
MNXB01 course - C++ module

Caterina Marcon

caterina.marcon@hep.lu.se

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 1 / 64

To recap: pointers

C++ permits to know the position (the address) of the first bit
allocated for each variable;
the address of the variable can be saved in a new type named pointer
that is able to hold the address of the variable it points to;

[C++]
1 int y = 5; // declare variable y
2 int *yPtr; // declare pointer variable yPtr
3 yPtr = &y; // this statement assigns address of y to yPtr

the address operator (&) is a unitary operator that obtains the
memory address of its operand.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 2 / 64

To recap: pointers

The * when appears in declaration is not an operator but it indicates
that the variable being declared is a pointer:

[C++]
1 int * p1;

The * operator commonly referred to as DEREFERENCING operator,
returns a ”synonym” for the object to which it points to:

[C++]
1 int *p1; //pointer declaration
2 int a = 7;//variable declaration
3 p1 = &a;
4 cout << *p1 <<endl;//the output is 7
5 cout << p1 <<endl;//the output is a memory address (e.g.0013F580)

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 3 / 64

To recap: Reference

A reference is an alternative name or alias for an object/variable.
Almost like a pointer, but with object syntax.
References are declared by appending type with &.
Unlike pointers, references must ALWAYS be initialized.

[C++] Reference
1 double b;
2 double& bref = b; // bref is declared as a reference to b
3 double& ref; // ref is not initialized so this will NOT compile
4 int i = 5; //assign value of 5 to i
5 int& r = i; //r is a reference to i
6 int x = r; //since r is reference to i assign value of 5 to x
7 r = 2; //since r is reference to i assign value of 2 to i

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 4 / 64

To recap: Reference

[C++] Exercise
1 #include <iostream>
2
3 int main()
4 {
5 int i = 2;
6 int* pi = &i;
7 int & ri = i;
8
9 std::cout << "i = " << i << std::endl;

10 std::cout << "&i = " << &i << std::endl;
11 std::cout << "pi = " << pi << std::endl;
12 std::cout << "*pi = " << *pi << std::endl;
13 std::cout << "&pi = " << &pi << std::endl;
14 std::cout << "ri = " << ri << std::endl;
15 std::cout << "&ri = " << &ri << std::endl;
16
17 return 0;
18 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 5 / 64

To recap: Reference

[C++] Solution
1 i = 2
2 & i = 0 x7fff508948fc
3 pi = 0 x7fff508948fc
4 * pi = 2
5 & pi = 0 x7fff50894900
6 ri = 2
7 & ri = 0 x7fff508948fc

object i (variable) pi (pointer) ri (reference)
address 0x7fff508948fc 0x7fff50894900 0x7fff508948fc
value 2 0x7fff508948fc 2

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 6 / 64

To recap: pass by value, reference or pointer

There are three ways in C++ to pass arguments to a function: by
value, by reference with reference arguments, by reference with
pointer arguments.
When an argument is passed by value, a copy of the argument’s value
is made and passed to the called function.
Changes to copy do not affect the original variable’s value in the
caller.
With pass by reference (with reference arguments and with pointer
arguments) the caller gives the called function the ability to access
the caller’s data directly and to modify the data if the called function
chooses to do so.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 7 / 64

To recap: pass by reference

To indicate that a function parameter is passed by reference, put an
ampersand (&) after the parameter’s type in the function prototype
(line 1).
In the function call, write the variable name (line 5).
As for the function prototype, add an ampersand (&) between the
parameter’s type and its name (line 10).

[C++] Example pass by reference
1 void squareByReference(int &); //function prototype
2 int main(){
3 int z = 4;
4 cout << "z= " << z << endl; //z = 4 before squareByReference call
5 squareByReference(z); //function call
6 cout << "z= " << z << endl; //z = 16 after squareByReference call
7 return 0;
8 }
9 void squareByReference(int &numberRef) { //function implementation

10 numberRef = numberRef * numberRef; //caller argument modified
11 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 8 / 64

To recap: pass by value

[C++] Example pass by value
1 int squareByValue(int); //function prototype
2 int main(){
3 int z = 4;
4 cout << "z= " << z << endl; //z = 4 before squareByValue call
5 cout << "value returned by squareByValue: " << squareByValue(z) << endl;
6 //z = 4 after squareByValue call
7 return 0;
8 }
9 //function implementation

10 int squareByValue(int number)
11 {
12 return number = number * number; //caller argument not modified
13 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 9 / 64

To recap: pass by reference with pointer

To indicate that a function parameter is passed by pointer, put an *
after the parameter’s type in the function prototype (line 1).
In the function call, write the variable name preceded by & (line 5).
In function declaration specify the type followed by the pointer (line
10).

