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Lecture 2

Well-posedness and internal stability.

Coprime factorization over H∞.

Performance specifications in terms of H2 and H∞ norms.
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Well-Posedness

Even for a matrix equation Ax = b, the solution x does not always exist.

Feedback gives a linear equation in an infinite-dimensional space. Solvability?h
h
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w2

e1 = K e2 +w1

e2 = Pe1 +w2

Example: Let P (s) = s+1
s+2 and K (s) = 1. The closed-loop system is not proper

1

1− s+1
s+2

= s +2

s +2− s −1
= s +2.
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The system is solvable if the matrix of the system is invertible for almost all s. Thene1

e2

=
 I −K
−P I

−1 w1

w2



Definition: The closed-loop system is called well-posed if I −K
−P I

−1

exists for almost all s and is a proper function.
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Lemma: Let G be proper and square. Then G−1 exists for almost all s and is proper if and

only if G(∞) is nonsingular.

Proof: Let G(s) =C (sI − A)−1B +D. Hence G(∞) = D.

“⇒”: G−1 exists and is proper ⇒ G(∞)−1 exists and is bounded ⇒ G(∞) is nonsingular.

“⇐”:

{
ẋ = Ax +Bu

y =C x +Du
Solving the output equation for u gives u = D−1(y −C x). Inserting

this in the state equation gives{
ẋ = (A−BD−1C )x +BD−1 y

u =−D−1C x +D−1 y

The transfer function from y to u therefore becomes

G(s)−1 = D−1 −D−1C (sI − A+BD−1C )−1BD−1.

Hence, the inverse exists for almost all s (except the eigenvalues of the matrix

A−BD−1C ) and is proper.
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Corollary: The following statements are equivalent

1 The closed-loop system (P,K ) is well-posed,

2

 I −K (∞)
−P (∞) I

 is invertible,

3 I −K (∞)P (∞) is invertible,

4 I −P (∞)K (∞) is invertible.

Proof: Due to [Zhou,p. 14] and det(I ) = 1 we have

det

 I −K
−P I

 = det(I −K P ) = det(I −PK )

Remark: Very often in practical cases we have P (∞) = 0 (no direct feed-through). This

gives well-posedness automatically
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Internal Stability

Well-posedness guarantees solvability. What about stability?

Definition: The closed-loop system is called internally stable if I −K
−P I

−1

∈ RH∞

The H∞-norm of this operator is the L2-gain from disturbances w to loop signals e. Using

the formula in [Zhou,p. 14] we get the equivalent condition (I −K P )−1 K (I −PK )−1

P (I −K P )−1 (I −PK )−1

 ∈ RH∞.
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Corollary 1: Let K ∈ RH∞. Then (P,K ) is internally stable iff it is well-posed and

P (I −K P )−1 ∈ RH∞.

Corollary 2: Let P ∈ RH∞. Then (P,K ) is internally stable iff it is well-posed and

K (I −PK )−1 ∈ RH∞.

Corollary 3: Let P and K ∈ RH∞. Then (P,K ) is internally stable iff it is well-posed and

(I −PK )−1 ∈ RH∞.

See [Zhou,p.69] for proof (very easy).
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Theorem

The system is internally stable if and only if it is well-posed and

1 There are no unstable pole-zero cancellations in PK ,

2 (I −PK )−1 ∈ RH∞.

Proof: See Zhou Theorem 5.5.
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Coprime factorization

Definition: Let m, n ∈ RH∞. Then m and n are said to be coprime over RH∞ if there

exist x, y ∈ RH∞ such that xm + yn = 1.

Definition: Two matrices M , N ∈ RH∞ are said to be

right coprime over RH∞ if there exist X , Y ∈ RH∞ such thatX Y
M

N

= X M +Y N = I .

left coprime over RH∞ if there exist X , Y ∈ RH∞ such thatM N
X

Y

= M X +N Y = I .

The right hand equations are called Bezout identities
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Coprime Factorization over RH∞

Let P be a proper real rational matrix. A right coprime factorization (rcf) of P is a

factorization P = N M−1 where N and M are right coprime over RH∞.

