
Optimization for Learning - FRTN50
Introduction to Julia

Introduction
This document is intended to give a brief introduction to Julia for students
taking the FRTN50 - “Optimization for Learning” course at the Department of
Automatic Control, Lund.

The goal with the first section is to motivate why we choose to use Julia as
the programming language in this course. Hopefully it will provide you with
enough reasons as to why it could be valuable to learn a bit of Julia. It takes a lot
of practice to become a good programmer in any language, which is neither the
goal nor the expectation in this course. Most of the exercises can be solved with
concepts that are common to most programming languages, however, through
the hand-ins, you will have to get familiar with the syntax and some of the basic
concepts in Julia.

The rest of the document will introduce some of the resources and references
that will be useful throughout this course.

Why Julia
As a student at LTH, you are probably used to working in MATLAB and Java and
you may even have tried a bit of Python. Julia (https://julialang.org/) is a
new language that most students have not encountered so it is reasonable to
ask why you should use it in this course. There are surely some disadvantages
to using Julia, but when it comes to writing optimization algorithms there are
many more advantages.
Julia

• is easy to use: It is a high level language combining ideas from Ruby,
Python, Lisp, Haskel, with a syntax that is simple to get started with,
similar to MATLAB.

• is very fast: The just in time compilation allows speeds that are very
similar to a C implementation, without the complexity. High performance
libraries in other languages, like Tensorflow for Python, are written in C or
C++ to be able to be fast. This is not necessary in Julia, high performance
libraries can be written purely in Julia.

• is made for scientific computing: Just like MATLAB, Julia is deigned
to handle mathematical operations, matrices and similar concepts in a
convenient way.

• is open source: The whole language is open for anyone to see and
contribute to (and written mostly in Julia), so it is possible to understand

Written by: Mattias Fält
Latest update: August 24, 2020

what is going on behind the scene. And since it’s free you don’t need a
license to use it once you leave LTH. For comparison commercial MATLAB
prices are roughly: 8000kr/year + Optimization Toolbox 4000kr/year +
Parallel Computing Toolbox 4000kr/year + Simulink 12600kr/year

• has great built in functionality: Matrix computations, Statistics, Par-
allel computing and similar functionality is built into standard libraries
and shipped with Julia.

• has lots of free packages: Just like many other programming languages,
Julia has a good package manager with lots of packages (2000+) for most
applications. And they are all free and open source.

• is extremely powerful: By relying on dynamic dispatch, a concept
where the argument types of a function call decides which implementation
is run, it is possible to write high level code that is efficient for many
types, for example both for sparse and dense matrices, complex and integer
numbers and so on.

These are some of the main reasons why Julia is a fast growing language, and
why it is increasingly becoming the language used for researchers in optimiza-
tion. It en enables us to test out powerful algorithms quickly in a high level
language without having to re-implement them in C or C++ to make them fast.

How to get started with Julia
Julia comes with a simple but powerful REPL (Read Evaluate Print Loop)
which makes it is easy to run code from a terminal window. But for handling
anything more than a few lines of code, it is useful to have an IDE (Integrated
Development Environment), similar to the interface of MATLAB, or the Eclipse
editor which is often used with Java. The standard choice for Julia, which is also
the one we will be able to help you with, is the Juno version of the Atom editor.
Installation instructions for Julia (we recommend version 1.2 or newer) and the
editor can be found here: http://docs.junolab.org/latest/man/installation/

In the next section we will introduce some simple concepts and tools, you
can go to http://docs.junolab.org/latest/ for more detailed documentation
on Juno, and the full documentation for the Julia language can be found at
https://docs.julialang.org/en/v1/.

Basic Julia in Juno
At the bottom of the editor you should have a console called the REPL. You
can write and execute simple commands in this box and quickly see the results.
The behavior and syntax is similar to that on MATLAB, at least on the sur-
face. Evaluate some simple mathematical expressions to make sure everything
is running as expected. On the first run, Julia will probably take some time
installing some pre-installed packages.

Now create a new file in Juno/Atom with the file extension .jl, this will
enable syntax highlighting for Julia. Write some simple lines like

2

1 a = 1

2 b = 2

3 a+b

You can evaluate a line at a time using Shift+Enter, or the whole file with
Control+Shift+Enter. All the variables that are defined here will also be shared
with the REPL below.

There are two equivalent ways to define a function:

1 # Comments are made using the `#` symbol

2 function f1(x)

3 x^2 + x

4 end

5

6 # Another way is the short syntax:

7 f2(x) = sin(x) + x

8

9 """ And the documentation for f2(x) = sin(x) + x

10 can be written like this

11 """

12 function f3(x)

13 a = x^2

14 return sqrt(a)

15 end

16

17 # You can now call the functions:

18 six = f1(2)

To find documentation for a function, press ? in the REPL. This will activate
help? mode. Try for example ?sin to see how it works.

