Algorithms and Convergence

Pontus Giselsson

Outline

- Algorithm overview
- Convergence and convergence rates
- Proving convergence rates

What is an algorithm?

We are interested in algorithms that solve composite problems

$$\underset{x}{\text{minimize}} f(x) + g(x)$$

- An algorithm:
 - generates a sequence $(x_k)_{k\in\mathbb{N}}$ that hopefully converges to solution
 - often creates next point in sequence according to

$$x_{k+1} = \mathcal{A}_k x_k$$

where

- ullet \mathcal{A}_k is a mapping that gives the next point from the current
- $\mathcal{A}_k = \operatorname{prox}_{\gamma_k g}(I \gamma_k \nabla f)$ for proximal gradient method

Deterministic and stochastic algorithms

We have deterministic algorithms

$$x_{k+1} = \mathcal{A}_k x_k$$

that given initial x_0 will give the same sequence $(x_k)_{k\in\mathbb{N}}$

We will also see stochastic algorithms that iterate

$$x_{k+1} = \mathcal{A}_k(\xi_k)x_k$$

where ξ_k is a random variable that also decides the mapping

- $(x_k)_{k\in\mathbb{N}}$ is a stochastic process, i.e., collection of random variables
- ullet when running the algorithm, we evaluate ξ_k and get a realization
- different realization $(x_k)_{k\in\mathbb{N}}$ every time even if started at same x_0
- Stochastic algorithms useful although problem is deterministic

Optimization algorithm overview

- Algorithms can roughly be divided into the following classes:
 - Second-order methods
 - Quasi second-order methods
 - First-order methods
 - Stochastic and coordinate-wise first-order methods
- The first three are typically deterministic and the last stochastic
- Cost of computing one iteration decreases down the list

Second-order methods

- Solves problems using second-order (Hessian) information
- Requires smooth (twice continuously differentiable) functions
- Example: Newton's method to minimize smooth function *f*:

$$x_{k+1} = x_k - \gamma_k (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

- Constraints can be incorporated via barrier functions:
 - Use sequence of smooth constraint barrier functions
 - Make barriers increasingly well approximate constraint set
 - For each barrier, solve smooth problem using Newton's method
 - Resulting scheme called interior point method
 - (Can be applied to directly solve primal-dual optimality condition)
- Computational backbone: solving linear systems $O(n^3)$
- Often restricted to small to medium scale problems
- We will cover Newton's method

Quasi second-order methods

- Estimates second-order information from first-order
- Solves problems using estimated second-order information
- Requires smooth (twice continuously differentiable) functions
- Quasi-Newton method for smooth f

$$x_{k+1} = x_k - \gamma_k B_k \nabla f(x_k)$$

where B_k is:

- estimate of Hessian inverse (not Hessian to avoid inverse)
- cheaply computed from gradient information
- ullet Computational backbone: forming B_k and matrix multiplication
- Limited memory versions exist with cheaper iterations
- Can solve large-scale smooth problems
- Will briefly look into most common method (BFGS)

First-order methods

- Solves problems using first-order (sub-gradient) information
- Computational primitives: (sub)gradients and proximal operators
- Use gradient if function differentiable, prox if nondifferentiable
- Examples for solving minimize f(x) + g(x)
 - ullet Proximal gradient method (requires smooth f since gradient used)

$$x_{k+1} = \operatorname{prox}_{\gamma g}(x_k - \gamma \nabla f(x_k))$$

Douglas-Rachford splitting (no smoothness requirement)

$$z_{k+1} = \frac{1}{2}z_k + \frac{1}{2}(2\text{prox}_{\gamma g} - I)(2\text{prox}_{\gamma f} - I)z_k$$

and $x_k = \operatorname{prox}_{\gamma f}(z_k)$ converges to solution

- Iteration often cheaper than second-order if function split wisely
- Can solve large-scale problems
- Will look at proximal gradient method and accelerated version

