MNXBO01 course - C++ module J

Caterina Marcon

caterina.marcon@hep.lu.se

MNXBO1 course - C++ module caterina.marcon®@hep.lu.se 1/43

Lecture's goals

You will learn:
@ how to use arrays, vectors and strings;
@ how to use lists, pairs and sets;

@ to declare pointers.

MNXBO1 course - C+-+ module caterina.marcon®@hep.lu.se 2 /43

Containers: arrays

@ A container is a holder object that stores a collection of objects (its
elements). There are several types of containers including arrays,
vectors and strings;

@ Arrays are fixed-size sequence containers: they hold a specific number
of elements ordered in a strict linear sequence;

@ An array must be declared before it is used:

[C++] Array declaration

1 type name [number of elements];
2 int arr [5];

Array size =5

Indices—»

MNXBO1 course - C+-+ module caterina.marcon®@hep.lu.se 3/43

Containers: arrays

[C++] Compute the sum of the elements of the array

1 #include <iostream> //for cout and cin

2 using namespace std;

3

4 int main() {

const int length = 10; //constant variable indicating the size of the array
int al[length] = {87, 68, 94, 100, 83, 78, 85, 91, 76, 87};

//Sum contents of array a

for (int i = 0; i < arraySize; i++) {
10 total = total + alil;

11 }

12 cout << "Total of array elements: "<< total << endl;

5
6
7
8
9

14 return O;

@ constant variables must be initialized with a constant expression when
they are declared and cannot be modified thereafter.

MNXBO1 course - C+-+ module caterina.marcon®@hep.lu.se 4 /43

1
2
3
4

© o ~N o«

10
11
12
13
14
15
16
17
18
19

Containers: arrays

[C++]

#include <iostream> //for cout and cin
using namespace std;

int main() {
const int length = 10; //the length must be known at the compile time
int arr[length]; //the array is fixed-size
int input;
int pos = 0; //an array doesn’t know its own size or how many elements it contains
cout << "Enter an integer number: "<< endl;
//This loop means "keep reading values from cin into x, and continue looping".
while(cin >> input) {
arr[pos] = input;
if (pos == length) break; //Remember that the array can’t grow, this is a limit
++pos; //we have to keep track of the position
}
for (int i=0; i < pos; i++) cout << arr[i] << endl;
return 0O;
}

MNXBO1 course - C+-+ module caterina.marcon®@hep.lu.se 5/43

-
Containers: arrays

You should avoid to use arrays:
@ The length must be known at the compile time.
@ The array is fixed-size.

@ An array doesn't know its own size or how many elements it contains
(we have to keep track of the position).

@ Remember that the array can't grow: this is a limit.

MNXBO1 course - C+-+ module caterina.marcon®@hep.lu.se 6 /43

Containers: vectors

@ C++ class: class can be thought as a collection of data and
functions. The member of a class are accessed with a . (dot). C++
provides different classes; vector is an example.

@ C++ standard library class vector represents a more robust type of
array featuring many additional capabilities.

@ A vector is a sequential container that can change size dynamically.

@ When the vector’'s memory is exhausted, the vector allocates a larger
contiguous area of memory, copies the original elements into the new
memory and de-allocates the old memory.

MNXBO1 course - C+-+ module caterina.marcon®@hep.lu.se 7 /43

Containers: vectors

[C++] How to create a vector, store each input and print them back

#include <iostream> //For cout and cin
#include <vector> //For vectors
using namespace std;

vector<int> vec; //create a vector with base type int

int input;

cout << "Enter an integer number: "<< endl;

while (cin >> input) vec.push_back(input); //store each input
10 //print them back

1
2
3
4
5 int main() {
6
7
8
9

11 for (size_t i = 0; i < vec.size(); ++i) cout << vec.at(i) << endl;
12 return 0O;
13 }

MNXBO1 course - C+-+ module caterina.marcon®@hep.lu.se 8 /43

Containers: vectors

public member function

sta::vector::push_back
L7]

|V3id push_back (const wvalue_type& val); |

<vector>

|C++98||C++11

Add element at the end

Adds a new element at the end of the vector, after its current last element. The content of val is copied {or moved) to
the new element.

This effectively increases the container size by one, which causes an automatic reallocation of the allocated storage
space if -and only if- the new vector size surpasses the current vector capacity.

L. Parameters

val
Value to be copied {or moved) to the new element.
Member type value_type is the type of the elements in the container, definad in vector as an alias of its first
template parameter (T).