Note that we did not include any return statement in the two first definitions,
by default a function in Julia will return the result of the last line, so this is
often omitted.

Run the code above to make sure it works properly. Now try to make a
change in the function f1 and re-evaluate f1(2). Did the value change? It is
important to remember to first reevaluate the function definition before calling
it, or the old version will still be called.

It is also possible to use special characters in your code. These can be entered
in Juno using standard LaTeX commands, such as \alpha and \Delta for α and
∆:

1 x = 1.0

2 Δx = 0.1

3 α = x + Δx

Standard libraries
Simple operations and function definitions work without using any special li-
braries:

3

1 # Create a (column) vector:

2 v = [1,2]

3 # A matrix:

4 A = [1 2; 3 4]

5 # Or a 1x2 row matrix

6 b = [5 6]

7 # Multiply

8 b*A*v

However, if we want access to more specific methods we have to use some
of the available packages. Julia comes with a set of standard libraries, like
LinearAlgebra and Statistics that define functions for most of the basic needs.
To get access to those functions we have to call

1 using LinearAlgebra, Statistics

2 # We can now calculate determinants:

3 det(A)

4 # And mean and standard deviations for example:

5 m, s = mean(v), std(v)

But anyone can create a Julia package, and they are not all included in the
standard download. To access those packages, we first have to download them.
Thankfully, Julia has a very nice package manager that can be accessed using
the] symbol in the REPL. One of the packages that we will be using to display
graphs is the Plots.jl package. To add it, just open the package manager with
] and write add Plots. This will download the package and install all necessary
dependencies.

We can now try to use it

1 using Plots

2 v = randn(10)

3 plot(v)

4 # Create a new plot

5 plot(v .+ 1, color=:green)

6 # Add new plot to existing window

7 plot!(v .- 1, linewidth=3)

This should open a plot window in Atom. There are many options for how
plots should be displayed with Plots.jl, so called back-ends, but for simplicity
we will stick with the default one.

The first time you write using on a package, it may take some time to pre-
compile, especially for a big library like Plots.jl. The same is true for the first
call to a function, however, as you will see, the second call to plot will be much
faster.

You might be asked to supply figures in your hand-ins. A convenient way to
export a plot is the savefig command:

1 # Save current figure as a png

2 savefig("myplot.png")

4

3 savefig("myplot.pdf")

4 # the figures are saved in the current directory by default

5 # print-working-directory:

6 pwd()

5

Advanced concepts
There is always a lot to learn when starting with a new language. We have tried
to collect some of the useful features below that could serve as a reference when
trying to solve and understand the hand-ins. There are a three main concepts
just in the simple line plot!(v .- 1, linewidth=3), that could be useful to
understand.

Broadcasting (element-wise operations)

The first is that we write v .+ 1 instead of v + 1. The reason is that addition
(+) between a vector and a number is not defined. The .+ instead represents
element-wise addition, similar to how it is written in MATLAB. However, this
behavior (called broadcast) is not limited to simple operations like +,-,*, it can
be applied to any function, even the ones you define yourself!

1 function g1(x, y)

2 x^2*y + 1

3 end

4

5 a = [1,2,3,4,5]

6 b = [6,7,8,9,10]

7 # Apply the function g1 to each of the elements in a and b

8 g1.(a, b)

Optional and keyword arguments

The plot commands above were called with keyword-arguments linewidth=3 and
color=:green. These are extra arguments that are referenced to by name and
are defined after a ; in the definition of a function:

1 function g2(x, y; square=false, extra = 0)

2 a = x + y + extra

3 if square

4 return a^2

5 else

6 return a

7 end

8

9 # g2 can be called with no keyword arguments

10 a1 = g2(1,2)

11 # Which is the same as with the default arguments:

12 a2 = g2(1,2, square=false, extra=0)

13 # But can also be called with any of the keyword arguments set:

14 a3 = g2(1,2, extra=5)

It is also possible to add optional arguments with default values after normal
arguments:

1 function loop(val, n=10, k=5; start = 1)

2 s = 0.0

6

3 for i = start:n

4 for j = start:k

5 s += val

6 end

7 end

8 return s

9 end

10

11 # The second argument is optional, all of the following are valid calls:

12 loop(2.0)

13 # Set n=12

14 loop(2.0, 12)

15 # Set n=12, k=4

16 loop(2.0, 12, 4)

17 # Set everything

18 loop(2.0, 12, 4, start=2)

19 # Set only n=12, and start=2

20 loop(2.0, 12, start=2)