Stochastic and coordinate-wise first-order methods

- Sometimes first-order methods computationally too expensive
- Stochastic gradient methods:
 - Use stochastic approximation of gradient
 - For finite sum problems, cheaply computed approximation exists
- Coordinate-wise updates:
 - Update only one (or block of) coordinates in every iteration:
 - · via direct minimization
 - via proximal gradient step
 - Can update coordinates in cyclic fashion
 - Stronger convergence results if random selection of block
 - ullet Efficient if cost of updating one coordinate is 1/n of full update
- Can solve huge scale problems
- Will cover randomized coordinate and stochastic methods

Outline

- Algorithm overview
- Convergence and convergence rates
- Proving convergence rates

Types of convergence

- Let x^{\star} be solution to composite problem and $p^{\star} = f(x^{\star}) + g(x^{\star})$
- We will see convergence of different quantities in different settings
- For deterministic algorithms that generate $(x_k)_{k\in\mathbb{N}}$, we will see
 - Sequence convergence: $x_k \to x^*$
 - Function value convergence: $f(x_k) + g(x_k) \to p^*$
 - If g=0, gradient norm convergence: $\|\nabla f(x_k)\|_2 \to 0$
- Convergence is stronger as we go up the list
- First two common in convex setting, last in nonconvex

Convergence for stochastic algorithms

- Stochastic algorithms described by stochastic process $(x_k)_{k\in\mathbb{N}}$
- When algorithm is run, we get realization of stochastic process
- We analyze stochastic process and will see summability, e.g., of:
 - Expected distance to solution: $\sum_{k=0}^{\infty} \mathbb{E}[\|x_k x^*\|_2] < \infty$
 - Expected function value: $\sum_{k=0}^{\infty} \mathbb{E}[f(x_k) + g(x_k) p^*] < \infty$
 - If g=0, expected gradient norm: $\sum_{k=0}^{\infty} \mathbb{E}[\|\nabla f(x_k)\|_2^2] < \infty$
- Sometimes arrive at weaker conclusion, when g=0, that, e.g.,:
 - Expected smallest function value: $\mathbb{E}[\min_{l \in \{0,...,k\}} f(x_l) p^*] \to 0$
 - Expected smallest gradient norm: $\mathbb{E}[\min_{l \in \{0,...,k\}} \|\nabla f(x_l)\|_2] \to 0$
- Says what happens with expected value of different quantities

Algorithm realizations – Summable case

Will conclude that sequence of expected values containing, e.g.,:

$$\mathbb{E}[\|x_k - x^\star\|_2] \quad \text{or} \quad \mathbb{E}[f(x_k) + g(x_k) - p^\star] \quad \text{or} \quad \mathbb{E}[\|\nabla f(x_k)\|_2]$$

is summable, where all quantities are nonnegative

- What happens with the actual algorithm realizations?
- We can make conclusions by the following result: If
 - $(Z_k)_{k\in\mathbb{N}}$ is a stochastic process with $Z_k\geq 0$
 - ullet the sequence $\{\mathbb{E}[Z_k]\}_{k\in\mathbb{N}}$ is summable: $\sum_{k=0}^\infty \mathbb{E}[Z_k] < \infty$

then almost sure convergence to 0:

$$P(\lim_{k \to \infty} Z_k = 0) = 1$$

i.e., convergence to 0 with probability 1

Algorithm realizations - Convergent case

Will conclude that sequence of expected values containing, e.g.,:

$$\mathbb{E}[\min_{l \in \{0,\dots,k\}} f(x_l) - p^\star] \quad \text{or} \quad \mathbb{E}[\min_{l \in \{0,\dots,k\}} \|\nabla f(x_l)\|_2]$$

converges to 0, where all quantities are nonnegative

- What happens with the actual algorithm realizations?
- We can make conclusions by the following result: If
 - $(Z_k)_{k\in\mathbb{N}}$ is a stochastic process with $Z_k\geq 0$
 - the expected value $\mathbb{E}[Z_k] \to 0$ as $k \to \infty$

then convergence to 0 in probability; for all $\epsilon > 0$

$$\lim_{k \to \infty} P(Z_k > \epsilon) = 0$$

which is weaker than almost sure convergence to 0

Convergence rates

- We have only talked about convergence, not convergence rate
- Rates indicate how fast (in iterations) algorithm reaches solution
- Typically divided into:
 - Sublinear rates
 - Linear rates (also called geometric rates)
 - Quadratic rates (or more generally superlinear rates)
- Sublinear rates slowest, quadratic rates fastest
- Linear rates further divided into Q-linear and R-linear
- Quadratic rates further divided into Q-quadratic and R-quadratic

