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Practical Things

You log in using the account name lab_tanka (just as in lab 1). Leave the password

field empty. The two windows of the graphical user interface are opened automati-

cally at login together with MATLAB, running in console mode.

1. Introduction

Laboration 1 gave practical experience of, and insight into, PID control. However,

the laboration lacked a systematic method for choosing the controller parameters.

The objective of this laboration is to show how one can construct a mathematical

model of the process to be controlled and choose suitable controller parameters using

this model.

The laboration is carried out on the same tank system, which was used during labo-

ration 1, see Figure 1.

Figure 1 Lab setup (of which the left half is used).
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Preparations

In order to get as much as possible out of the lab, you need to master the concepts of

linearization, transfer function, characteristic polynomial and pole placement.

You shall have read through this manual. You shall also have worked through the

preparatory exercises 2.1, 2.2, 2.3, 2.4, 2.5, 2.7, 2.8, 3.1 and 3.6. Co-operation is al-

lowed (and endorsed). Observe that assignments 3.1 and 3.6 are completed during

class. Re-read the appendix of laboration 1 (on the user interface) if you have forgot-

ten any details.

The laboration starts with a written test, consisting of two randomly chosen review

questions. The answer of both these questions must be reasonably correct in or-

der for you to continue with the laboration. Additionally, you shall be able to

account for your solutions to the preparatory exercises, if the lab assistant asks

you. The review questions are found on page 19.

Don’t forget to bring the manual from lab 1 in order to compare results. (Also, the

appendices describing the lab interface are found in the manual of lab 1.)

2. Modelling

In this section we will derive a mathematical model of the tank system, originating

in physical principles and construction data. The obtained mathematical model shall

then be verified through experiments.

Prior to the actual modelling, it might be worthwhile to pay attention to a practical

aspect, which is uncomplicated, but nevertheless a frequent cause of control system

implementation errors.

Units and Unit Conversion In this (and the previous) laboration a physical process

is controlled using a controller. In physical reality we deal with signals of diverse

units, such as levels [m], flows [m3 s−1] and voltages [V]. Our controller is imple-

mented in a digital computer, which can only handle unit-less numbers.

Units of constants and signals will be explicitly given, in order not to get lost in the

’unit jungle’. We use [1] to denote a unit-less entity. At first sight, this may seem

superfluous. However, the absence of a proper unit analysis easily leads to errors

which are both severe and hard to locate.

The block diagram in figure 2 illustrates our closed loop control system. The in- and

output signals of the controller are unit-less and normalized to the interval (0,1). The

control signal is converted to a voltage by means of a D/A (Digital/Analog) con-

verter. The voltage signal is amplified and used to drive the pump. Here, we consider

the amplifier to be a internal part of the pump and the pump voltage to be linearly

proportional to flow through the pump.

The water level in either tank is measured using pressure sensors, generating a volt-

age proportional to the water pressure (i.e., proportional to the level). This voltage

is converted to a unit-less number, normalized to (.0,1) by means of an A/D (Ana-

log/Digital) converter.

It is not obvious where to place the division between process and controller. However,

it is practise to place it so that the in- and output of the process obtain the same unit.

A natural way to achieve this is to consider the D/A and A/D converts as part of the
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Amplifier,
Pump

D/A A/DTank

Voltage Flow Level Voltage NumberNumberNumber

Algorithm Level sensor

kda kadkmkp

Figure 2 Block diagram of the control system with unit converters kda, kp, km and kad .

process, rather than the controller. Hence, the in-and outputs of the controller become

unit-less signals normalized to (0,1).

In order to simplify our work, the block diagram in Figure 2 is replaced by the equiv-

alent scheme of Figure 3.

Assignment 2.1 (Preparation) What are the units of the conversion factors kda,

kp, km and kad in Figure 2? Express the new constants α and β in Figure 3 in the

constants of Figure 2. Especially, give the units of the new constants.

Tank

Process

Number Number Flow Level Number

Algorithm Unit converter Unit converter

α β

Figure 3 Equivalent block diagram for the closed loop system.

We have now completed our unit analysis and obtained a process model with unit-less

in- and outputs, in the interval (0,1). The interval (0,1) corresponds to (pump turned

off, pump running at max) for the input and (empty tank, full tank) for the output.

After this important, and unfortunately often neglected, step we are ready to assemble

a mathematical model of our control system, which will be used to design various

controllers.