[C++] Example pass by reference with pointer
1 void squareByPointer(int *); //function prototype
2 int main(){
3 int z = 4;
4 cout << "z= " << z << endl; //z = 4 before squareByPointer call
5 squareByPointer(&z);//pass z address to the function
6 //z = 16 after squareByPointer call
7 return 0;
8 }
9 //The func. dereferences the pointer and squares the value zPoint points to

10 void squareByPointer(int *zPoint)
11 {
12 *zPoint = (*zPoint) * (*zPoint); //caller argument modified
13 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 10 / 64

In summary

In pass by reference method the function multiplies numberRef by
itself and stores the result in the variable to which numberRef refers
in main function (z).
In pass by value method the function multiplies the variable number
by itself, store the result in number and returns the new value of
number.
In pass by reference with pointer method, the function deferences the
pointer and squares the value to which zPoint points to modifying the
z variable in the caller.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 11 / 64

Exercise

Write a program that prints out the sum of two integer numbers. For the
sum calculation you have to implement a function which requires input
arguments passed by pointer. The function should return an integer by
value.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 12 / 64

Exercise

[C++] Solution
1 #include <iostream>
2
3 int SumNumbers(int *a, int *b); //function prototype
4
5 int main() {
6
7 int m = 5;
8 int n = 6;
9 std::cout << "Sum: " << SumNumbers(&m,&n) << std::endl;

10 return 0;
11 }
12 int SumNumbers(int *a, int *b) {
13 return (*a) + (*b);
14 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 13 / 64

Exercise

Write a program that prints out the sum of two integer numbers. For the
sum calculation you have to implement a function which requires input
arguments passed by reference. The function should return an integer by
value.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 14 / 64

Exercise

[C++] Solution
1 #include <iostream>
2
3 int SumNumbers(int & a, int & b); //function prototype
4
5 int main() {
6
7 int m = 5;
8 int n = 6;
9

10 std::cout << "Sum: " << SumNumbers(m,n) << std::endl;
11
12 return 0;
13 }
14
15 int SumNumbers(int &a, int &b) {
16 return a + b;
17 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 15 / 64

Heap and stack

The memory available for a program to use is made up of two areas
called stack and heap.
The stack is small (Megabytes), fixed size memory for local variables.
When a variable on the stack falls out of scope it is deallocated; we
don’t have to worry about memory management with the stack.
The stack is small, so it can overflow (this typically happens due to
bugs like infinite loops).

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 16 / 64

Heap and stack

The heap is a large memory and it can grow dynamically.
To put a variable on the heap, it is necessary to use the operator new
(already used in slide 30 lecture 6). This operator returns a pointer
through which the variable is accessed.
Variable on the heap are never deallocated automatically. The
memory must be freed manually using the delete operator.
A pointer itself is an integer (it holds a memory address); it is on the
stack and it is deallocated automatically.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 17 / 64

New and delete operators

[C++] Basic pointer manipulations
1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5 int *p1, *p2;
6 p1 = new int; //heap memory allocation
7 *p1 = 42;
8 p2 = p1;
9 cout << "*p1 == " << *p1 << endl;

10 cout << "*p2 == " << *p2 << endl;
11 *p2 = 20;
12 cout << "*p1 == " << *p1 << endl;
13 cout << "*p2 == " << *p2 << endl;
14 p1 = new int;
15 *p1 = 100; //heap memory allocation
16 cout << "*p1 == " << *p1 << endl;
17 cout << "*p2 == " << *p2 << endl;
18 delete p1; //heap memory deallocation
19 return 0;
20 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 18 / 64

C++ class Basics

A class is a user-defined type

Used to make abstractions for easier code understanding and extension

A class consists of members

Members are data members and member functions

Data members defines the state of the object

Member functions defines the behaviour of the object

In C++ class members are accessed with . (dot)

Special functions: Constructors and destructors

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 19 / 64

Classes in C++

In C++ classes are declared with keyword class

[C++]
1 class name_class
2 {
3 private: // access specifier
4 int m; // declare member m (data)
5
6 public: // access specifier
7 name_class(int i=0): m(i) // constructor, will initialize data member m
8 {
9 }