« Return value
none

MNXBO1 course - C+-+ module caterina.marcon®@hep.lu.se 9 /43

Containers: vectors

public member functien

ste::vector::size

[c++os|[ct+11| @

size_type size() const;

<vector>

Return size
Returns the number of elements in the vector.

This is the number of actual objects held in the vector, which is not necessarily equal to its storage capacity.

L. Parameters

none

& Return Value

The number of elements in the container.

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 10 / 43

Containers: vectors

public member function

sta-vector::at

<vector>

reference at (
const_reference at (s

_type n);
_type n) const;

Access element
Returns a reference to the element at position n in the vector.

The function automatically checks whether n is within the bounds of valid elements in the vector, throwing an

out_of_range exception if it is not (i.e., if n is greater than, or equal to, its size). This is in contrast with member

operator[], that does not check against bounds.

L. Parameters

n
Position of an element in the container.

If this is greater than, or equal to, the vector size, an exception of type cut_of_range is thrown.

Natice that the first element has a position of @ (not 1).
Member type size_type is an unsigned integral type.

4 Return value

The element at the specified paosition in the container.

Caterina Marcon

MNXBO1 course - C+-+ module

caterina.marcon®@hep.lu.se

11/ 43

N
Containers: vectors

public member function
sta:vector::back <vector>

reference back();
const_reference back() const;

Access last element

Returns a reference to the last element in the vector.
Unlike member vector::end, which returns an iterator just past this element, this function returns a direct reference.

Calling this function on an empty container causes undefined behavior.

L. Parameters

none

+ Return value

A reference to the last element in the vector.

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 12 / 43

Containers: vectors

public member function
sta:vector::pop_back

void pop_back();

<vectors

Delete last element

Removes the last element in the vector, effectively reducing the container size by one.

This destroys the removed element.

L» Parameters

none

¢ Return value

none

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 13 / 43

Containers: vectors

public member function

stazvector::erase
(7]

iterator erase (iterator position);
iterator erase (iterator first, iterator last);

<vector>

[c2208|[c++1

Erase elements

Removes from the vector either a single element (position) or a range of elements ([first,last)).

This effectively reduces the container size by the number of elements removed, which are destroyed.

Because vectors use an array as their underlying storage, erasing elements in positions other than the vector end
causes the container to relocate all the elements after the segment erased to their new positions. This is generally an

inefficient operation comparad to the one performed for the same operation by other kinds of sequence containers
{such as list or forward_list).

L Parameters

position
Iterator pointing to a single element to be removed from the vector.
Member types iterator and const_iterator are random access iterator types that point to elements.

first, last
Iterators specifying a range within the vector] to be removed: [first,last). i.e., the range includes all the
elements between first and last, including the element pointed by first but not the one pointed by fast.
Member types iterator and const_iterator are random access iterator types that point to elements.

4 Return value

An iterator pointing to the new location of the element that followed the last element erased by the function call. Thi
the container end if the operation erased the last element in the sequence.

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 14 / 43

Containers: vectors

public member function

sta:-vector::clear

<vectory

|C++98HC++11| o

|*oid clear();

Clear content
Removes all elements from the vector {which are destroyed), leaving the container with a size of 8.
A reallocation is not guaranteed to happen, and the vector capacity is not guaranteed to change due to calling this

function. A typical alternative that forces a reallocation is to use swap:

vector<T>().swap(x); // clear x reallocating

Lo Parameters

none

¢ Return value

none

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 15 / 43

Containers: strings

@ A string is a sequence of characters, implemented by the string class;

[Ct+]

#include <iostream>
#include <string>
using namespace std;

1

2

3

4

5 int main(){
6 string str ("It is dangerous to go alone, take this!");

7 size_t pos = str.find("take"); //position in string where "take" is found
8

9 cout << str.substr(0, 18) << str.substr(pos) << endl;

10 return O;

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 16 / 43

-
Containers: strings

public member function
i i ri
swa:string::find <string>

[creos|[cr+11| @

size t find (comst stringd str, size t pos = 0) const;

(const char* s, size_t pos -

) const;

(const char® s, size_t pos, size_t n) const;
size t find (char c, size t pos = @) const;

Find content in string

Searches the string for the first occurrence of the sequence specified by its arguments.

When pos is specified, the search only includes characters at or after position pos, ignoring any possible occurrences
that include characters before pos.

Notice that unlike member find_first_of, whenever more than one character is being searched for, it is not enough that
just one of these characters match, but the entire sequence must match.

