
Robust Control
Lecture 1: introduction, norms and spaces.

Carolina Bergeling



Robust Control, 9hp

7 Lectures, 7 exercises

Literature: Essentials of Robust Control, Zhou/Doyle, + Handouts

Tools: Matlab

Schedule and material: see Canvas page

Examination: Exercises + Handins + Exam

Collaboration encouraged on exercises and handins!

Handins are due before the exercise session, email to:

carolina.bergeling@control.lth.se with subject Robust control handin X

Prepare so that you are able to share your solutions to the exercises at the session.

(Take a photo of handwritten notes or typeset)
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Controls education (related to robust control)

Linear Algebra

Control course, basic

Matrix Theory

Multivariable Control

Functional Analysis (for Systems Theory)

Linear Systems

Robust Control

Carolina Bergeling Robust Control Lecture 1: introduction, norms and spaces.



Lecture 1 - today

Why robust control?

What the course (and book) is about

How to compare systems - Norms and spaces
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Why robust control?
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Doyle’s counterexample

Background: LQR guarantees 60◦ phase margin and 6 dB gain margin. Does there exist

similar guarantees for LQG (Kalman filter in the loop)?

Assume u =−mLx, m nominally equals 1. Then stability (as dependent on m) requires

d + f −4+2(m −1)d f > 0

1+ (1−m)d f > 0
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Doyle’s counterexample

Counterexample: Given [
ẋ1

ẋ2

]
=

[
1 1
0 1

][
x1

x2

]
+

[
0
1

]
u +

[
1
1

]
w

y = [
1 0

][
x1

x2

]
+ v,

with Q = qCC T , q > 0,R = 1, the optimal control and filter gain vectors are given by

L = f
[
1 1

]
, K = d

[
1
1

]
,

where f = 2+√
4+q and d = 2+p

4+σ.

Assume u =−mLx, m nominally equals 1.

Then stability (as dependent on m) requires

d + f −4+2(m −1)d f > 0
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Doyle’s counterexample

Assume u =−mLx, m nominally equals 1. Then stability (as dependent on m) requires

d + f −4+2(m −1)d f > 0

1+ (1−m)d f > 0

For sufficiently large f and d (or q and σ), the system is unstable for arbitrarily small

perturbations in m in either direction.
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What is this course about?

We design a controller C for a mathematical model M and want the corresponding real

process P to behave well.

Problems:

P 6= M

Even if P = M there is controller implementation errors

Robustness philosophy: The controller C is robust if

P ≈ M
Cr ≈ C

⇒ (P,Cr ) ≈ (M ,C ).

What does it mean “≈”? (This lecture)

How to check this? — Analysis.

How to find the controller? — Synthesis
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What does “≈” mean?

We want to be able to compare different systems. How to do that?

Simpler question, how do you compare the maginitude of a scalar x with a scalar y?

One level up, what if x and y are vectors in Rn?

Yet another level up, what if x and y are functions of time, i.e., x(t ) and y(t )?

And what if we want to compare a system G1 to another system G2?

Dream: To use intuition from Rn in more general situations
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Linear (or vector) space

Consider a set X = {x} and F=R or C with two operations + : X ×X → X and · : F×X → X .

Then X is a linear space if
1 x1 +x2 = x2 +x1.

2 (x1 +x2)+x3 = x1 + (x2 +x3).

3 ∃0 ∈ X such that x +0 = x ∀x ∈ X .

4 ∀x ∈ X ∃(−x) ∈ X such that x + (−x) = 0.

5 (λ1 +λ2)x =λ1x +λ2x.

6 λ(x1 +x2) =λx1 +λx2.

7 λ1(λ2x) = (λ1λ2)x.

8 1x = x.

Carolina Bergeling Robust Control Lecture 1: introduction, norms and spaces.



Linear (or vector) space

Consider a set X = {x} and F=R or C with two operations + : X ×X → X and · : F×X → X .

Then X is a linear space if
1 x1 +x2 = x2 +x1.

2 (x1 +x2)+x3 = x1 + (x2 +x3).

3 ∃0 ∈ X such that x +0 = x ∀x ∈ X .

4 ∀x ∈ X ∃(−x) ∈ X such that x + (−x) = 0.

5 (λ1 +λ2)x =λ1x +λ2x.