10
11 int mf(int n) // a member function
12 {
13 int old = m;
14 m = n;
15 return old;
16 }
17 }; // remember to end classes with semicolon

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 20 / 64

public , private and protected

public , private and protected determines the access attributes of
the members following the keyword

A public member can be accessed from outside the class and anywhere
within the scope of the class object

A private member can only be accessed from within the class scope

A protected member can be accessed from other members of the same
class but also from members of derived classes.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 21 / 64

Data members

Data members usually define the internal state of the class

[C++]
1 class Employee
2 {
3 // ... some code here ...
4 private: // data members are usually private!
5 string name_; // name of employee
6 int age_; // the age of employee
7 double salary_; // the salary the employee gets
8 // .. some more code here ..
9 };

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 22 / 64

Member functions

Member functions are functions that can manipulate member data

[C++]
1 class Employee
2 {
3 private:
4 void IncreaseAge(); // member functions can also be private
5 public:
6 void TotalEmpl(int);
7 void GiveRaise()
8 {
9 salary_ *= 10;

10 }
11 };
12
13 // calls member function
14 void Employee::TotalEmpl(int x){
15 //...function implementation
16 }
17 employee.GiveRaise();

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 23 / 64

Constructors

A constructor is a function with the explicit purpose of initializing the
object and its data members

They are recognized as having the same name as the class itself

[C++] Constructors
1 class Employee
2 {
3 public: // constructors are usually public
4 Employee(); // default constructor
5 };
6
7 // ...
8
9 Employee tk; // default construction

10
11 Employee yw("Wangy", 28, 100); // create an employee
12 Employee ig("Ian", 28, 100000000000000); // create another employee

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 24 / 64

Destructors
Destructors are called when an object of class type goes out of scope

Its purpose is to clean up after the object, e.g. by de-allocating memory

[C++] Destructor
1 class Employee
2 {
3 public:
4 ˜Employee(); // destructor is declared using name of class prepended with ˜
5 };

[C++] Example
1 int main()
2 {
3 { // start scope
4 Employee employee; // declare employee as type Employee
5 }// employee goes out of scope and its destructor gets called
6 return 0;
7 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 25 / 64

Example 1: rectangle class

[C++] Rectangle class - part 1
1 //class rectangle
2 #include <iostream>
3 using namespace std;
4
5 //class definition
6 class rectangle {
7 private:
8 int width, height;
9 public:

10 rectangle (int, int); //constructor
11 ˜rectangle() {}; //destructor
12 int area() {return (width*height);}
13 };
14
15 //constructor implementation
16 //This function takes as inputs two integers and copies these numbers in the private data members width and height
17 rectangle::rectangle (int a, int b){
18 width = a;
19 height = b;
20 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 26 / 64

Example 1: rectangle class

[C++] Rectangle class - part 2
1
2 int main()
3 {
4 //Fist instance of the class rectangle
5 rectangle rect1 (3,4);
6 //Second instance of the class rectangle
7 rectangle rect2 (5,6);
8 cout << "First rectangle area: " << rect1.area() << endl;
9 cout << "Second rectangle area: " << rect2.area() << endl;

10 return 0;
11 }

The instances of the class are called objects . It is possible to
create many instances of a class.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 27 / 64

Exercise

Rewrite the rectangle class and adapt it to a triangle.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 28 / 64

Triangle class

[C++] Triangle class - part 1
1 //class triangle
2 #include <iostream>
3 using namespace std;
4
5 //class definition
6 class triangle {
7 private:
8 int base, height;
9 public:

10 triangle (int, int); //constructor
11 ˜triangle() {}; //destructor
12 int area() {return (base*height)/2;}
13 };
14
15 //constructor implementation
16 //This function takes as inputs two integers and copies these numbers in the private data members width and height
17 triangle::triangle (int a, int b){
18 base = a;
19 height = b;
20 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 29 / 64

Triangle class

[C++] Triangle class - part 2
1
2 int main()
3 {
4 //Fist instance of the class triangle
5 triangle tri1 (3,4);
6 //Second instance of the class triangle
7 triangle tri2 (5,6);
8 cout << "First triangle area: " << tri1.area() << endl;
9 cout << "Second triangle area: " << tri2.area() << endl;

10 return 0;
11 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 30 / 64

Multiple source files

A program can be split into multiple files.
Makes it easier to understand and change.
Allows individual parts to be compiled separately.
If I make a change in one Compilation Unit only that Compilation
Unit. must be recompiled, and NOT the whole program: faster
compilation times.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 31 / 64

Rectangle class declaration and implementation

Declaration (.h files): list of data and function members.
Definition (.cpp files): implementation of functions.