. Parameters

str
Another string with the subject to search for.
pos
Bosition of the first character in the string to be considered in the search.
If this is greater than the string length, the function never finds matches.
Note: The first character is denoted by a value of o (not 1): A value of @ means that the entire string is searched.

Pointer to an array of characters.

If argument n is specified (3), the sequence to match are the first n characters in the array.

Otherwise (2), a null-terminated sequence is expected: the length of the sequence to match is determined by
the first occurrence of a null character.

Length of sequence of characters to match.

Individual character to be searched for.

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 17 / 43

Containers: strings

More on find ()

« Return Value

The position of the first character of the first match.
If no matches were found, the functien returns string::npos.

size_t is an unsigned integral type (the same as member type string::size_type)

Note that string::npos is just a constant integer. Its value is -1 .

MNXBOL course - C4 module

caterina.marcon®hep.lu.se 18 / 43

Containers: strings

public member function
1 = tri
sta::string::substr <strings

string substr (size_t pos = @, size_t len = npos) const;

Generate substring
Returns a newly constructed string object with its value initialized to a copy of a substring of this object.

The substring is the portion of the object that starts at character position pos and spans fen characters (or until the end
of the string, whichever comes first).

Ln Parameters

pos
Position of the first character to be copied as a substring.
If this is equal to the string length, the function returns an empty string.
If this is greater than the string length, it throws out_of_range.
Note: The first character is denoted by a value of @ (not 1).

len

Number of characters to include in the substring (if the string is shorter, as many characters as possible are
used).
A value of string: :npos indicates all characters until the end of the string.

size_t is an unsigned integral type (the same as member type string::size_type).

+ Return Value
A string object with a substring of this object.

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 19 / 43

Reading out line by line using strings

@ For reading out lines of data from a file, you can use getline function.

[C++]

1 #include <iostream>

2 #include <fstream> //header file for file writing and reading
3 #include <string> //header file for strings

4 using namespace std;

5

6 int main(){

7 fstream in;

8 in.open("inputtext.txt"); //open an input file
9 string s;

10 cout<< "Line 1:" <<endl;

11 getline(in,s); //read first line
12 cout<<s<<endl;

13 cout<< "Line 2:" <<endl;

14 getline(in,s); //read second line
15 cout<<s<<endl;

16

17 in.close();

18 return 0O;

9
MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 20 / 43

Containers: strings

function .
sw:getline (string) <string>

[c++os|[ct+11] @

istreamd getline (istream@ is, string& str, char delim);

istream@ getline (istream® is, stringd str);

Get line from stream into string

Extracts characters from js and stores them into str until the delimitation character delim is found (or the newline
character, "\n", for (2)).

The extraction also stops if the end of file is reached in is or if some other error occurs during the input operation.

If the delimiter is found, it is extracted and discarded (i.e. it is not stored and the next input operation will begin after
it)

Note that any content in str before the call is replaced by the newly extracted sequence.

Each extracted character is appended to the string as if its member push_back was called.

L. Parameters

is
istream object from which characters are extracted.

string object where the extracted line is stored.
The contents in the string before the call (if any) are discarded and replaced by the extracted line.

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 21 /43

N
Lists

@ A list is a container with fast element insertion and removal;

@ unlike vectors, elements in a list have no absolute position. Use an
iterator to loop through them. lIterators act similarly to pointers.

[C++] Lists

#include <iostream> //for cout and cin
#include <list> //for list
using namespace std;

list <int> 1st;//list with basetype int
1st.push_back(10);//insert some elements, iterate over the list and print them
1st.push_back(15);
for (list<int>::iterator it = lst.begin(); it '= lst.end(); ++it)
10 {

11 cout << *it << endl;

1
2
3
4
5 int main(){
6
7
8
9

12}
13 return O;
14 }

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 22 /43

Containers: iterators

An iterator is an object that points to an element inside the container.
We can use iterators to move through the contents of the container. They
point to some location of the list and we can access content at that
particular location using them.

[C++] iterators

list<int> 1st; // This is the actual list
list<int>::iterator it; // This is the iterator attached to it

it = 1lst.begin(); // The list knows where it begins
it++; // The iterator can be moved forward to point to the next element
it--; // or backwards

(*it); // this is the current element in the list to which
// the iterator is pointing
it = 1st.end(); // The list also knows where it ends

© N O AW N

Lol
o

The same syntax is also valid for vectors and sets.

