Exercise session 7

v-gap metric. LMI approach to H_{∞} control.

Reading Assignment

[Zhou] Sections 17.2-3 and [Dullerud \& Paganini] Chapter 7

Exercises

E7.1 Calculate $\delta_{v}\left(P_{0}, P_{z}\right)$ and $\delta_{v}\left(P_{0}, P_{\eta}\right)$ for plants

$$
P_{0}=\frac{10\left(s^{2}+1\right)}{s^{2}\left(s^{2}+2\right)}, \quad P_{z}=\frac{10\left(s^{2}+1.1\right)}{s^{2}\left(s^{2}+2\right)}, \quad P_{\eta}=\frac{10\left(s^{2}+1\right)}{s^{2}\left(s^{2}+1.8\right)}
$$

and conclude about a sensitivity of δ_{v} to the variation in the imaginary axis zeros and poles. Explain the result from the Riemann sphere interpretation of δ_{v}.
E7.2 Connections to Riccati solutions for the H_{∞} problem. Let

$$
\hat{G}(s)=\left[\begin{array}{c|cc}
A & B_{1} & B_{2} \\
\hline C_{1} & 0 & D_{12} \\
C_{2} & D_{21} & 0
\end{array}\right]
$$

satisfy the normalization conditions

$$
D_{12}^{*}\left[\begin{array}{ll}
C_{1} & D_{12}
\end{array}\right]=\left[\begin{array}{ll}
0 & I
\end{array}\right] \quad \text { and } \quad D_{21}\left[\begin{array}{ll}
B_{1}^{*} & D_{21}^{*}
\end{array}\right]=\left[\begin{array}{ll}
0 & I
\end{array}\right] .
$$

(a) Show that the H_{∞} synthesis is equivalent to the feasibility of the LMIs $X>0$, $Y>0$ and

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A^{*} X+X A+C_{1}^{*} C_{1}-C_{2}^{*} C_{2} & X B_{1} \\
B_{1}^{*} X & -I
\end{array}\right]<0} \\
& {\left[\begin{array}{cc}
A Y+Y A^{*}+B_{1} B_{1}^{*}-B_{2} B_{2}^{*} & Y C_{1}^{*} \\
C_{1} Y & -I
\end{array}\right]<0} \\
& {\left[\begin{array}{cc}
X & I \\
I & Y
\end{array}\right] \geq 0}
\end{aligned}
$$

(b) Now denote $P=Y^{-1}, Q=X^{-1}$. Convert the above conditions to the following:

$$
\begin{array}{r}
A^{*} P+P A+C_{1}^{*} C_{1}+P\left(B_{1} B_{1}^{*}-B_{2} B_{2}^{*}\right) P<0 \\
A Q+Q A^{*}+B_{1} B_{1}^{*}+Q\left(C_{1}^{*} C_{1}-C_{2}^{*} C_{2}\right) Q<0 \\
\rho(P Q) \leq 1
\end{array}
$$

These are two Riccati inequalities plus a spectral radius coupling condition. Formally analogous conditions involving the corresponding Riccati equations can be obtained when the plant satisfies some additional technical assumptions. For details consult the references in [Dullerud \& Paganini] Chapter 7.

E7.3 Consider the plant

$$
P=\left[\begin{array}{cc|cc}
-4 & 25 & 0.8 & -1 \\
-10 & 29 & 0.9 & -1 \\
\hline 10 & -25 & 0 & 1 \\
13 & 25 & 1 & 0
\end{array}\right]
$$

Apply [Dullerud \& Paganini, Theorem 7.9] to verify if there exists a K such that the lower linear fractional transformation

$$
\left\|T_{z w}\right\|_{\infty}=\left\|P_{11}+P_{12} K\left(I-P_{22} K\right)^{-1} P_{21}\right\|_{\infty}<\gamma,
$$

where $\gamma=1$. If so, construct a K using the method described in [Dullerud \& Paganini, Section 7.3].
E7.4 (Very optional) Synthesize an H_{∞} optimal state-feedback controller through minimizing γ over $P \succ 0$ and Q such that

$$
\left[\begin{array}{cccc}
P A^{T}+A P+Y^{T} B_{2}^{T}+B_{2} Y & B_{1} & P & Y^{T} \\
B_{1}^{T} & -\gamma^{2} I & 0 & 0 \\
P & 0 & -I & 0 \\
Y & 0 & 0 & -I
\end{array}\right] \prec 0,
$$

by the use of, e.g., CVX - see http://cvxr.com/cvx/. Perform synthesis for

$$
A=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right], \quad B_{1}=B_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Hand-In problems:

H7.1 Continuation of hand-in problem from Exercise 6. Let a nominal plant be given by $P=\frac{s-1}{s(s+2)}$ and we select $W=k$, a constant, as the shaping function. Thus $P_{s}=\frac{k(s-1)}{s(s+2)}$.

1. Calculate $\delta_{v}\left(P, P_{s}\right)$ for 4 different choices of $W=k$

$$
k=\left[\begin{array}{llll}
.1 & 1 & 5 & 10
\end{array}\right] .
$$

2. Conclusions?

H7.2 Repeat E7.3 for $\gamma=1.5$.