Similarly, a left coprime factorization (lcf) of P has the form P = M̃−1Ñ and Ñ and M̃ are

left coprime over RH∞. Of course, M and M̃ are square.

Coprimeness means there is no cancellation in the fraction (no nontrivial common

right/left divisors).

For scalar plant rcf=lcf.

For real rational matrices both factorizations always exist.

They are not unique.

There is a state space method to calculate them.
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Feedback Interpretation

Let P (s) =C (sI − A)−1B +D, that is

ẋ = Ax +Bu,

y =C x +Du

Introduce a change of control v = u −F x where A+BF is stable. Then we get

ẋ = (A+BF )x +B v u = F x + v

y = (C +DF )x +Dv

Denote by M(s) the transfer function from v to u and by N (s) the transfer function from v
to y

M(s) = F (sI − A−BF )−1B + I ,

N (s) = (C +DF )(sI − A−BF )−1B +D.

Therefore, u = M v , y = N v and, finally, y = N M−1u
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Coprime Factorization and Internal Stability

Consider a plant P and a controller K with some rcf and lcf

P = N M−1 = M̃−1Ñ K =UV −1 = Ṽ −1Ũ

Theorem: The following conditions are equivalent:

1 The closed-loop system (P,K ) is internally stable.

2

M U
N V

 is invertible in RH∞.

3

 Ṽ −Ũ
−Ñ M̃

 is invertible in RH∞.

4 M̃V − ÑU is invertible in RH∞.

5 Ṽ M −Ũ N is invertible in RH∞.

Proof: See [Zhou,p. 74].
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Double Coprime Factorization

A double coprime factorization (dcf) of P over RH∞ is a factorization

P = N M−1 = M̃−1Ñ

such that there exist Xr , Xl , Yr , Yl ∈ RH∞ and it holds Xr Yr

−Ñ M̃

M −Yl

N Xl

= I .

The only difference between the dcf and a couple of some rcf and lcf is in additional

condition Xr Yl = Yr Xl

The controller K =−Yl X −1
l =−X −1

r Yr is internally stabilizing.

There is a state space method to calculate dcf explicitly (see [Zhou]).
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Performance Specifications

Introduce the following notations

Li = K P,
Si = (I +Li )−1,
Ti = I −Si ,

Lo = PK ,
So = (I +Lo)−1,
To = I −So .

Li — the input loop transfer function,

Lo — the output loop transfer function,

Si — the input sensitivity (up = Si di ).

So — the output sensitivity (y = Sod).

T — the complementary sensitivity.
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Performance specifications

f f
f
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y = To(r −n)+SoPdi +Sod ,

r − y = So(r −d)+Ton −SoPdi ,

u = K So(r −n)−K Sod −Ti di ,

up = K So(r −n)−K Sod +Si di

1) Good performance requires

σ(Lo) >> 1, σ(Li ) >> 1, σ(K ) >> 1.

2) Good robustness and good sensor noise rejection requires

σ(Lo) << 1, σ(Li ) << 1, σ(K ) ≤ M .

Conflict!!! Separate frequency bands!
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Desired loop gain
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H2 and H∞ Performance.

For good rejection of d at y and u both ‖So‖ and ‖K So‖ should be small at low-frequency

range. It can be captured by the norm specification∥∥∥∥ We SoWd

ρWuK SoWd

∥∥∥∥
2 or ∞

≤ 1

where Wd reflects the frequency contents of d or models the disturbance power spectrum,

We reflects the requirement on the shape of So and Wu reflects restriction on the control.

For robustness to high frequency uncertainty, the complimentary sensitivity has to be

limited ∥∥∥∥ We SoWd

ρWuToWd

∥∥∥∥
∞

≤ 1
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What have we learned today?

Well-posedness to guarantee solvability.

Internal stability — stability of a feedback loop

Coprime factorization and internal stability.

State space formula to calculate coprime factors.

Performance specifications

Using norms to capture loop requirements.
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