21 # Only start=12

22 loop(2.0, start=2)

Even functions can be sent as inputs to other functions, this is used in cases
like this:

1 v = [1,2,-3,4]

2 s1 = sum(v) # Should be 4

3 # Sum the absolute value of each element

4 s2 = sum(abs, v) # Should be 10

7

References and in-place operations

The last note is regarding how Julia treats most types, such as vectors and
matrices, as references when a function is called. This makes it possible for a
function to change the values in the input arguments (MATLAB will create a
copy if the input arguments are modified). When a function changes existing
variables, it is customary to add an ! to the name of the function. This explains
why we write plot! when updating an existing plot. Some common examples:

1 function setfirstzero!(A)

2 # Set the element in first row and column to 0

3 A[1,1] = 0

4 end

5

6 A = randn(4,4)

7 # The first element in A will now be set to 0

8 setfirstzero!(A)

9

10 function allzero!(A)

11 # Element-wise - set all elements in A to zero

12 # Same as A[:] .= 0

13 A .= 0

14 end

15

16 allzero!(A)

17 sum(A) # This is 0

18

19 # Note that the functions above change the elements inside of A, the following

does not!↪→

20 function notworking!(A)

21 # Create a NEW variable, also called A, and set it to 4 by 4 zeros

22 A = zeros(4,4)

23 # We are no longer referring to the same same matrix

24 return A

25 end

26

27 A = randn(4,4)

28 B = notworking!(A)

29 sum(A) # This is not zero

30 sum(B) # This is

8

In-place operations can be very useful to avoid forcing the computer to find
new space for variables (allocating memory):

1 y = randn(10000)

2 a = randn(10000)

3 b = randn(10000)

4

5 """ calculate a^2 + b^2 element-wise and return vector with result """

6 function squareadd(a, b)

7 # Create a vector of same length and type as a to store the result

8 y = similar(a)

9 for i in eachindex(a) # Same as 1:length(a)

10 y[i] = a[i]^2 + b[i]^2

11 end

12 return y

13 end

14

15 """ calculate a^2 + b^2 element-wise and store in y """

16 function squareadd!(y, a, b)

17 for i in eachindex(a)

18 y[i] = a[i]^2 + b[i]^2

19 end

20 return

21 end

22

23 y = squareadd(a,b)

24 # @time will measure time and allocations

25 @time squareadd(a,b)

26

27 # Store result directly in y

28 squareadd!(y, a, b)

29 # The first run will take longer since it is compiling the function,

30 # so we run it once before computing the time

31 @time squareadd!(y, a, b)

As you see it can be considerably faster to reuse the space that is already
allocated. This is always considered when trying to write optimized algorithms,
and we will see it in some of the exercises in the course. One common function
is mul!:

1 # Calculate A*b and store it in y, without allocating any extra memory

2 mul!(y, A, b)

9

Types

Julia is not an object-oriented language, but types can be created to generate a
similar behavior. For example, to represent a point in two dimensions we might
want to create something like this:

1 # Create a structure (type), x and y will be stored as Float64

2 struct Point2D

3 x::Float64

4 y::Float64

5 end

6

7 # We can now create points

8 p1 = Point2D(1, 2)

9 p2 = Point2D(4.0, 6.0)

10

11 # and access the fields

12 p1x = p1.x # 1.0

13

14 # and create functions

15 distance(a::Point2D, b::Point2D) = sqrt((a.x - b.x)^2 + (a.y - b.y)^2)

16

17 distance(p1,p2) # should be 5.0

The notation a::Point2D means that the function will only accept calls where
a is a Point2D.

If we want to be able to store points of other precisions, for example Integers,
we could instead create a parametric type:

1 struct MyPoint2D{T}

2 x::T

3 y::T

4 end

5

6 # We can now create points, of any type T we want

7 p1 = MyPoint2D{Int64}(1, 2)

8 p2 = MyPoint2D{Int64}(4, 6)

9

10 # Allow only calls where a and b has a common T

11 function distance(a::MyPoint2D{T}, b::MyPoint2D{T}) where T

12 sqrt((a.x - b.x)^2 + (a.y - b.y)^2)

13 end

14

15 distance(p1,p2) # should be 5.0

Although you will probably not have to create these kinds of types yourself,
it helps to explain the why an expressions like [1 2 3; 4 5 6] is printed with
the type Array{Int64,2}. All vectors and matrices are implemented in the type
Array{T,N}, where T is the element type and N is the number of dimensions, 1
for vectors, 2 for Matrices.

10

Documentation

You should now have seen most of the important features in Julia that you be
could use when solving the hand-ins. For more detailed explanations, see the
Julia documentation https://docs.julialang.org/, or ask the assistants during
the exercises!

11