[C++] rectangle.h
1 class rectangle {
2 private:
3 double width, height;
4 public:
5 rectangle (double a, double b); //constructor
6 ˜rectangle(); //destructor
7 double area();
8 };

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 32 / 64

Rectangle class declaration and implementation

[C++] rectangle.cpp
1 #include <iostream>
2 #include "rectangle.h"
3 using namespace std;
4
5 //contructor implementation
6 rectangle::rectangle (double a, double b){
7 width = a;
8 height = b;
9 }

10
11 //destructor implementation
12 rectangle::˜rectangle(){}
13
14 //member function area implementation
15 double rectangle::area(){
16 return width*height;
17 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 33 / 64

Rectangle class declaration and implementation

[C++] main.cpp
1 //class rectangle
2 #include <iostream>
3 #include "rectangle.h"
4 using namespace std;
5 int main()
6 {
7 //Fist instance of the class
8 rectangle rect1 (3,4);
9 //Second instance of the class

10 rectangle rect2 (5,6);
11 cout << "First rectangle area: " << rect1.area() << endl;
12 cout << "Second rectangle area: " << rect2.area() << endl;
13 return 0;
14 }

[C++] results
1 First rectangle area: 12
2 Second rectangle area: 30

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 34 / 64

Rectangle class declaration and implementation

In the previous example we have two translation units that are
compiled separately.
To compile the units:

[C++] To compile
1 g++ main.cpp rectangle.cpp -o rectangle
2 //"rectangle" is the executable name

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 35 / 64

Exercise

Rewrite the rectangle class and adapt it to a triangle.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 36 / 64

Triangle class

[C++] triangle.h
1 class triangle {
2 private:
3 double base, height;
4 public:
5 triangle (double a, double b); //constructor
6 ˜triangle(); //destructor
7 double area();
8 };

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 37 / 64

Triangle class

[C++] triangle.cpp
1 #include <iostream>
2 #include "triangle.h"
3 using namespace std;
4
5 //contructor implementation
6 triangle::triangle (double a, double b){
7 base = a;
8 height = b;
9 }

10 //destructor implementation
11 triangle::˜triangle(){}
12
13 //member function area implementation
14 double triangle::area(){
15 return (base*height)/2.;
16 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 38 / 64

Triangle class

[C++] main.cpp
1 //class triangle
2 #include <iostream>
3 #include "triangle.h"
4 using namespace std;
5 int main()
6 {
7 //Fist instance of the class
8 triangle tri1 (3,4);
9 //Second instance of the class

10 triangle tri2 (5,6);
11 cout << "First triangle area: " << tri1.area() << endl;
12 cout << "Second triangle area: " << tri2.area() << endl;
13 return 0;
14 }

[C++] results
1 First triangle area: 6
2 Second triangle area: 15

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 39 / 64

Some good programming conventions

All member variables should in general be private to facilitate
encapsulation.
it is good practice to use a convention to name all private variables.
For instance, we could prepend their name with ”f”. So, if we see in
the code ”fNumber” we know that it is a private variable.
Getters and Setters functions are used to handle private info.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 40 / 64

Class rectangle

[C++] rectangle.h
1 #include <cmath> //for fabs
2 class rectangle {
3 private:
4 double fwidth, fheight;
5 public:
6 rectangle (double a = 0., double b = 0.); //constructor
7 ˜rectangle(); //destructor
8 double area();
9 double getWidth(){return fwidth;}

10 double getHeight() {return fheight;}
11 //These funcs. make sure that width and heigh are positive
12 void setWidth(double a) {fwidth = fabs(a);}
13 void setHeight(double b){fheight = fabs(b);}
14
15 };

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 41 / 64

Class rectangle

[C++] rectangle.cpp
1 #include <iostream>
2 #include "rectangle.h"
3 using namespace std;
4
5 rectangle::rectangle (double a, double b){
6 fwidth = a;
7 fheight = b;
8 }
9 rectangle::˜rectangle(){}