Assignment 2.2 (Preparation) Use volume balance to derive a differential equation

describing the relation between the inflow qu(t) [m3 s−1] to the upper tank and the

heights h1(t) [m] and h2(t) [m] of the upper and lower tanks, respectively. Within

each tank, an approximate relation between outflow speed v(t) [m s−1] and water

level h(t) [m] is given by Torricelli’s law:

v(t) =
√

2gh(t)
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where g = 9.81 [m s−2] is the acceleration of gravity. Denote by A1 [m2] and A2 [m2]

the cross section areas of the upper and lower tank, respectively. Further, let a1 [m2]

and a2 [m2] denote the corresponding outflow cross sections. Neglect any dynamics

within the hoses and the pump.

Hint: When a liquid with speed v(t) [m s−1] flows through a hole of cross section

a [m2], the flow is given by q(t) = a v(t) [m3 s−1]. See Figure 3 and be consistent

with the usage of units.

We now have a physical model with flow [m3 s−1] as input and levels [m] as states

(outputs), while the in- and outputs of the desired model are unit-less numbers, nor-

malized to (0,1).

Assignment 2.3 (Preparation) Introduce the unit conversions qu = αu, h1 = x1/β
and h2 = x2/β in your model from assignment 2.2. Let the state variables x1,x2 [1]

be the tank levels h1,h2 [m], normalized to (0,1).

Assignment 2.4 (Preparation) The tanks in this lab have the same cross section

areas, i.e., A = A1 = A2 [m2]. Show that the process is described by the model

dx1(t)

dt
=−γ1

√

x1(t)+δu(t)

dx2(t)

dt
= γ1

√

x1(t)− γ2

√

x2(t)

(1)

where

γ1 =
a1

A

√

2gβ [s−1], γ2 =
a2

A

√

2gβ [s−1], δ =
αβ

A
[s−1]

Note: This is a state space description of a non-linear system. How can this be seen?

The interval (0,1) [1] in the states x1,x2 corresponds to the water level interval

(0,0.16) [m] in the upper and lower tank, respectively. Compute theoretical values

for the parameters δ , γ1 and γ2 from the construction data shown below. Insert the

results in the table below.

Tank cross sections: A1 = A2 = 4.9 ·10−4 m2

Outlet cross sections: a1 = a2 = 3.1 ·10−6 m2

Conversion factor from control to flow: α = 2.1 ·10−5 m3s−1

Conversion factor from height to measurement: β = 6.25 m−1

Assignment 2.5 (Preparation) In practice, there exist differences between the in-

dividual tank processes. Additionally, their characteristics vary with time – the holes

get congested, the pump gets worn, etc. Hence, the theoretical values are not ab-

solutely reliable. However, the actual values can be estimated by means of simple

experiments:

• δ can be estimated by blocking the outflow of the upper tank (by means of

AV3), issuing a constant control signal and measuring the time it takes for the

measurement signal to increase from a given value to another.

• γ1 and γ2 can be estimated by issuing a constant control signal, waiting until

the system reaches equilibrium and then reading the corresponding stationary

states x0
1 and x0

2.

Show, starting with equation (1), how the above experiments can be used to compute

experimental values for first δ , then γ1 and finally γ2.
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Assignment 2.6 Log in according to the description in the beginning of this man-

ual (if you have not already done so). Conduct the experiments and calculations in

accordance with assignment 2.5 in order to determine experimental values of δ , γ1

and γ2.

Theoretical value Experimental value

δ

γ1

γ2

Confirm that the experimental values match the theoretical ones to some extend.

Preferably, base your controller design on the experimental values. Why?

Note: We are now done with modelling and identification of process parameters.

The obtained model has normalized and unit-less in- and outputs as well as states.

Consequently, the notion of units can be dropped from here on.

Assignment 2.7 (Preparation) Linearize the system (1) around an arbitrary equi-

librium (x0
1, x0

2). (In the laboration, x0
1 = 0.5 and x0

2 = 0.5 will be used.)

Assignment 2.8 (Preparation) Show that the linearized system from assignment 2.7

can be described by the following transfer function, where the output is given by

y1(t) = x1(t), y2(t) = x2(t).

∆Y1(s) =
ρτ1

1+ sτ1

∆U(s)

∆Y2(s) =
ρτ2

(1+ sτ1)(1+ sτ2)
∆U(s)

(2)

Determine the parameters ρ , τ1 and τ2 as functions of the process parameters δ , γ1

and γ2 at the operating point x0
1, x0

2.

3. Computation of Controller Parameters

In this section, we shall compute controller parameters for controlling the upper and

lower tank, respectively. We start out with the mathematical models, which were

obtained in the previous section. The controllers will eventually be evaluated on the

real system.