6 λ(x1 +x2) =λx1 +λx2.

7 λ1(λ2x) = (λ1λ2)x.

8 1x = x.

Example 1: Rn or C n

Example 2: functions from

any field Ω to F

( f + g )(t ) = f (t )+ g (t )
(λ · g )(t ) =λ · g (t )
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The space of linear systems

Denote by L the set of all linear systems. It becomes the linear space with the following

natural definition of + and ·
y1 = G1u,
y2 = G2u

⇒ (G1 +G2)u = y1 + y2,

y =Gu ⇒ (λG)u =λy.

Only algebraic linearity is rather poor generalization of Rn . What about the distance

between two linear systems? What does it mean

G1 ≈G2?
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Normed linear space

A linear space X is called normed if every vector x ∈ X has an associated real number ‖x‖
— its “length”, called the norm of the vector x, — with the following properties

1 ‖x‖ ≥ 0 and ‖x‖ = 0 ⇔ x = 0.

2 ‖λx‖ = |λ|‖x‖.

3 ‖x1 +x2‖ ≤ ‖x1‖+‖x2‖.

Now we can say that x1 ≈ x2 if ‖x2 −x1‖ is small.
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Norms for signals

Consider signals mapping (−∞,∞) to R (piecewise continuous)

Some norms for a signal u(t )

‖u‖1 =
∫ ∞

−∞
|u(t )|d t

‖u‖2 =
(∫ ∞

−∞
u(t )2d t

) 1
2

‖u‖∞ = sup
t

|u(t )|
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Norms for signals

Consider signals mapping (−∞,∞) to R (piecewise continuous)

Some norms for a signal u(t )

‖u‖1 =
∫ ∞

−∞
|u(t )|d t

‖u‖2 =
(∫ ∞

−∞
u(t )2d t

) 1
2

‖u‖∞ = sup
t

|u(t )|

Reminder: For u ∈RN

‖u‖1 =
N∑

i=1
|ui |

‖u‖2 =
(

N∑
i=1

u2
i

) 1
2

‖u‖∞ = max
i

|ui |
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System definition and properties

Consider systems that are linear, time-invariant, causal, and finite-dimensional.

Time domain: y = g ∗u = ∫ ∞
−∞ g (t −τ)u(τ)dτ. (Causality means that g (t ) = 0 for t < 0.)

Frequency domain: ŷ =Gû where G is the Laplace transform of g

G is

rational by finite-dimensionality, and has real coefficients.

stable if it is analytic in the closed right half-plane

proper if G( j∞) is finite

strictly proper if G( j∞) = 0
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Norms for systems

Some norms for the transfer function G

‖G‖2 =
(

1

2π

∫ ∞

−∞
|G( jω)|2dω

) 1
2

‖G‖∞ = sup
ω

|G( jω)|

Notice that if G is stable, then ‖G‖2 = ‖g‖2 (by Parseval’s theorem).

When are they finite? No poles on imaginary axis, and strictly proper/proper for 2-norm

and ∞-norm, respectively.
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Input-Output Relationships

G stable and strictly proper.

u(t ) = δ(t ) u(t ) = sin(ωt )
‖y‖2 ‖G‖2 ∞
‖y‖∞ ‖g‖∞ |G( jω)|
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Input-Output Relationships

G stable and strictly proper.

‖u‖2 ‖u‖∞
‖y‖2 ‖G‖∞ ∞
‖y‖∞ ‖G‖2 ‖g‖1

Entries given by sup‖u‖U≤1 ‖y‖Y - what is such a norm called?
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Induced norm

A linear system can be considered as an operator from the input space U to the output

space Y . If U and Y are normed linear spaces then the following system norm is said to be

induced by the signal norms on U and Y

‖G‖ = sup
‖u‖U≤1

‖Gu‖Y .

Now we can compare G1 and G2 through ‖G1 −G2‖.
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Banach spaces

A complete normed linear space is called Banach space.

Completeness means that there are no holes in the space. (Cauchy sequences converge to

a well defined limit within the space)
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Hilbert spaces

An inner product is a functional 〈,〉 with the properties

1 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 iff x = 0.

2 〈x1, x2〉 = 〈x2, x1〉.
3 〈x1 +x2, x3〉 = 〈x1, x3〉+〈x2, x3〉.
4 〈λx1, x2〉 =λ〈x1, x2〉.