10
11 double rectangle::area(){
12
13 return fwidth*fheight;
14
15 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 42 / 64

Class rectangle

[C++] main.cpp
1 //class rectangle
2 #include <iostream>
3 #include "rectangle.h"
4 using namespace std;
5
6 int main()
7 {
8 //Fist instance of the class
9 rectangle rect1 (3,4);

10 cout << "Width = " << rect1.getWidth() << " Height = " << rect1.getHeight() << endl;
11 rect1.setWidth(12);
12 rect1.setHeight(11.5);
13 cout << "Width = " << rect1.getWidth() << " Height = " << rect1.getHeight() << endl;
14 //Second instance of the class
15 rectangle rect2 (5,6);
16 cout << "First rectangle area: " << rect1.area() << endl;
17 cout << "Second rectangle area: " << rect2.area() << endl;
18 return 0;
19 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 43 / 64

Class rectangle

[C++] output
1 Width = 3 Height = 4
2 Width = 12 Height = 11.5
3 First rectangle area: 138
4 Second rectangle area: 30

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 44 / 64

Inheritance

We’d to repeat a lot of code to write the triangle and
rectangle .
Since triangle and rectangle have many features in common,
we can share characteristics among similar types using inheritance.
Both triangle and rectangle can be thought as ”special” cases
of something more general (e.g. class shape).

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 45 / 64

Inheritance

Inheritance allows us to define a class in terms of another class, which
makes it easier to create and maintain an application. This also
provides an opportunity to reuse the code functionality and fast
implementation time.
When creating a class, instead of writing completely new data
members and member functions, the programmer can designate that
the new class should inherit the members of an existing class. This
existing class is called the base class, and the new class is referred to
as the derived class.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 46 / 64

Inheritance

Inheritance allows us to define a class in terms of another class, which
makes it easier to create and maintain an application. This also
provides an opportunity to reuse the code functionality and fast
implementation time.
When creating a class, instead of writing completely new data
members and member functions, the programmer can designate that
the new class should inherit the members of an existing class. This
existing class is called the base class, and the new class is referred to
as the derived class.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 47 / 64

Inheritance

A class can be derived from more than one classes, which means it
can inherit data and functions from multiple base classes.
In order to derive a class, you have to write:

[C++]
1 class derived-class: access-specifier base-class

Where access-specifier is one of public, protected, or private, and
base-class is the name of a previously defined class. If the
access-specifier is not used, then it is private by default.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 48 / 64

Inheritance

[C++] Class shape (shape.h)
1 #include <cmath>
2 //This class has the common characteristics of triangles and rectangles
3 class shape {
4 public:
5 shape (double a = 0., double b = 0.); //constructor
6 ˜shape(); //destructor
7 double getWidth(){return fwidth;}
8 double getHeight() {return fheight;}
9 //These funcs. make sure that fwidth and fheigh are positive

10 void setWidth(double a) {fwidth = fabs(a);}
11 void setHeight(double b){fheight = fabs(b);}
12
13 //Protected members can be accessed by this and whatever inherits from this
14 protected:
15 double fwidth, fheight;
16 };

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 49 / 64

Inheritance

[C++] Class shape (shape.cpp)
1 #include "shape.h"
2
3 //constructor implementation
4 shape::shape(double a, double b){
5 setWidth(a);
6 setWidth(b);
7 }
8
9 shape::˜shape() {}

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 50 / 64

Inheritance

Now we’ll make triangle inherit from shape. The only new code we
have to write is whatever is specific to triangle (in this case the area
function).
The class shape is the parent class, while triangle is the derived class.

[C++] Derived class triangle (triangle.h)
1 //Include the class that we want to inherit from
2 #include "shape.h"
3 class triangle : public shape {
4 public:
5 //A ctor and dtor must still be provided
6 triangle(double a = 0., double b = 0.);
7 ˜triangle();
8 //This function is specific to triangle
9 double area() {(fwidth*fheight)/2. ;}

10 };

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 51 / 64

Inheritance

[C++] Derived class triangle (triangle.cpp)
1 #include "triangle.h"
2 //constructor implementation
3 triangle::triangle(double a, double b) : shape(a,b){
4 //:shape(a,b) Parent object initialization
5 }
6 //Destructor implementation
7 triangle::˜triangle(){
8 //At the end of this destructor, the parent destructor is automatically called
9 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 52 / 64

Inheritance: exercise

Write a program that defines a base class named Shape and a derived
class named Rectangle or Triangle. The derived class must provide a
method to calculate the area according to the shape chosen. The methods
for setting width and height must check the input from the user and make
sure that it is positive.

