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What is an algorithm?

® We are interested in algorithms that solve composite problems
minimize f(z) + g(z)
xr

® An algorithm:

® generates a sequence (zx)ken that hopefully converges to solution
® often creates next point in sequence according to

Trt1 = Arxr

where

® Ay is a mapping that gives the next point from the current

® Ay =prox,, ,(I — vV [) for proximal gradient method



Deterministic and stochastic algorithms

® \We have deterministic algorithms
Tpy1 = ApTp

that given initial zo will give the same sequence (2)ken
® We will also see stochastic algorithms that iterate

Try1 = Ak(&e)zr

where &, is a random variable that also decides the mapping

® (z1)ken is a stochastic process, i.e., collection of random variables
® when running the algorithm, we evaluate &, and get a realization
® different realization (zx)ren every time even if started at same xo

® Stochastic algorithms useful although problem is deterministic



Optimization algorithm overview

® Algorithms can roughly be divided into the following classes:

® Second-order methods

® Quasi second-order methods

® First-order methods

® Stochastic and coordinate-wise first-order methods

® The first three are typically deterministic and the last stochastic

® Cost of computing one iteration decreases down the list



Second-order methods

Solves problems using second-order (Hessian) information
Requires smooth (twice continuously differentiable) functions

Example: Newton's method to minimize smooth function f:

Tri1 =z — Ye(V2 f(2k) TV f ()

Constraints can be incorporated via barrier functions:

® Use sequence of smooth constraint barrier functions

® Make barriers increasingly well approximate constraint set

For each barrier, solve smooth problem using Newton's method
Resulting scheme called interior point method

(Can be applied to directly solve primal-dual optimality condition)

Computational backbone: solving linear systems O(n?)
Often restricted to small to medium scale problems
We will cover Newton's method



Quasi second-order methods

Estimates second-order information from first-order
Solves problems using estimated second-order information
Requires smooth (twice continuously differentiable) functions

Quasi-Newton method for smooth f

Try1 = Tk — RBeV f(21)

where By, is:

® estimate of Hessian inverse (not Hessian to avoid inverse)
® cheaply computed from gradient information

Computational backbone: forming By, and matrix multiplication
Limited memory versions exist with cheaper iterations

Can solve large-scale smooth problems

Will briefly look into most common method (BFGS)



First-order methods

Solves problems using first-order (sub-gradient) information
e Computational primitives: (sub)gradients and proximal operators

® Use gradient if function differentiable, prox if nondifferentiable

Examples for solving minixmize flx) + g(x)
® Proximal gradient method (requires smooth f since gradient used)
Ti41 = prox, (vx — vV f(2k))
® Douglas-Rachford splitting (no smoothness requirement)
Zhtl = 22k + %(Qproxw —I)(2prox, ; — I)zy

and zj = prox, ;(zx) converges to solution
® |teration often cheaper than second-order if function split wisely
® (Can solve large-scale problems

® Will look at proximal gradient method and accelerated version



Stochastic and coordinate-wise first-order methods

® Sometimes first-order methods computationally too expensive
® Stochastic gradient methods:

® Use stochastic approximation of gradient

® For finite sum problems, cheaply computed approximation exists
® Coordinate-wise updates:

® Update only one (or block of) coordinates in every iteration:

® via direct minimization
® via proximal gradient step

® Can update coordinates in cyclic fashion
® Stronger convergence results if random selection of block
® Efficient if cost of updating one coordinate is 1/n of full update

® (Can solve huge scale problems

® Will cover randomized coordinate and stochastic methods
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Types of convergence

Let =* be solution to composite problem and p* = f(z*) + g(z*)
We will see convergence of different quantities in different settings
For deterministic algorithms that generate (zx)ren, we will see

® Sequence convergence: Ty — T

® Function value convergence: f(zx) + g(zx) — p*
® |f g =0, gradient norm convergence: |V f(zx)||2 = 0

Convergence is stronger as we go up the list

First two common in convex setting, last in nonconvex
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Convergence for stochastic algorithms