The controller parameters will depend on specifications, which we wish the con-

trolled system to meet. A specification can be of several natures; here we will con-

sider the poles of the closed loop system. As you know, the pole placement has an

intuitive interpretation in terms of speed and damping of the closed loop system.
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In this laboration, we will work with PI and PID controllers. By choosing the PI(D)

parameters in an appropriate way, a desired characteristic polynomial (denominator

polynomial) of the closed loop system can be obtained. See Figure 4.

+
r y yr

GR Gp G

−1

Figure 4 The closed loop system is specified through a desired characteristic polynomial.

The process transfer function Gp(s) and the controller transfer function GR(s) are

given by

Y (s) = GP(s)U(s)

U(s) = GR(s)E(s) = GR(s)(R(s)−Y (s))
(3)

From these transfer functions, the closed-loop transfer function becomes

Y (s) = G(s)R(s) =
GP(s)GR(s)

1+GP(s)GR(s)
R(s) (4)

The goal is to determine the parameters of controller GR(s) so that the closed-loop

transfer function G(s) gets a desired denominator polynomial.

Control of the Upper Tank

Assignment 3.1 (Preparation) Show that the closed-loop transfer function G is

determined by process transfer function Gp and controller transfer function GR ac-

cording to Equation 4. The process transfer function of the upper tank is given by

the first equation of (2) from assignment 2.8. The controller transfer function of a PI

controller is given by

u(t) = K

(

e(t)+
1

Ti

∫ t

0
e(τ)dτ

)

⇔ U(s) = K

(

1+
1

sTi

)

E(s) (5)

Use these two transfer functions to design a PI controller for the upper tank. Choose

the controller parameters so that the closed loop system obtains a relative damping ζ
and an undamped angular frequency of oscillation ω , i.e., the characteristic polyno-

mial of the closed loop system should be

s2 +2ζωs+ω2 (6)

The controller parameters K and Ti shall be expressed in the process parameters ρ
and τ1 together with the design parameters ω and ζ .
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Assignment 3.2 We start by designing a controller with ζ = 1,ω = 0.3 for the

upper tank, with the operation point chosen to x0
1 = 0.5. This can be done by means

of the MATLAB-script calcpi according to the following example (insert your esti-

mated values of delta, gamma1 and gamma2):

>> delta = ... ;

>> gamma1 = ... ;

>> gamma2 = ... ;

>> omega = 0.3;

>> zeta = 1;

>> calcpi

K =

2.1964

Ti =

6.1010

Have a look at what the script does by typing

>> type calcpi

and compare the calculations with those you made as part of the preparations.

Assignment 3.3 We shall now evaluate the control performance at reference and

load steps. A suggested experimental procedure is the following:

1. Ensure the interface is set to PI control of the upper tank, i.e., that Control

Mode shows Automatic, Tank Selection shows Upper and that the P and I

blocks are active (white) while the D block is inactive (light blue).

2. Ensure that the valves AV1, AV2, BV2, BV1 are pressed in and that the valves

AV3, BV3, AV4, BV4, V5 are pressed down.

3. Adjust the controller parameters K and Ti.

4. Set the reference r to 0.5 and wait until all signals have reached stationarity.

5. Conduct a set point change (step) to 0.7 and depict the response in the figure

below.

6. Reset the reference to 0.5.

7. When the system has reached stationarity anew, open the load disturbance

valve BV1 and depict the resulting response in the same figure.

t

y

Hint: Your results should show the same characteristics as seen in figure 5. If you feel

uncertain, talk with the lab assistant prior to moving on with the lab.
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Settling time

y

t

Overshoot

Rise time

Figure 5 Definition of rise time and overshoot at reference steps and settling time at load

steps, respectively.

E YR

L

++

−1

Gr Gp

Figure 6 Block diagram of the closed loop system during control of the upper tank.

Poles and Zeros The system, under closed loop control of the upper tank, is de-

scribed by the block diagram in Figure 6. The closed loop system transfer functions

from reference R(s) and load disturbance L(s) to output Y (s) are given by

GYR(s) =
Gp(s)Gr(s)

1+Gp(s)Gr(s)
=

ρK(s+ 1
Ti
)

s2 + s( 1
τ1
+ρK)+ ρK

Ti

(7)

GYL =
1

1+Gp(s)Gr(s)
=

sρ

s2 + s( 1
τ1
+ρK)+ ρK

Ti

(8)

We have designed our controllers using pole placement, i.e., by choosing the charac-

teristic polynomial of the closed loop system. No consideration has been taken to how

the controller affects the zeros of the closed loop system. The zeros of the transfer

function GYR, from reference to measurement, are moved when controller parameters

are changes. The zeros of the system GYL are, however, unaffected by the controller

parameters. This explains why reference steps (but not load disturbance steps) may

generate an overshoot in the measurement signal, despite a relative damping of ζ = 1.