Linear rates

• A Q-linear rate with factor $\rho \in [0,1)$ can be:

$$f(x_{k+1}) + g(x_{k+1}) - p^* \le \rho(f(x_k) + g(x_k) - p^*)$$

$$\mathbb{E}[\|x_{k+1} - x^*\|_2] \le \rho \mathbb{E}[\|x_k - x^*\|_2]$$

• An R-linear rate with factor $\rho \in [0,1)$ and some C>0 can be:

$$||x_k - x^\star||_2 \le \rho^k C$$

this is implied by Q-linear rate and has exponential decrease

- Linear rate is superlinear if $\rho = \rho_k$ and $\rho_k \to 0$ as $k \to \infty$
- Examples:
 - (Accelerated) proximal gradient with strongly convex cost
 - · Randomized coordinate descent with strongly convex cost
 - BFGS has local superlinear with strongly convex cost
 - but SGD with strongly convex cost gives sublinear rate

Linear rates – Comparison

• Different rates in log-lin plot

• Called linear rate since linear in log-lin plot

Quadratic rates

• Q-quadratic rate with factor $\rho \in [0,1)$ can be:

$$f(x_{k+1}) + g(x_{k+1}) - p^* \le \rho (f(x_k) + g(x_k) - p^*)^2$$
$$||x_{k+1} - x^*||_2 \le \rho ||x - x^*||_2^2$$

• R-quadratic rate with factor $\rho \in [0,1)$ and some C>0 can be:

$$||x_k - x^\star||_2 \le \rho^{2^k} C$$

• Quadratic (ρ^{2^k}) vs linear (ρ^k) rate with factor $\rho = 0.9$:

Quadratic
1.0000000000000
0.810000000000
0.656099945000
0.430467133000
0.185302002000
0.034336821000
0.001179017030
0.000001390081
0.0000000000002

Linear
1.0000000000000
0.8100000000000000000000000000000000000
0.590490005000 0.531440964000
$0.478296936000 \\ 0.430467270000$

• Example: Locally for Newton's method with strongly convex cost

Quadratic rates - Comparison

• Different rates in log-lin scale

• Quadratic convergence is superlinear

Sublinear rates

- A rate is sublinear if it is slower than linear
- A sublinear rate can, for instance, be of the form

$$f(x_k) + g(x_k) - p^* \le \frac{C}{\psi(k)}$$
$$\|x_{k+1} - x_k\|_2^2 \le \frac{C}{\psi(k)}$$
$$\min_{l=0,\dots,k} \mathbb{E}[\|\nabla f(x_l)\|_2^2] \le \frac{C}{\psi(k)}$$

where C>0 and ψ decides how fast it decreases, e.g.,

- $\psi(k) = \log k$: Stochastic gradient descent $\gamma_k = c/k$
- $\psi(k) = \sqrt{k}$: Stochastic gradient descent: optimal γ_k
- $\psi(k)=k$: Proximal gradient, coordinate proximal gradient
- $\psi(k)=k^2$: Accelerated proximal gradient method

with improved rate further down the list

- We say that the rate is $O(\frac{1}{\psi(k)})$ for the different ψ
- ullet To be sublinear ψ has slower than exponential growth

