Reglerteknik AK Laboratory Exercise 3

What is the resonance frequency? How can it be estimated for the process?

What is the resonance frequency? How can it be estimated for the process?

U

u = K(r - y)

Can we place the poles for the closed-loop system $Y(s) = G_{cl}(s)R(s)$ arbitrarily?

Can we place the poles for the closed-loop system $Y(s) = G_{cl}(s)R(s)$ arbitrarily?

Can we place the poles for the closed-loop system $Y(s) = G_{cl}(s)R(s)$ arbitrarily?

observer (Kalman filter)

observer (Kalman filter)

Can we always use an observer?

Can we always use an observer?

Can we always use an observer?

Where should we place the poles for the observer?

closed-loop poles for state-feedback controller

Where should we place the poles for the observer?

closed-loop poles for state-feedback controller

observer poles

 $x_i = \int (r - y)dt$

extended state $\longrightarrow x_e = \begin{bmatrix} x \\ x_i \end{bmatrix}$

$$\int (r - y)dt$$

extended state $\longrightarrow x_e = \begin{bmatrix} x \\ x_i \end{bmatrix}$

$$\int (r - y)dt$$

$$\int (r - y)dt$$

$$\int (r - y)dt$$

$$(r - y)dt = \text{const.} \Rightarrow y = r$$

$$u = -Lx - l_i x_i + l_r r$$
after

How many states does the closed-loop system have?

 $Y(s) = G_{cl}(s)R(s)$

How many states does the controller with integral action have? What are they?

Figure 14 Feedback from estimated states with integral action.

How can we see in the Bode plot of the controller if it has integral action or not?

How can we see in the Bode plot of the controller if it has integral action or not?

Bode Diagram

How can we see in the Bode plot of the controller if it has integral action or not?

Bode Diagram

Reglerteknik AK Laboratory Exercise 3