In order to investigate how the location of poles affect the behavior of the system, we

should hence primarily study load responses. If we wish to investigate the combina-

tion of pole and zero dynamics, we may study the response to reference changes. A

closer study of zeros is made during lecture 12.

Assignment 3.4 Now that we have investigated the difference between reference

and load steps, we are ready to investigate how the relative damping ζ and natural

frequency ω affect the characteristics of the closed loop system.

First we fix ζ to 1 and vary ω according to the table below. Assume that the stationary

level is given by x0
1 = 0.5 and compute PI parameters K och Ti for every choice of ω .
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Conduct the experiment according to the instructions of assignment 3.3. Complete

the table, singularity charts and time plots below. If the control signal reaches one of

its limits, it becomes saturated. Note in the table if if this happens (yes/no).

Finally, try the controller you arrived at during laboration 1 (and complete the final

row of the table).

Reference change Load disturbance.

ω ζ K Ti Rise time [s] Overshoot Saturation Settling time [s]

0.1 1

0.2 1

0.5 1

X X
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Assignment 3.5 Fix ω to 0.4 and vary ζ according to the table below. Compute

the controller parameters K and Ti by means of MATLAB in the same way as be-

fore. Try the controller parameters on the upper tank and investigate the responses

to reference changes and load disturbances. Depict the responses in the time plots

below. Also depict the pole locations in the singularity charts and compare them to

the characteristics of the responses; especially study the damping.

Conduct the experiments in the same way as in the previous assignment.

Reference change Load disturbance

ω ζ K Ti Rise time [s] Overshoot Saturation Settling time [s]

0.4 0.7

0.4 0.4

0.4 0.2

y

t

Re

Im

y

t

Re

Im

y

t

Re

Im
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Control of the Lower Tank

Assignment 3.6 (Preparation) Use the second equation of (2) from assignment 2.8

to design a PID controller,

u(t) = K

(

e(t)+
1

Ti

∫ t

0
e(τ)dτ +Td

de(t)

dt

)

⇔ U(s) = K

(

1+
1

sTi

+ sTd

)

E(s)

(9)

for control of the level in the lower tank. Choose the controller parameters such that

the characteristic polynomial of the closed loop system becomes

(s+αω)(s2 +2ζωs+ω2) (10)

The controller parameters K, Ti and Td shall be expressed in the process parameters

ρ , τ1 and τ2 together with the design parameters ω , ζ and α .

Poles and zeros We shall now investigate control of the lower tank. Figure 7 shows

a block diagram of the closed loop system. Note the entry points of load disturbances

L1 and L2.

The transfer functions from refernce to output (GYR) as well as those from load to

output (GYL1
, GYL2

) are given below.

ΣΣΣ
R YE U

L1 L2

PID
Upper
tank

Lower
tank

−1

Figure 7 Block diagram of the lower tank control system.

GYR =
Kρ(s2 Td

τ1
+ s 1

τ1
+ 1

Tiτ1
)

s3 + s2( 1
τ1
+ 1

τ2
+ ρKTd

τ1
)+ s( 1

τ1τ2
+ ρK

τ1
)+ ρK

Tiτ1

(11)

GYL1
=

s
ρ
τ1

s3 + s2( 1
τ1
+ 1

τ2
+ ρKTd

τ1
)+ s( 1

τ1τ2
+ ρK

τ1
)+ ρK

Tiτ1

(12)

GYL2
=

s 1
τ1
(s+ 1

τ1
)

s3 + s2( 1
τ1
+ 1

τ2
+ ρKTd

τ1
)+ s( 1

τ1τ2
+ ρK

τ1
)+ ρK

Tiτ1

(13)

A load step L1 can be generated by opening the valve BV1, while opening AV4 gener-

ates a load step L2.

The three transfer functions have the same denominator polynomials while the nu-

merators differ. If the controller parameters change, the closed loop poles are moved.

In addition, the zeros of GYR (reference to output) will be moved while zeros of GYL1

and GYL2
are unaffected.

In order to investigate how the location of poles affect the behavior of the system, we

should hence primarily study load responses. If we wish to investigate the combina-

tion of pole and zero dynamics, we may study the response to reference changes.
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Assignment 3.7 Fix ζ to 0.7, α to 1 and vary ω according to the table on the

next page. Assume that the stationary level is given by x0
2 = 0.5 and compute PID

parameters using the MATLAB-script calcpid according to the following example:

>> omega = 0.15;

>> zeta = 0.7;

>> alpha = 1;

>> calcpid

K =

4.0390

Ti =

15.2320

Td =

5.0221

Have a look at the script by typing

>> type calcpid

and compare the computations with those you made as part of the lab preparations.