Sublinear rates - Comparison

• Different rates on log-lin scale

• Many iterations may be needed for high accuracy

Rate vs iteration cost

- Consider these classes of algorithms
 - Second-order methods
 - Quasi second-order methods
 - First-order methods
 - Stochastic and coordinate-wise first-order methods
- ullet Rate deteriorates and iterations increase as we go down the list \downarrow
- Iteration cost increases as we go up the list ↑
- Performance is roughly (# iterations)×(iteration cost)
- This gives a tradeoff when selecting algorithm
- Rough advise for problem size: small (\uparrow) medium $(\uparrow \Downarrow)$ large (\Downarrow)

Outline

- Algorithm overview
- Convergence and convergence rates
- Proving convergence rates

Proving convergence rates

- To prove a convergence rate typically requires
 - Using inequalities that describe problem class
 - Using algorithm definition equalities (or inclusions)
 - Combine these to a form so that convergence can be concluded
- Linear and quadratic rates proofs conceptually straightforward
- Sublinear rates implicit via a *Lyapunov inequality*

Proving linear or quadratic rates

• If we suspect linear or quadratic convergence for $V_k \ge 0$:

$$V_{k+1} \le \rho V_k^p$$

where $\rho \in [0,1)$ and p=1 or p=2 and V_k can, e.g., be

$$V_k = \|x_k - x^*\|_2$$
 or $V_k = f(x_k) + g(x_k) - p^*$ or $V_k = \|\nabla f(x_k)\|_2$

- Can prove by starting with V_{k+1} (or V_{k+1}^2) and continue using
 - function class inequalities
 - algorithm equalities
 - · propeties of norms
 - ..

Sublinear convergence – Lyapunov inequality

- Assume we want to show sublinear convergence of some $R_k \geq 0$
- This typically requires finding a *Lyapunov inequality*:

$$V_{k+1} \le V_k + W_k - R_k$$

where

- $(V_k)_{k\in\mathbb{N}}$, $(W_k)_{k\in\mathbb{N}}$, and $(R_k)_{k\in\mathbb{N}}$ are nonnegative real numbers
- $(W_k)_{k\in\mathbb{N}}$ is summable, i.e., $\overline{W}:=\sum_{k=0}^\infty W_k<\infty$
- Such a Lyapunov inequality can be found by using
 - function class inequalities
 - algorithm equalities
 - propeties of norms
 - ..

Lyapunov inequality consequences

From the Lyapunov inequality:

$$V_{k+1} \le V_k + W_k - R_k$$

we can conclude that

- V_k is nonincreasing if all $W_k = 0$
- V_k converges as $k \to \infty$ (will not prove)
- Recursively applying the inequality for $l \in \{k, \dots, 0\}$ gives

$$V_{k+1} \le V_0 + \sum_{l=0}^k W_l - \sum_{l=0}^k R_l \le V_0 + \overline{W} - \sum_{l=0}^k R_l$$

where \overline{W} is infinite sum of W_k , this implies

$$\sum_{l=0}^{k} R_l \le V_0 - V_{k+1} + \sum_{l=0}^{k} W_l \le V_0 + \sum_{l=0}^{k} W_l \le V_0 + \overline{W}$$

from which we can

- conclude that $R_k \to 0$ as $k \to \infty$ since $R_k \ge 0$
- derive sublinear rates of convergence for R_k towards 0

Concluding sublinear convergence

Lyapunov inequality consequence restated

$$\sum_{l=0}^{k} R_{l} \le V_{0} + \sum_{l=0}^{k} W_{l} \le V_{0} + \overline{W}$$

- We can derive sublinear convergence for
 - Best R_k : $(k+1) \min_{l \in \{0,\dots,k\}} R_l \leq \sum_{l=0}^k R_l$
 - Last R_k (if R_k decreasing): $(k+1)R_k \leq \sum_{l=0}^k R_l$
 - Average R_k : $\bar{R}_k = \frac{1}{k+1} \sum_{l=0}^{k} R_l$
- Let \hat{R}_k be any of these quantities, and we have

$$\hat{R}_k \le \frac{\sum_{l=0}^k R_l}{k+1} \le \frac{V_0 + \overline{W}}{k+1}$$

which shows a O(1/k) sublinear convergence

Deriving other than O(1/k) convergence (1/3)

