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1. Introduction

In previous labs we have studied a process, which has been relatively simple. We have been

able to control it satisfactory using a simple PID-controller. In this lab we will examine a

process which is a bit more complicated and which requires a more advanced controller.

The controller which we will use is based on state feedback and state estimation.

Preparations

• Read this manual carefully.

• Review the lectures on state feedback, Kalman filtering, and output feedback. At the

beginning of the lab you should be able to answer the following questions:

– What does state feedback mean? Explain in words!

– Why is an observer often used in connection with state feedback? Explain in

words!

– Draw a block diagram that shows how an observer can be used in connection

with state feedback.

• Solve the preparatory assignments 4.2, 5.2, and 6.1.

• Study the MATLAB scripts define_process.m, design1.m, design2.m and de-

sign3.m which are found in the appendix. Relate their content to the assignments in

the manual.

2. The Process

The process is a simulated system consisting of two masses which are interconnected by a

spring. A conceptual drawing of the process is shown in figure 1. The mass at one end of

the spring can be moved by a motor. We call this end the motor end and the other end the

load end.

The purpose is to control the position p2 of the mass on the load side. In the lab we will

assume that only p2 is measurable. The remaining states will be estimated by a Kalman

filter.
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A Linear Model of the Process

The two masses are m1 and m2. The interconnecting spring has the spring constant k. The

damping of the masses are d1 and d2, respectively.

The first mass is driven by a motor. Motor and amplifier dynamics are neglected. The force

of the motor becomes proportional to the input voltage u of the amplifier according to

F = kmu

A force balance gives the following dynamic model:

m1
d2 p1

dt2
=−d1

d p1

dt
− k(p1 − p2)+F

m2
d2 p2

dt2
=−d2

d p2

dt
+ k(p1 − p2)

Introduce the state vector x =


 p1 ṗ1 p2 ṗ2




T

. The process can then be expressed

in state space form as

ẋ = Ax+Bu

y =Cx
(1)

where

A =





0 1 0 0

− k
m1

− d1

m1

k
m1

0

0 0 0 1
k

m2
0 − k

m2
− d2

m2





, B =





0
km

m1

0

0





C =


0 0 ky 0





The following constants and coefficients have been measured and estimated for a real lab

F m1 m2

p1 p2

d1 d2

k

Figure 1 Conceptual drawing of the process.
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process:

m1 = 2.29 kg

m2 = 2.044 kg

d1 = 3.12 N/m/s

d2 = 3.73 N/m/s

k = 400 N/m

km = 2.96 N/V

ky = 280 V/m

Analysis of the Process

Assignment 2.1 Log in (as instructed by the lab supervisor) and start MATLAB according

to the instructions from your lab assistant. Define the process Gp by executing the script

define_process.m:

>> define_process

Calculate the poles of the system by typing

>> pole(Gp)

Where are the poles located? Is the system stable? Asymptotically stable? Simulate the

impulse response of the process:

>> impulse(Gp,5)

Does the behavior agree with the stability analysis?

Assignment 2.2 Draw the Bode plot of the process

>> bode(Gp)

>> grid on

Note the resonance peak in the amplitude curve. At what frequency is it located? What

approximate relation holds between the location of the resonance peak and the locations

of the poles? Estimate the natural frequency by again studying the impulse response of the

process. Does it coincide with that of the model?
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Figure 2 The step response should stay within the marked regions, and the control signal should not

exceed 10 V.

3. Performance Specifications

The performance specifications are the requirements which the controlled system should

fulfill. In this case we have chosen to specify the closed loop system in the time domain.

The experiment which will be used to evaluate the performance consists of a reference step

at t = 1 s, followed by a load disturbance step at t = 3 s. Simulations will be made both

with the nominal model described above, and a more realistic model incorprating friction

and measurement noise.

We wish to have a well damped step response with a rise time between 0.2 and 0.4 seconds,

see figure 2. At the same time, the magnitude of the control signal should never exceed 10 V,

since this could damage the equipment.

During the first part of the lab we will focus on the step response and control signal specifi-

cations. Compensation for load disturbances and friction will be dealt with at a later point.

The oscillative properties of the process make it impossible to fulfill the specifications with

a PID-controller. An attempt using a PD-controller is shown in figure 3. The step response

is fast enough, but the controller cannot damp out the oscillations.
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Figure 3 Reference step response using a PD controller with K = 0.07 and Td = 0.1.