Try the controllers on the lower tank and investigate the responses to reference changes

and load disturbances generated by means of the valve BV1. Depict the responses in

the time plots below. Also depict the pole locations in the singularity charts and com-

pare them to the characteristics of the responses; especially study their speed.
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Conduct the experiments the following way:

1. Ensure that the interface is set to PID control of the lower tank, i.e., that

Control Mode shows Automatic, Tank Selection shows Lower and that

the blocks P, I and D are active (white).

2. Make sure that the valves AV1, AV2, BV2, BV1 are pressed in, while the valves

AV3, BV3, AV4, BV4, V5 are pressed down.

3. Set the controller parameters K, Ti and Td.

4. Set the reference r to 0.5 and wait until all signals have reached stationarity.

The Optimal button can be used to reach the stationary point corresponding to

x2 = r in minimal time.

5. Conduct a reference change (step) to 0.7 and depict the response. Write down

the rise time and overshoot in the table below. Also note whether the control

signal saturated and if so, during how long time.

6. When the system reaches stationarity anew, open the load disturbance valve

BV1 and depict the resulting response. Write down the settling time in the table.

Finally, try the controller you arrived at during lab 1 (and complete the last row of

the table).

Hint: These experiments take a fair amount of time to conduct. You may work with

the summary in chapter 4 while you wait. Use the Optimal button to save time.

Reference change Load disturbance

ω ζ α K Ti Td Rise time [s] Overshoot Saturation Settling time [s]

0.1 0.7 1

0.15 0.7 1

0.2 0.7 1

X X X
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4. Summary

This summary is intended to review the methodology we have used and to collect

relevant questions, which you should be able to answer once you have completed the

experiments. The lab assistant will go through the summary before you may pass the

lab.

Assignment 4.1 Enter the steps you have gone through before and during the lab

in the empty boxes of the figure below. They should be chronologically ordered.

(Observe that parameter estimation is omitted. Where would it fit in?)

• Closed loop transfer functions Y (s) =
GpGr

1+GpGr
R(s)

• Physical modelling

• Nonlinear differential equation

ẋ = f (x,u)

• Linear differential equation

ẋ = ax+bu

• Linearization

• Laplace transform

• Pole placement specification

s2 +2ζωs+ω2 = 0

• Testing

• Evaluation

• Controller parameter expressions

K = . . . , Ti = . . .,

• Transfer function

Y (s) = G(s)U(s)

double tank
Physical

Assignment 4.2 Mention at least two limitations of the physical process, which are

not captured by the mathematical model (1).
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Assignment 4.3 Consider PI control of the upper tank. How do the closed loop sys-

tem poles move when ω is increased? How does this affect the response to reference

changes and load disturbances?

How does K and Ti change when ω is increased? Why do we not use ω = 10 rad s−1?

Assignment 4.4 Still consider PI control of the upper tank. How do the closed

loop system poles move when ζ is decreased? How does this affect the response to

reference changes and load disturbances? How would the step response look if we

chose ζ = 0?

Assignment 4.5 Why did we not use the D part for control of the upper tank?

Assignment 4.6 How many closed loop poles do we have when controlling the

lower tank with a PID controller?

How do the closed loop system poles move when ω is increased? How does this

affect the response to reference changes and load disturbances?

How are K, Ti and Td affected when ω is increased? Why do we not try ω = 1 rad/s?
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Assignment 4.7 Write down your recommendations for controller parameters. Use

the table below. Compare these with the parameters you arrived at during lab 1.

Ti=

T =
d

Ti=

i=T

i=T

T =
d

övre tank undre tank

K =

PID

PI

P

K= K =

K = K =

K =
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Knowledge Review for Lab 2

1. Determine all stationary points (x0,u0,y0) of the system

dx

dt
=−a

√
x+bu

y = cx

2. Linearize the system

dx

dt
=−a

√
x+bu

y = cx

around the stationary point (x0,u0,y0).

3. Write down the transfer function of a

(a) P controller

(b) PI controller

(c) PID controller

4. Determine the closed loop transfer function for the interconnection

r y
GR(s) GP(s)

−1

Σ

where GR(s) = K and GP(s) =
1

1+ sT

5. When characterizing second order systems, the two parameters

ζ (relative damping)

ω (natural frequency)

are often used. Depict how these parameters relate to the placement of system

poles in a singularity chart.

6. The transfer function of a system is given by

G(s) = K
Q(s)

P(s)

Consider the singularity chart to the right and de-

termine Q(s) and P(s).

1

1
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