• Other rates can be derived from a modified Lyapunov inequality:

$$V_{k+1} \le V_k + W_k - \lambda_k R_k$$

with $\lambda_k > 0$ when we are interested in convergence of R_k , then

$$\sum_{l=0}^{k} \lambda_l R_l \le V_0 + \sum_{l=0}^{k} W_l \le V_0 + \overline{W}$$

• We have $R_k \to 0$ as $k \to \infty$ if, e.g., $\sum_{l=0}^{\infty} \lambda_l = \infty$

Deriving other than O(1/k) convergence (2/3)

- Restating the consequence: $\sum_{l=0}^k \lambda_l R_l \leq V_0 + \overline{W}$
- We can derive sublinear convergence for
 - Best R_k : $\min_{l \in \{0,\dots,k\}} R_l \sum_{l=0}^k \lambda_l \leq \sum_{l=0}^k \lambda_l R_l$
 - Last R_k (if R_k decreasing): $R_k \sum_{l=0}^k \lambda_l \leq \sum_{l=0}^k \lambda_l R_l$
 - Weighted average R_k : $\bar{R}_k = \frac{1}{\sum_{l=0}^k \lambda_l} \sum_{l=0}^k \lambda_l R_l$
- ullet Let \hat{R}_k be any of these quantities, and we have

$$\hat{R}_k \le \frac{\sum_{l=0}^k R_l}{\sum_{l=0}^k \lambda_l} \le \frac{V_0 + \overline{W}}{\sum_{l=0}^k \lambda_l}$$

Deriving other than O(1/k) convergence (3/3)

• How to get a rate out of:

$$\hat{R}_k \le \frac{V_0 + \overline{W}}{\sum_{l=0}^k \lambda_l}$$

• Assume $\psi(k) \leq \sum_{l=0}^{k} \lambda_l$, then $\psi(k)$ decides rate:

$$\hat{R}_k \le \frac{\sum_{l=0}^k R_l}{\sum_{l=0}^k \lambda_l} \le \frac{V_0 + \overline{W}}{\psi(k)}$$

which gives a $O(\frac{1}{\psi(k)})$ rate

- If $\lambda_k = c$ is constant: $\psi(k) = c(k+1)$ and we have O(1/k) rate
- If λ_k is decreasing: slower rate than O(1/k)
- If λ_k is increasing: faster rate than O(1/k)

Estimating ψ via integrals

• Assume that $\lambda_k = \phi(k)$, then $\psi(k) \leq \sum_{l=0}^k \phi(l)$ and

$$\hat{R}_k \le \frac{\sum_{l=0}^k R_l}{\sum_{l=0}^k \phi(l)} \le \frac{V_0 + \overline{W}}{\psi(k)}$$

- To estimate ψ , we use the integral inequalities
 - for decreasing nonnegative ϕ :

$$\int_{t=0}^{k} \phi(t)dt + \phi(k) \le \sum_{l=0}^{k} \phi(l) \le \int_{t=0}^{k} \phi(t)dt + \phi(0)$$

• for increasing nonnegative ϕ :

$$\int_{t=0}^{k} \phi(t)dt + \phi(0) \le \sum_{l=0}^{k} \phi(l) \le \int_{t=0}^{k} \phi(t)dt + \phi(k)$$

• Remove $\phi(k), \phi(0) \ge 0$ from the lower bounds and use estimate:

$$\psi(k) = \int_{t=0}^{k} \phi(t)dt \le \sum_{l=0}^{k} \phi(l)$$

Sublinear rate examples

• For Lyapunov inequality $V_{k+1} \leq V_k + W_k - \lambda_k R_k$, we get:

$$\hat{R}_k \leq \frac{V_0 + \overline{W}}{\psi(k)} \qquad \text{where} \qquad \lambda_k = \phi(k) \text{ and } \psi(k) = \int_{t=0}^k \phi(t) dt$$

- ullet Let us quantify the rate ψ in a few examples:
 - Two examples that are slower than O(1/k):