If there is an inner product on X then the norm can be defined as

‖x‖ =
√
〈x, x〉. (1)

A Banach space with inner product and the norm (1) is called Hilbert space.
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Remark:

Existence of the inner product gives an additional nice property of the corresponding

norm which makes the space be very similar to Rn . This property is

‖x1 +x2‖2 +‖x1 −x2‖2 = 2(‖x1‖2 +‖x2‖2).

It simplifies drastically the optimization in Hilbert spaces.
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Examples: L2 and L∞ spaces.

Example 1: L2 space. Consider the linear space of all matrix-valued functions on R

L2(R) = {F :
∫
R

tr[F (t )∗F (t )]d t <+∞}.

This is the Hilbert space with the inner product

〈F,G〉2 =
∫
R

tr[F (t )∗G(t )]d t

Example 2: L∞ space. Consider the linear space of all matrix-valued functions on R

L∞(R) = {F : ess supσmax [F (t )] <+∞}.

This is a Banach space with ‖F‖∞ = ess supt∈Rσmax[F (t )]
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Choice of U and Y as L2.

One of the simplest choices of the input and output spaces is L2 mainly because it is the

Hilbert space. In this case the linear system G is a stable linear operator on L2[0,∞)

G : L2[0,∞) → L2[0,∞)

and the norm of the linear system is L2-induced norm

‖G‖ = sup
‖u‖2≤1

‖Gu‖2 = ‖G( jω)‖∞

where G(s) is the transfer function of LTI system (Parseval’s relation + Theorem 4.3 in

[Zhou+Doyle]).
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Stability and Hardy spaces.

Stability is a very important issue in system analysis.

This motivates the introduction of Hardy spaces:

Define for p = 2 and p =∞

Hp = {F ∈ Lp ( jR) : F is analytic in the right half plane}

‖F‖Hp = sup
σ>0

‖F (σ+ jω)‖Lp .
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Are these norms easy to compute?

If G is stable, rational and strictly proper, then

‖G‖p := ‖G( jω)‖Lp = ‖G‖Hp .

Notice that ‖G‖2 is finite if only if G is strictly proper.

L2/H2 norm:

Theorem 1: Let G(s) =C (sI − A)−1B and A is stable matrix. Then

‖G‖2
2 = tr(B∗QB) = tr(C PC∗)

where P is controllability and Q is observability Gramian

AP +PA∗+BB∗ = 0,

A∗Q +Q A+C∗C = 0.
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The formula for ‖G‖2

The transfer function G(s) is the Laplace transform of the impulse response

g (t ) =
{

Ce At B , t ≥ 0

0, t < 0

Hence by Parseval’s formula

‖G‖2
2 = 1

2π

∫ ∞

−∞
tr{G(iω)∗G(iω)}dω=

∫ ∞

0
tr{g (t )∗g (t )}d t

=
∫ ∞

0
tr{B∗e A∗tC∗Ce At B}d t = tr(B∗QB)

since

Q =
∫ ∞

0
e A∗tC∗Ce At d t

Carolina Bergeling Robust Control Lecture 1: introduction, norms and spaces.



L∞/H∞ norm:

For real-rational plants ‖G‖∞ <+∞ only if G(s) is proper.

The computation is more complicated than for H2 norm and requires a search.

Theorem 2: Let G(s) =C (sI − A)−1B +D ∈ H∞. Then ‖G‖∞ < γ if and only if

1 σmax(D) < γ,

2 H has no eigenvalues on the imaginary axis

where R = γ2I −D∗D and

H =
 A+BR−1D∗C BR−1B∗

−C∗(I+DR−1D∗)C −(A+BR−1D∗C )∗
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What have we learned today?

Robustness as a property of the closed-loop system to have similar behavior for all

plants “close” to the nominal one.

Normed linear space as the main tool to handle “close-far” notion. G1 is “close” to G2

↔ ‖G1 −G2‖ is small.

‖G‖ depends on norms of input and output signal spaces.

L2 and L∞ plus stability gives H2 and H∞. These are the most important spaces in

the theory of robust control.

They are also not very hard to compute — H2 easier, H∞ harder (needs an iteration).
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