4. State Feedback

To be able to change the process dynamics arbitrarily we make use of state feedback. First

we verify that the system is controllable.

Assignment 4.1 Calculate the rank (i.e. the number of linearly independent columns) of

the system’s controllability matrix:

>> Wc = [ ... ]

>> rank(Wc)

(Note that the matrices A and B are already defined in the workspace.)

What is the rank? Is the system controllable?

If we start out under the assumption that the entire state vector x can be measured, the

following control law can be used

u =−Lx+ lrr (2)

Here L is a row vector, r is the reference value and lr is a scalar, see figure 4.
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Assignment 4.2 (Preparation) Show that the closed loop system can be written in the

form

ẋ = Acl x+Bcl r

y =Ccl x

when the control law (2) is used on the process, (1). What are Acl , Bcl and Ccl? How should

lr be chosen to obtain unit static gain from r to y? ⋄

By means of state feedback we can place the poles of the closed loop system arbitrarily.

However, there are practical limits on the control signal. Somewhat simplified one can say

that, the further a pole is moved from its original location, the more control action will be

required. In our case, we want to move the poles further into the left half plane, to make

the closed-loop system fast and well-damped. For strongly oscillatory process poles, it is

usually a good idea to focus on increasing their relative damping rather than changing their

magnitude.

The desired pole placement can be expressed using a fourth order characteristic polynomial

(see figure 5):
(
s2 +2ζaωas+ω2

a

)(
s2 +2ζbωbs+ω2

b

)

Given a pole placement, the feedback vector L is easily computed using the command

place (see design1.m). Type

>> help place

for further information on what the command does.

Assignment 4.3 Edit the script design1.m and insert suitable values of ωa, ζa, ωb and

ζb. Then calculate the controller in MATLAB by typing:

>> design1

Open the Simulink model model1.mdl by typing

>> model1

Simulate the closed loop system and see if it fulfills the specification on the step response.

This is done by selecting “Start” from the “Simulation” menu (or pressing “<Ctrl>-T”).

Double click on the orange box “Plot against specifications” after a simulation to compare

the results to the performance specifications. Change the design parameters and repeat the

procedure until the step response and control signal specifications are fulfilled. (We will

deal with load disturbance rejection later.) What is a suitable pole placement for the state

feedback?

y
Processlr

r

−L

u

x

Σ

Figure 4 State feedback.
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Figure 5 Pole placement according to the characteristic polynomial
(
s2 + 2ζaωas + ω2

a

)(
s2 +

2ζbωbs+ω2
b

)
, where ζa = cosθa och ζb = cosθb.

5. Observer

In practice, we cannot measure all the states of the process, but only its output y. Instead we

use a model of the process and feed the model with the same input as the real process. The

difference between the outputs of the model and real process is used to correct the state of

the model so that it converges to the state of the process. Such a device is called an observer

or a Kalman filter. (The Kalman filter is a special type of observer, but here we will not

distinguish further between observer and Kalman filter.)

The observer is described by

dx̂

dt
= Ax̂+Bu+K

(
y−Cx̂

)
(3)

where x̂ denotes the estimated states. The column vector K can be chosen such that the states

of the observer converge to the states of the process arbitrarily fast, given that the system is

observable.

Assignment 5.1 Calculate the rank of the observability matrix for the system:

>> Wo = [ ... ]

>> rank(Wo)

What is the rank? Is the system observable?
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Using the Kalman filter we can establish feedback from the estimated states instead of the

real states, see figure 6. The new control law becomes

u =−Lx̂+ lrr (4)

Assignment 5.2 (Preparation) Starting out with (3) and (4), show that the controller

based on state feedback from the estimated states can be written in the form

dx̂

dt
= AR x̂+BRy

y+BRr
r

u =CR x̂+DRy
y+DRr

r

What are AR, BRy
, BRr

, CR, DRy
and DRr

?

Since the process has four states, the observer will also have four states. We specify the

poles of the observer according to the following characteristic polynomial:

(
s2 +2ζcωcs+ω2

c

)(
s2 +2ζdωds+ω2

d

)

A suitable choice of poles depend, among other things, on the amount of measurement

noise, the size of modeling inaccuracies and whether the initial condition is known. Fast

poles mean high amplification of measurement noise, whereas slow poles give slow con-

vergence of the estimate. As starting point, a rule of thumb stating that the observer poles

should be 1.5-2 times faster than the state feedback, could be used.

