

$\partial f: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$ maximal monotone and σ-strongly monotone

$$
\partial f^{*}=\nabla f^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \text { single-valued and } \sigma \text {-cocoercive }
$$

- σ-strong monotonicity: for all $u \in \partial f(x)$ and $v \in \partial f(y)$

$$
\begin{equation*}
(u-v)^{T}(x-y) \geq \sigma\|x-y\|_{2}^{2} \tag{1}
\end{equation*}
$$

or equivalently for all $x \in \partial f^{*}(u)$ and $y \in \partial f^{*}(v)$

- ∂f^{*} is single-valued:
- Assume $x \in \partial f^{*}(u)$ and $y \in \partial f^{*}(u)$, then Ihs of (1) 0 and $x=y$
- ∇f^{*} is σ-cocoercive: plug $x=\nabla f^{*}(u)$ and $y=\nabla f^{*}(v)$ into (1)
- That ∂f^{*} has full domain follows from Minty's theorem

Duality correspondance

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$. Then the following are equivalent:
(i) f is closed and σ-strongly convex
(ii) ∂f is maximally monotone and σ-strongly monotone
(iii) ∇f^{*} is σ-cocoercive
(iv) ∇f^{*} is maximally monotone and $\frac{1}{\sigma}$-Lipschitz continuous
(v) f^{*} is closed convex and satisfies descent lemma (is $\frac{1}{\sigma}$-smooth)
where $\nabla f^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $f^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
Comments:

- (i) \Leftrightarrow (ii) and (iii) \Leftrightarrow (iv) \Leftrightarrow (v): Previous lecture
- (ii) \Leftrightarrow (iii): This lecture
- Since $f=f^{* *}$ the result holds with f and f^{*} interchanged
- Full proof available on course webpage

Example - Proximal operator is 1-cocoercive

Assume g closed convex, then $\operatorname{prox}_{\gamma g}$ is 1-cocoercive

- Prox definition $\operatorname{prox}_{\gamma g}(z)=\operatorname{argmin}_{x}\left(g(x)+\frac{1}{2 \gamma}\|x-z\|_{2}^{2}\right)$
- Let $r=\gamma g+\frac{1}{2}\|\cdot\|_{2}^{2}$, then

$$
\begin{aligned}
\operatorname{prox}_{\gamma g}(z) & =\underset{x}{\operatorname{argmin}}\left(g(x)+\frac{1}{2 \gamma}\|x-z\|_{2}^{2}\right) \\
& =\underset{x}{\operatorname{argmax}}\left(-\gamma g(x)-\frac{1}{2}\|x-z\|_{2}^{2}\right) \\
& =\underset{x}{\operatorname{argmax}}\left(z^{T} x-\left(\frac{1}{2}\|x\|_{2}^{2}+\gamma g(x)\right)\right) \\
& =\underset{x}{\operatorname{argmax}}\left(z^{T} x-r(x)\right) \\
& =\nabla r^{*}(z)
\end{aligned}
$$

where last step is subdifferential formula for r^{*} for convex r

- Now, r is 1 -strongly convex and $\nabla r^{*}=\operatorname{prox}_{\gamma g}$ is 1 -cocoercive

Example - Proximal operator for strongly convex g

Assume g is σ-strongly convex, then $\operatorname{prox}_{\gamma g}$ is $(1+\gamma \sigma)$-cocoercive

- Let $r=\gamma g+\frac{1}{2}\|\cdot\|_{2}^{2}$, and use $\operatorname{prox}_{\gamma g}(z)=\nabla r^{*}(z)$
- r is $(1+\gamma \sigma)$-strongly convex and ∇r^{*} is $(1+\gamma \sigma)$-cocoercive

Outline

- Conjugate function - Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

Moreau decomposition - Statement

Assume g closed convex, then $\operatorname{prox}_{g}(z)+\operatorname{prox}_{g^{*}}(z)=z$

- When g scaled by $\gamma>0$, Moreau decomposition is

$$
\begin{aligned}
& z=\operatorname{prox}_{\gamma g}(z)+\operatorname{prox}_{(\gamma g)^{*}}(z)=\operatorname{prox}_{\gamma g}(z)+\gamma \operatorname{prox}_{\gamma^{-1} g^{*}}\left(\gamma^{-1} z\right) \\
& \left(\text { since } \operatorname{prox}_{(\gamma g)^{*}}=\gamma \operatorname{prox}_{\gamma^{-1} g^{*}} \circ \gamma^{-1} \mathrm{Id}\right)
\end{aligned}
$$