•
$$\lambda_k = \phi(k) = c/(k+1)$$
 gives slow $O(\frac{1}{\log k})$ rate:

$$\psi(k) = \int_{t=0}^{k} \frac{c}{t+1} dt = c[\log(t+1)]_{t=0}^{k} = c\log(k+1)$$

• $\lambda_k=\phi(k)=c/(k+1)^{\alpha}$ for $\alpha\in(0,1)$, gives faster $O(\frac{1}{k^{1-\alpha}})$ rate:

$$\psi(k) = \int_{t=0}^{k} \frac{c}{(t+1)^{\alpha}} dt = c \left[\frac{(t+1)^{1-\alpha}}{(1-\alpha)} \right]_{t=0}^{k} = \frac{c}{1-\alpha} ((k+1)^{1-\alpha} - 1)$$

- An example that is faster than O(1/k)
 - $\lambda_k = \phi(k) = c(k+1)$ gives $O(\frac{1}{k^2})$ rate:

$$\psi(k) = \int_{t=0}^{k} c(t+1)dt = c\left[\frac{1}{2}(t+1)^{2}\right]_{t=0}^{k} = \frac{c}{2}((k+1)^{2} - 1)$$

Stochastic setting and law of total expectation

In the stochastic setting, we analyze the stochastic process

$$x_{k+1} = \mathcal{A}_k(\xi_k)x_k$$

We will look for inequalities of the form

$$\mathbb{E}[V_{k+1}|x_k] \le \mathbb{E}[V_k|x_k] + \mathbb{E}[W_k|x_k] - \lambda_k \mathbb{E}[R_k|x_k]$$

to see what happens in one step given x_k (but not given ξ_k)

• We use *law of total expectation* $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$ to get

$$\mathbb{E}[V_{k+1}] \le \mathbb{E}[V_k] + \mathbb{E}[W_k] - \lambda_k \mathbb{E}[R_k]$$

which is a Lyapunov inequality

- ullet We can draw rate conclusions, as we did before, now for $\mathbb{E}[R_k]$
- For realizations we can say:
 - If $\mathbb{E}[R_k]$ is summable, then $R_k \to 0$ almost surely
 - If $\mathbb{E}[R_k] \to 0$, then $R_k \to 0$ in probability

Rates in stochastic setting

• Lyapunov inequality $\mathbb{E}[V_{k+1}] \leq \mathbb{E}[V_k] + \mathbb{E}[W_k] - \lambda_k \mathbb{E}[R_k]$ implies:

$$\sum_{l=0}^{k} \lambda_l \mathbb{E}[R_l] \le V_0 + \sum_{l=0}^{\infty} \mathbb{E}[W_l] \le V_0 + \bar{W}$$

- Same procedure as before gives sublinear rates for
 - Best $\mathbb{E}[R_k]$: $\min_{l \in \{0,\dots,k\}} \mathbb{E}[R_l] \sum_{l=0}^k \lambda_l \leq \sum_{l=0}^k \lambda_l \mathbb{E}[R_l]$
 - Last $\mathbb{E}[R_k]$ (if $\mathbb{E}[R_k]$ decreasing): $\mathbb{E}[R_k] \sum_{l=0}^k \lambda_l \leq \sum_{l=0}^k \lambda_l \mathbb{E}[R_l]$
 - Weighted average: $\mathbb{E}[\bar{R}_k] = \frac{1}{\sum_{l=0}^k \lambda_l} \sum_{l=0}^k \lambda_l \mathbb{E}[R_l]$
- ullet Jensen's inequality for concave \min_l in best residual reads

$$\mathbb{E}[\min_{l \in \{0,\dots,k\}} R_l] \le \min_{l \in \{0,\dots,k\}} \mathbb{E}[R_l]$$

• Let \hat{R}_k be any of the above quantities, and we have

$$\mathbb{E}[\hat{R}_k] \le \frac{V_0 + \bar{W}}{\sum_{l=0}^k \lambda_l}$$