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 23 /43

Pairs

@ A pair is a simple container that stores two values.

[C++] Pairs

#include <iostream> //for cout and cin
#include <utility> //for pair
using namespace std;

pair <int, double> p(5, 3.14); //A pair of int and double
cout << "The pair is " << p.first ", " << p.second << endl;
return O;

}

1
2
3
4
5 int main(){
6
7
8
9

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 24 / 43

Sets

@ A set is a container that stores unique objects. If a set already
contains a certain element, adding that element again does nothing.
Sets are ordered;

e adding/removing elements takes logarithmic time which is relatively
slow;

@ searching also takes logarithmic time, this is as fast as a research can
get.

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 25 /43

N
Sets

[C++] Sets

1 #include <iostream> //for cout and cin

2 #include <set> //for sets

3 using namespace std;

4

5 int main(){

set<int> s; //set with base type int

s.insert(7);

s.insert(1);

s.insert(5);

10 for (set<int>::iterator it = s.begin(); it != s.end(); ++it)
11 {//traverse with iterator

12 cout << *it << endl; //prints 1,5,7

13}

14 if(s.count(8)) cout << "The set contains the number 8" << endl;//search in the set
15 return O;

16

© o N o

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 26 / 43

Pointers

@ It is possible to visualize the memory as a discretized line where each
point represents one bit:
@ groups of different number of bits represent different types of data:

e 8 bits: boolean type;
e 32 or 64 bits: integer type.

@ the position in the memory is automatically assigned for each variable
that is defined.

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 27 / 43

Pointers

o C++ permits to know the position (the address) of the first bit
allocated for each variable;

@ the address of the variable can be saved in a new type named pointer
that is able to hold the address of the variable it points to;

[C++]

1 int y = 5; // declare variable y
2 int *yPtr; // declare pointer variable yPtr
3 yPtr = &y; // this statement assigns address of y to yPtr

o the address operator (&) is a unitary operator that obtains the
memory address of its operand.

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 28 / 43

Pointers

@ The * when appears in declaration is not an operator but it indicates
that the variable being declared is a pointer:

[Ct+]

1 int * pi;

@ The * operator commonly referred to as DEREFERENCING operator,
returns a "synonym" for the object to which it points to:

[C++]

int #pl; //pointer declaration

int a = 7;//variable declaration

pl = &a;

cout << *pl <<endl;//the output is 7

cout << pl <<endl;//the output is a memory address (e.g.0013F580)

[N O

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 29 / 43

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Basic pointer manipulations

[C++ | Basic pointer manipulations

#include <iostream>
using namespace std;
int main()

{

int *pl, *p2;

pl = new int;

*pl = 42;

p2 = pi;

cout << "kpl == " << *pl << endl;
cout << "#p2 == " << *p2 << endl;
*p2 = 20;

cout << "#pl == " << *pl << endl;
cout << "#p2 == " << *p2 << endl;
pl = new int;

*pl = 100;

cout << "#pl == " << *pl << endl;
cout << "#p2 == " << *p2 << endl;
return O;

}

MNXBOL course - C4 module

caterina.marcon®@hep.lu.se

30 / 43

Basic pointer manipulations

[C++] Basic pointer manipulations: solutions

1 *pl = 42

2 *p2 = 42

3 *xpl 20

4 xp2 = 20

5 xpl 100

6 *p2 20

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 31/43

© N O AW N

11
12
13
14

Exercise

[C++ | Basic pointer manipulations

#include <iostream>

using namespace std;

int main()

{

int a;

int *aPtr;

a = 7;//assigned 7 to a

aPtr = &a;//assigned the address of a to aPtr

cout << "the address of a is: " << &a << endl; //0012F580
cout << "the value of aPtr is: " << aPtr << endl; //0012F580
cout << "the value of a is: " << a << endl; //7

cout << "the value of *aPtr is: " << *aPtr << endl; // 7
//The content of the memory address the pointer points to

return O;

}

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se

32/ 43

Exercise

Write a program that prints out:
o the address of a double variable a (you have to define it);
@ the value of *aPtr,
@ the address of a;

@ the content of aPtr;

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 33 /43

© N O AW N

11
12
13
14
15

Exercise

[C++ | Basic pointer manipulations

#include <iostream>

using namespace std;

int main()

{

double a;

double *aPtr;

a = 8.5;//assigned 8.5 to a

aPtr = &a;//assigned the address of a to aPtr

cout << "the address of a is: " << &a << endl; //memory address
cout << "the content of aPtr is: " << aPtr << endl; //memory address
cout << "the value of a is: " << a << endl; //8.5

cout << "the value of *aPtr is: " << *aPtr << endl; // 8.5
//The content of the memory address the pointer points to
return O;

}

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se

34 /43

Pass by value, reference or pointer

@ There are three ways in C4++ to pass arguments to a function: by
value, by reference with reference arguments, by reference with
pointer arguments.