- Don't need to know g^{*} to compute $\operatorname{prox}_{\gamma g^{*}}$

Moreau decomposition - Proof

- Let $u=z-x$
- Fermat's rule: $x=\operatorname{prox}_{g}(z)$ if and only if

$$
\begin{array}{rll}
0 \in \partial g(x)+x-z & \Leftrightarrow & z-x \in \partial g(x) \\
& \Leftrightarrow & u \in \partial g(x) \\
& \Leftrightarrow & x \in \partial g^{*}(u) \\
& \Leftrightarrow & z-u \in \partial g^{*}(u) \\
& \Leftrightarrow & 0 \in \partial g^{*}(u)+u-z
\end{array}
$$

if and only if $u=\operatorname{prox}_{g^{*}}(z)$ by Fermat's rule

- Using $z=x+u$, we get

$$
z=x+u=\operatorname{prox}_{g}(z)+\operatorname{prox}_{g^{*}}(z)
$$

Optimality Conditions and Duality

Outline

- Conjugate function - Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

Composite optimization problem

- Consider primal composite optimization problem

$$
\operatorname{minimize} f(L x)+g(x)
$$

where f, g closed convex and L is a matrix

- We will derive primal-dual optimality conditions and dual problem

Primal optimality condition

$$
\begin{aligned}
& \text { Let } f: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}, g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}, L \in \mathbb{R}^{m \times n} \text { with } f, g \text { closed convex } \\
& \\
& \text { and assume } C Q \text {, then: } \\
& \\
& \text { minimize } f(L x)+g(x) \\
& \text { is solved by } x^{\star} \in \mathbb{R}^{n} \text { if and only if } x^{\star} \text { satisfies } \\
& 0 \\
& 0
\end{aligned}
$$

- Optimality condition implies that vector s exists such that

$$
s \in L^{T} \partial f\left(L x^{\star}\right) \quad \text { and } \quad-s \in \partial g\left(x^{\star}\right)
$$

- So CQ implies a subgradient exists for both functions at solution

Primal-dual optimality condition 1

- Introduce dual variable $\mu \in \partial f(L x)$, then optimality condition

$$
0 \in L^{T} \underbrace{\partial f(L x)}_{\mu}+\partial g(x)
$$

is equivalent to

$$
\begin{aligned}
\mu & \in \partial f(L x) \\
-L^{T} \mu & \in \partial g(x)
\end{aligned}
$$

- This is a necessary and sufficient primal-dual optimality condition
- (Primal-dual since involves primal x and dual μ variables)

Primal-dual optimality condition 2

- Primal-dual optimality condition

$$
\begin{aligned}
\mu & \in \partial f(L x) \\
-L^{T} \mu & \in \partial g(x)
\end{aligned}
$$

- Using subdifferential inverse:

$$
\mu \in \partial f(L x) \quad \Longleftrightarrow \quad L x \in \partial f^{*}(\mu)
$$

gives equivalent primal dual optimality condition

$$
\begin{aligned}
L x & \in \partial f^{*}(\mu) \\
-L^{T} \mu & \in \partial g(x)
\end{aligned}
$$

Dual optimality condition

- Using subdifferential inverse on other condition

$$
-L^{T} \mu \in \partial g(x) \quad \Longleftrightarrow \quad x \in \partial g^{*}\left(-L^{T} \mu\right)
$$

gives equivalent primal dual optimality condition

$$
\begin{aligned}
& L x \in \partial f^{*}(\mu) \\
& x \in \partial g^{*}\left(-L^{T} \mu\right)
\end{aligned}
$$

- This is equivalent to that:

$$
0 \in \partial f^{*}(\mu)-L \underbrace{\partial g^{*}\left(-L^{T} \mu\right)}_{x}
$$

which is a dual optimality condition since it involves only μ

Dual problem

- The dual optimality condition

$$
0 \in \partial f^{*}(\mu)-L \partial g^{*}\left(-L^{T} \mu\right)
$$

is a sufficient condition for solving the dual problem

$$
\operatorname{minimize} f^{*}(\mu)+g^{*}\left(-L^{T} \mu\right)
$$

- Have also necessity under CQ on dual, which is mild

Why dual problem?

- Sometimes easier to solve than primal
- Only useful if primal solution can be obtained from dual

Solving primal from dual

- Assume f, g closed convex and CQ holds
- Assume optimal dual μ known: $0 \in \partial f^{*}(\mu)-L \partial g^{*}\left(-L^{T} \mu\right)$
- Optimal primal x must satisfy any and all primal-dual conditions:

$$
\begin{array}{ll}
\begin{cases}\mu \in \partial f(L x) \\
-L^{T} \mu \in \partial g(x)\end{cases} & \left\{\begin{array}{l}
L x \in \partial f^{*}(\mu) \\
-L^{*} \mu \in \partial g(x)
\end{array}\right. \\
\left\{\begin{array}{l}
\mu \in \partial f(L x) \\
x \in \partial g^{*}\left(-L^{T} \mu\right)
\end{array}\right. & \left\{\begin{array}{l}
L x \in \partial f^{*}(\mu) \\
x \in \partial g^{*}\left(-L^{T} \mu\right)
\end{array}\right.
\end{array}
$$

- If one of these uniquely characterizes x, then must be solution:
- g^{*} is differentiable at $-L^{T} \mu$ for dual solution μ
- f^{*} is differentiable at dual solution μ and L invertible
- ...