[C++]
1 //To compile for example:
2 g++ main.cpp triangle.cpp shape.cpp -o triangle

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 53 / 64

Inheritance: solution

[C++] Class shape (shape.h)
1 // Base class shape
2 #include <cmath>
3 class Shape {
4 public:
5 Shape (double a = 0., double b =0.);
6 ˜Shape();
7
8 void setWidth(double a) {width = fabs(a);}
9 void setHeight(double b) {height = fabs(b);}

10
11 protected:
12 double width;
13 double height;
14 };

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 54 / 64

Inheritance: solution

[C++] Class shape (shape.cpp)
1 #include <iostream>
2 #include "shape.h"
3 using namespace std;
4
5 Shape::Shape (double a, double b){
6 width=a;
7 height=b;
8
9 }

10
11 Shape::˜Shape (){}

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 55 / 64

Inheritance: solution

[C++] Class shape (Triagle.h)
1 #include "shape.h"
2 class triangle : public Shape {
3 public:
4 //A ctor and dtor must still be provided
5 triangle(double a = 0., double b = 0.);
6 ˜triangle();
7 //This function is specific to triangle
8 double area() { return (width*height)/2. ;}
9 };

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 56 / 64

Inheritance: solution

[C++] Class shape (triagle.cpp)
1 #include "Triangle.h"
2
3 //constructor implementation
4 triangle::triangle(double a, double b) : Shape(a,b){
5 //:shape(a,b) Parent object initialization
6 }
7 //Destructor implementation
8 triangle::˜triangle(){
9 //At the end of this destructor, the parent destructor is automatically called

10 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 57 / 64

Inheritance: solution

[C++] Class shape (main.cpp)
1 #include <iostream>
2 #include "Triangle.h"
3 using namespace std;
4
5 int main() {
6 triangle tri1;
7
8 tri1.setWidth(5.8);
9 tri1.setHeight(1);

10
11 // Print the area of the object.
12 cout << "Total area: " << tri1.area() << endl;
13
14 return 0;
15 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 58 / 64

Pointers and classes

When I create an instance of a class, I allocate a memory space to
save the class data members.
I can then access this memory space in two ways:

Instantiating the class as in the previous examples:

[C++]
1 triangle tria1 (5.5,4);
2 cout << "Triangle 1 area:" << tria1.area() << endl;
3 //members are accessed using a ’.’

Using new operator (pointer):

[C++]
1 triangle* tria2 = new triangle(5,4);
2 cout << "Triangle 2 area:" << tria2->area() << endl;
3 //members are accessed using a ’->’

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 59 / 64

Pointers and classes: exercise

Consider the triangle class you wrote before and use new in order to
create an instance of the class.

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 60 / 64

Pointers and classes: solution

[C++] Triangle.h
1 class triangle {
2 private:
3 double width, height;
4 public:
5 triangle (double a, double b);
6 ˜triangle();
7 double area();
8 };

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 61 / 64

Pointers and classes: solution

[C++] Triangle.cpp
1 #include <iostream>
2 #include "Triangle.h"
3 using namespace std;
4
5 triangle::triangle (double a, double b){
6 width=a;
7 height=b;
8 }
9

10 triangle::˜triangle (){}
11
12 double triangle::area(){
13 return (width*height)/2;
14 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 62 / 64

Pointers and classes: solution

[C++] main.cpp
1 #include <iostream>
2 #include <cmath>
3 #include "Triangle.h"
4 using namespace std;
5
6 int main(){
7
8 triangle tria1 (5.5,4);
9 //IMPORTANT

10 triangle* tria2 = new triangle(5,4);
11
12 cout << "Triangle 1 area:" << tria1.area() << endl;
13 //IMPORTANT
14 cout << "Triangle 2 area:" << tria2->area() << endl;
15
16 //IMPORTANT
17 delete (tria2);
18 return 0;
19 }

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 63 / 64

Coding style

Use meaningful (intention-revealing) names;
Keep functions small (no more than 20 lines);
A single function should do one thing;
Use comments in order to explain why you do something (and not
how).

Caterina Marcon MNXB01 course - C++ module caterina.marcon@hep.lu.se 64 / 64