@ When an argument is passed by value a copy of the argument’s value
is made and passed to the called function.

@ With pass by reference with reference arguments and pass by
reference with pointer arguments methods we can eliminate the
pass-by-value overhead of copying large amount of data since caller
gives the called function the ability to access the caller's data directly.

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 35 /43

To recap

Write a program that prints out the cube of an integer number (e.g. int
number = 5;). For the cube calculation you have to implement a function
named cubeByValue that takes as an input the integer number defined
before (pass by value) and returns the cube.

MNXBOL course - C4 module

caterina.marcon®hep.lu.se 36 / 43

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Caterina Marcon

Pass by value, reference or pointer

[C++] Solution

#include <iostream>
using std:: cout;
using std::endl;

int cubeByValue(int);//function definition

int main()

{

int number = 5;
int result;

cout << "The original value of number is: " << number;

result = cubeByValue(number) ; //pass number by value to cubeByValue

cout << "The result is: " << result << endl;
return 0;//successful main termination
} //end main

//calculate and return cube of integer argument

int cubeByValue(int n)

{

return n*n*n;

} //end function cubeByValue

MNXBO1 course - C+-+ module

caterina.marcon®@hep.lu.se

37 /43

Pass by value, reference or pointer

@ There are three ways in C++ to pass arguments to a function: by
value, by reference with reference arguments, by reference with
pointer arguments;

@ when an argument is passed by value, a copy of the argument’s value
is made and passed to the called function. Changes to the copy do
not affect the original variable's value in the caller;

o with by reference with reference arguments, the caller gives the
called function the ability to access the caller’s data directly and to
modify that data if the called function chooses to do so;

@ pointers can also be used to modify one or more variable in the caller
or to pass pointers to large data objects to avoid the overhead of
passing the objects by value.

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 38 /43

1
2
3
4
5
6
7
8
9

10
1
12
13
14
15
16
17
18
19
20

-

Pass by value, reference or pointer

[C++] Pass by reference with a pointer argument

#include <iostream>
using std:: cout;
using std::endl;

void cubeByReferenceP(int *);

int main()

{
int number = 5;
cout << "The original number of number is: " << number;

cubeByReferenceP(&number); //pass number address to cubeByReferenceP

cout << "The new value of number is " << number << endl;
return O;

} //end main

//calculate cube of *nPtr; modifies variable number in main
void cubeByReferenceP(int *nPtr)

{

(*nPtr) = (#nPtr) * (*nPtr) * (*nPtr);

}

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se

39 /43

Exercise

Write a program that prints out the square of an double number. For the
square calculation you have to implement a function named
squareByPointer which requires a pass by pointer input.

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 40 / 43

1
2
3
4
5
6
7
8
9

10
1
12
13
14
15
16
17
18
19
20

-

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se

Pass by value, reference or pointer

[C++] Pass by reference with a pointer argument

#include <iostream>
using std:: cout;
using std::endl;

void squareByPointer(double *);

int main()

{
double number = 5.6;
cout << "The original number of number is: " << number;

squareByPointer (&number); //pass number address to squareByPointer

cout << "The new value of number is " << number << endl;
return O;

} //end main

//calculate square of *nPtr; modifies variable number in main
void squareByPointer(double *nPtr)

{

*nPtr = *nPtr * *nPtr;

}

41/ 43

Pass by value, reference or pointer

[C++] Pass by reference

1 #include <iostream>
2 using std::cout;
3 using std::endl;

4

5 void cubeByReference(int&);

6

7 int main() {

8

9 int number = 5;

10 cout << "The original number of number is: " << number << endl;
11 cubeByReference (number) ;

12

13 cout << "The new value of number is " << number << endl;
14 return O;

15

16 } //end main

17

18 void cubeByReference(int& nRef) {

19

20 nRef = nRef * nRef * nRef;

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se

42 /43

Summary

@ arrays, vectors and strings;
@ lists, pairs and sets;

@ pointers.

MNXBO1 course - C+-+ module caterina.marcon®hep.lu.se 43 /43