Optimality conditions - Summary

- Assume f, g closed convex and that CQ holds
- Problem $\min _{x} f(L x)+g(x)$ is solved by x if and only if

$$
0 \in L^{T} \partial f(L x)+\partial g(x)
$$

- Primal dual necessary and sufficient optimality conditions:

$$
\begin{array}{ll}
\begin{cases}\mu \in \partial f(L x) \\
-L^{T} \mu \in \partial g(x)\end{cases} & \left\{\begin{array}{l}
L x \in \partial f^{*}(\mu) \\
-L^{T} \mu \in \partial g(x)
\end{array}\right. \\
\left\{\begin{array}{l}
\mu \in \partial f(L x) \\
x \in \partial g^{*}\left(-L^{T} \mu\right)
\end{array}\right. & \left\{\begin{array}{l}
L x \in \partial f^{*}(\mu) \\
x \in \partial g^{*}\left(-L^{T} \mu\right)
\end{array}\right.
\end{array}
$$

- Dual optimality condition

$$
0 \in \partial f^{*}(\mu)-L \partial g^{*}\left(-L^{T} \mu\right)
$$

solves dual problem $\min _{\mu} f^{*}(\mu)+g^{*}\left(-L^{T} \mu\right)$

Outline

- Conjugate function - Definition and basic properties
- Examples
- Biconjugate
- Fenchel-Young's inequality
- Duality correspondence
- Moreau decomposition
- Duality and optimality conditions
- Weak and strong duality

Concave dual problem

- We have defined dual as convex minimization problem

$$
\underset{\mu}{\operatorname{minimize}} f^{*}(\mu)+g^{*}\left(-L^{T} \mu\right)
$$

- Dual problem can be written as concave maximization problem:

$$
\underset{\mu}{\operatorname{maximize}}-f^{*}(\mu)-g^{*}\left(-L^{T} \mu\right)
$$

- Same solutions but optimal values minus of each other
- Concave formulation gives nicer optimal value comparisons
- To compare, we let the primal and dual optimal values be

$$
p^{\star}=\inf _{x}(f(L x)+g(x)) \quad \text { and } \quad d^{\star}=\sup _{\mu}\left(-f^{*}(\mu)-g^{*}\left(-L^{T} \mu\right)\right)
$$

Weak duality

Weak duality always holds meaning $p^{\star} \geq d^{\star}$

- We have by Fenchel-Young's inequality for all μ and x :

$$
\begin{aligned}
f^{*}(\mu)+g^{*}\left(-L^{T} \mu\right) & \geq \mu^{T} L x-f(L x)+\left(-L^{T} \mu\right)^{T} x-g(x) \\
& =-f(L x)-g(x)
\end{aligned}
$$

- Negate, maximize lhs over μ, minimize rhs over x, to get

$$
d^{\star}=\sup _{\mu}\left(-f^{*}(\mu)-g^{*}\left(-L^{T} \mu\right)\right) \leq \inf _{x}(f(L x)+g(x))=p^{\star}
$$

Strong duality

Assume f, g closed convex, solution x^{\star} exists, and CQ then strong duality holds meaning $p^{\star}=d^{\star}$

- Dual μ^{\star} and primal x^{\star} solutions exist such that

$$
\mu^{\star} \in \partial f\left(L x^{\star}\right) \quad \text { and } \quad-L^{T} \mu^{\star} \in \partial g\left(x^{\star}\right)
$$

- We have by Fenchel-Young's equality:

$$
\begin{aligned}
p^{\star} & =f\left(L x^{\star}\right)+g\left(x^{\star}\right) \\
& =\left(\mu^{\star}\right)^{T} L x^{\star}-f^{*}\left(\mu^{\star}\right)+\left(-L^{T} \mu^{\star}\right)^{T} x^{\star}-g^{*}\left(-L^{T} \mu^{\star}\right) \\
& =-f^{*}\left(\mu^{\star}\right)-g^{*}\left(-L^{T} \mu^{\star}\right)=d^{\star}
\end{aligned}
$$

Dual problem gives lower bound

- Consider again concave dual problem with optimal value

$$
d^{\star}=\sup _{\mu}\left(-f^{*}(\mu)-g^{*}\left(-L^{T} \mu\right)\right)
$$

- We know that for all dual variables μ

$$
p^{\star} \geq d^{\star} \geq-f^{*}(\mu)-g^{*}\left(-L^{T} \mu\right)
$$

- So can find lower bound to p^{\star} by evaluating dual objective