Stochastic algorithms described by stochastic process (zy)ren

When algorithm is run, we get realization of stochastic process

We analyze stochastic process and will see summability, e.g., of:

® Expected distance to solution: >_;2 ( E[||zx — 2*||2] < oo
® Expected function value: Y77 E[f(zx) + g(zx) — p*] < 00
® If g =0, expected gradient norm: > oo (E[||V f(zx)[3] < oo

Sometimes arrive at weaker conclusion, when g = 0, that, e.g.,:
® Expected smallest function value: E[ min f(z;) —p*] = 0

1€{0,...,k}
® Expected smallest gradient norm: E[le{rglink} IV f(z)|l2] — 0

Says what happens with expected value of different quantities
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Algorithm realizations — Summable case

¢ Will conclude that sequence of expected values containing, e.g.,:

Elllze —a*l2] or E[f(xr) +g(xr) —p'] or E[|Vf(zk)ll2]

is summable, where all quantities are nonnegative
® What happens with the actual algorithm realizations?

® \We can make conclusions by the following result: If

® (Zy)ken is a stochastic process with Z, > 0
® the sequence {E[Zx]}ren is summable: >°7° (E[Zx] < oo

then almost sure convergence to O:

P(lim Z, =0) =1

k—o0

i.e., convergence to 0 with probability 1
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Algorithm realizations — Convergent case

® Will conclude that sequence of expected values containing, e.g.,:

E[ min ) —p* or E[ min ||Vf(z
omin, fe)—p] or E[_min[Vf(a)]:
converges to 0, where all quantities are nonnegative
® What happens with the actual algorithm realizations?
® We can make conclusions by the following result: If

® (Zy)ken is a stochastic process with Z, > 0
® the expected value E[Zx] — 0 as k — o0

then convergence to 0 in probability; for all € > 0
lim P(Zx >¢)=0
k—o0

which is weaker than almost sure convergence to 0
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Convergence rates

We have only talked about convergence, not convergence rate
Rates indicate how fast (in iterations) algorithm reaches solution
Typically divided into:

® Sublinear rates

® Linear rates (also called geometric rates)
® Quadratic rates (or more generally superlinear rates)

Sublinear rates slowest, quadratic rates fastest
Linear rates further divided into Q-linear and R-linear
Quaderatic rates further divided into Q-quadratic and R-quadratic
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Linear rates

A Q-linear rate with factor p € [0,1) can be:

f@ri1) + 9(@rgr) — p* < p(f(xr) + g(zr) — p*)
Ellzkr1 — 2*[|2] < pE[[|lzx, — 2|2

An R-linear rate with factor p € [0,1) and some C > 0 can be:

lz — 2|2 < p*C

this is implied by Q-linear rate and has exponential decrease
Linear rate is superlinear if p = pi and pr — 0 as k — oo
Examples:

(Accelerated) proximal gradient with strongly convex cost
Randomized coordinate descent with strongly convex cost
BFGS has local superlinear with strongly convex cost

but SGD with strongly convex cost gives sublinear rate
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Linear rates — Comparison

® Different rates in log-lin plot
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® (Called linear rate since linear in log-lin plot
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Quadratic rates

Q-quadratic rate with factor p € [0,1) can be:

F@rsn) + g(zrsn) = p* < p(f(an) + g(zx) —p*)?
k1 = 2*[l2 < pllw — 2*I3

R-quadratic rate with factor p € [0,1) and some C' > 0 can be:
ok — a2 < p*'C

Quadratic (pzk) vs linear (p*) rate with factor p = 0.9:

Quadratic Linear
1.0(1)0000088000 1.080000000000
0836009949000 (270000000000
0.1113%)465133000 0.%2980002g000
0033382007000 (880900003000
0.001179017030 0.531440964000
0.00000139008 1 0.478296936000
0.000000000002 0.430467270000

Example: Locally for Newton's method with strongly convex cost
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Quadratic rates — Comparison

® Different rates in log-lin scale

10°
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® Quadratic convergence is superlinear
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p=0093
— p=0.90
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Sublinear rates

® A rate is sublinear if it is slower than linear

® A sublinear rate can, for instance, be of the form

IN
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where C > 0 and v decides how fast it decreases, e.g.,

(k) = log k: Stochastic gradient descent v, = ¢/k

(k) = V/k: Stochastic gradient descent: optimal

(k) = k: Proximal gradient, coordinate proximal gradient
d w( ) = k?: Accelerated proximal gradient method

with improved rate further down the list
® We say that the rate is O( ) for the different 1

® To be sublinear ¢ has slower than exponential growth
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Sublinear rates — Comparison

® Different rates on log-lin scale
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® Many iterations may be needed for high accuracy
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Rate vs iteration cost

Consider these classes of algorithms

® Second-order methods

® Quasi second-order methods

® First-order methods

® Stochastic and coordinate-wise first-order methods

Rate deteriorates and iterations increase as we go down the list |}
Iteration cost increases as we go up the list f

Performance is roughly (# iterations)x (iteration cost)

This gives a tradeoff when selecting algorithm

Rough advise for problem size: small (1) medium (f{}) large ({})
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Proving convergence rates

® To prove a convergence rate typically requires

® Using inequalities that describe problem class
® Using algorithm definition equalities (or inclusions)
® Combine these to a form so that convergence can be concluded

® Linear and quadratic rates proofs conceptually straightforward

® Sublinear rates implicit via a Lyapunov inequality
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Proving linear or quadratic rates

® |f we suspect linear or quadratic convergence for Vi, > 0:
Vierr < pVy!
where p € [0,1) and p=1 or p =2 and V}, can, e.g., be
Vi =llze —a*ll2 or Vi = f(ar) +g(xp) —p" or Vi =|[IVf(zi)l2

® Can prove by starting with Vi1 (or Vi2,;) and continue using

® function class inequalities
® algorithm equalities

® propeties of norms
[ ]
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Sublinear convergence — Lyapunov inequality

® Assume we want to show sublinear convergence of some Ry > 0

® This typically requires finding a Lyapunov inequality:
Virr < Vi + Wy — Ry,

where
® (Vi)ken, (Wi)ken, and (Ry)ken are nonnegative real numbers

® (Wk)ken is summable, i.e.,, W =372 Wi < 00
® Such a Lyapunov inequality can be found by using

® function class inequalities
® algorithm equalities

® propeties of norms
[ ]



Lyapunov inequality consequences

® From the Lyapunov inequality:
Vierr < Vi + Wy — Ry,

we can conclude that
® V} is nonincreasing if all W, =0
® V, converges as k — oo (will not prove)
® Recursively applying the inequality for [ € {k,...,0} gives
k k k
Vir1 < Vo+ZWl —ZRz <Vo+W — ZRZ
1=0 1=0 1=0

where W is infinite sum of Wy, this implies

k k k
S R<Vo—Vipr+> Wi<Vo+ > Wi <Vo+W

=0 =0 =0

from which we can
® conclude that Ry — 0 as k — oo since Ry > 0
® derive sublinear rates of convergence for R towards 0
27



Concluding sublinear convergence

® | yapunov inequality consequence restated

k k
ZR1§V0+ZW1§V0+W

1=0 =0

® \We can derive sublinear convergence for
® Best Ry: (k+ 1) mineqo,.. xy R < Zf:o R
® Last Ry, (if Ry decreasing): (k+1)R, < 31 Ry
* Average Ry: Ry = 117 S R

e Let Ry be any of these quantities, and we have

& _
Rk < Zl:oRl < o+ W
k+1 k+1

which shows a O(1/k) sublinear convergence
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Deriving other than O(1/k) convergence (1/3)

® Other rates can be derived from a modified Lyapunov inequality:
Vi1 < Vi + Wi — ARy

with A > 0 when we are interested in convergence of Ry, then

k k
DNR S VoY Wi<Vo+ W
1=0 =0

® We have R, — 0 as k — oo if, e.g., Y, g A\ = o0
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Deriving other than O(1/k) convergence (2/3)

® Restating the consequence: Zf:o MR < Vo+W

® \We can derive sublinear convergence for
® Best Ry: minle{ow,k} R; Z;C:O A < 27:0 MRy
® Last Ry (if Ry decreasing): Ry Y ) oM < S o MR
® Weighted average Ry: Ry = fm S MR

e Let Ry be any of these quantities, and we have

Ry Zl oRl VO+W
Zz —0A Zl 0
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Deriving other than O(1/k) convergence (3/3)

® How to get a rate out of:
. Vo+ W
R < S
leo Al

® Assume (k) < Zf:() Ar, then 9 (k) decides rate:

Zz oRl Vo +W
Ry < <
Yioh — W(R)

which gives a O(ﬁ) rate

® If A\ = cis constant: ¥ (k) = c¢(k + 1) and we have O(1/k) rate
® If Ay is decreasing: slower rate than O(1/k)
® If A is increasing: faster rate than O(1/k)
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Estimating ¢ via integrals

® Assume that A\ = ¢(k), then (k) < Z;C:o @(1) and

Z[ oRl < VO+W
Zz od(D) — (k)

® To estimate 1, we use the integral inequalities
® for decreasing nonnegative ¢:

k

k
[ ot + o0 <o < [ otar+ o0

® for increasing nonnegative ¢:

k k
¢ )dt + ¢(0 Z /O o(t)dt + p(k)

t=0

® Remove ¢(k), $(0) > 0 from the lower bounds and use estimate:

k k
= o<y o)
t=0 1=0
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Sublinear rate examples

® For Lyapunov inequality Vi1 < Vi + Wy — ARy, we get:

R < V(;}_(’_kfv where A = ¢(k) and Y(k / o(t)

® | et us quantify the rate ¥ in a few examples:
® Two examples that are slower than O(1/k):
® )\, =¢(k)=c/(k+1) gives slow O(ﬁ) rate:
k
P(k) = / tidt = cflog(t + 1)]¥_y = clog(k + 1)
ot+1
® )\, =¢(k)=c/(k+1)* for « € (0,1), gives faster O(kl%a) rate:
k c 1—a

_ _ D) ko
v = [ ot = el e =

® An example that is faster than O(1/k)
® A\ = ¢(k) = c(k + 1) gives O(k%) rate:

e (k+ 17 =1

k
wuc):/t el D)t = e3¢+ 1) = $(h+ D - )
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Stochastic setting and law of total expectation

In the stochastic setting, we analyze the stochastic process
Trr1 = A (§k) Tk
We will look for inequalities of the form
E[Vit1 k] < E[Vi|zi] + E[Wi|wr] — AE[Ry|k]

to see what happens in one step given xj (but not given &)
We use law of total expectation E[E[X|Y]] = E[X] to get

E[Vit1] < E[Vi] + E[Wi] — AvE[Ry]

which is a Lyapunov inequality
We can draw rate conclusions, as we did before, now for E[Ry]
For realizations we can say:

® If E[Ry] is summable, then Rx — 0 almost surely
® |f E[Rx] — 0, then Ry — 0 in probability
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Rates in stochastic setting

Lyapunov inequality E[Vj41] < E[Vi] + E[Wi] — A E[Ry] implies:

k )
S OANER] < Vo+ Y EW] < Vo+ W
=0 =0

Same procedure as before gives sublinear rates for
® Best E[Ry]: minieqo,. ) E[R] Yo M < zfzo MNE[R)]
® Last E[Ry] (if E[Rk] decreasing) E[Rk} S oM < 5 ME[R)]
® Weighted average: E[Ry] = E’“ = Zz o ME[RI]

Jensen's inequality for concave min; in best residual reads

E[ min R < min E[R]
le{o,....k} 1€{0,...,k}

Let Ry, be any of the above quantities, and we have
Vo+ W

H = ey
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