Assignment 5.3 Edit the script design2.m and enter the values of ωa, ζa, ωb and ζb

from Section 4. Then enter some suitable values for ωc, ζc, ωd and ζd . Calculate the entire

controller (state feedback + observer) by executing the script

>> design2

Then open the Simulink model model2.mdl by typing

>> model2

Simulate the closed loop system and see if it fulfills the reference step response and control

signal specifications. Change the design parameters and iterate the procedure until desired

behavior is obtained. (If necessary, also change the pole placement for the state feedback.)

y
Processlr

Kalman

r

−L

u

x̂

Σ

Figure 6 Feedback from estimated states. The controller consists of the blocks within the dashed

line.
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What is a suitable pole placement for the observer? Why is the load disturbance rejection

so poor?

Assignment 5.4 Draw the Bode plot of the controller by typing

>> figure()

>> bode(Gr)

>> dcgain(Gr)

What gain does the controller have for low frequencies? What does this mean to the con-

troller’s ability to suppress constant load disturbances?

Assignment 5.5 Try the controller on the “Real Process” (double click on the process

block to toggle between simulated and “real” process). The “real” process has an additional

motor time constant, measurement noise, and nonlinear friction added to the dynamics.

How does the “real” step response differ from the simulated one?

6. Integral Action

To eliminate stationary errors due to friction and load disturbances, integral action is in-

troduced in the controller, see figure 6. The integrator is introduced as an extra state xi

according to

xi =
∫

(r− y)dt

ẋi = r− y = r−Cx (5)

If the extended state vector

xe =




x

xi





is introduced, the extended system (i.e. the process and the integrator) can be written

ẋe =




A 0

−C 0





︸ ︷︷ ︸

Ae

xe +




B

0





︸ ︷︷ ︸

Be

u+




0

1





︸ ︷︷ ︸

Br

r

y =


C 0





︸ ︷︷ ︸

Ce

xe
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If we, for the moment, reassume that the entire state vector is measurable, we can establish

feedback from both the states of the process and the integral state according to

u =−Lx− lixi + lrr =−Lexe + lrr

where

Le =


L li





The closed loop system becomes

ẋe = (Ae −BeLe)xe +(Belr +Br)r

y =Cexe

Because the extended system has five states, the poles of the state feedback are now specified

using a fifth order characteristic polynomial:

(
s2 +2ζaωas+ω2

a

)(
s2 +2ζbωbs+ω2

b

)(
s+ωe

)

As before, we cannot measure the states of the process. Consequently, feedback is estab-

lished from the estimated states and the integrator according to the control law

u =−Lx̂− lixi + lrr (6)

Assignment 6.1 (Preparation) Starting out with (3), (5) and (6), show that a controller

with integral action based on state feedback from estimated states can be written in the form





dx̂
dt

dxi

dt



=




∗ ∗

∗ ∗





︸ ︷︷ ︸

AR




x̂

xi



+




∗

∗





︸ ︷︷ ︸

BRy

y +




∗

∗





︸ ︷︷ ︸

BRr

r

u =


∗ ∗




︸ ︷︷ ︸

CR




x̂

xi



+


∗




︸ ︷︷ ︸

DRy

y +


∗




︸ ︷︷ ︸

DRr

r

What are AR, BRy
, BRr

, CR, DRy
and DRr

? ⋄

y
Processlr

Kalman

r

−L

u

x̂

Σ

Σ

e xi −li
1

s

−1

Figure 7 Feedback from estimated states with integral action.
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Assignment 6.2 Edit the script design3.m and insert your values on ωa, ζa, ωb, ζb,

ωc, ζc, ωd and ζd . Also insert suitable values of ωe. Calculate the entire controller (state

feedback + integrator + observer) by executing the script

>> design3

Open the Simulink model model3.mdl by typing

>> model3

Simulate the closed loop system and see whether it fulfills the specifications. Change the

design parameters and iterate the procedure until the specifications are fulfilled. What is a

suitable pole placement?

Assignment 6.3 Draw the Bode plot of the controller using

>> bode(Gr)

>> grid on

How can it seen that the controller has integral action?

Assignment 6.4 Try the controller on the “real” process. How do the results differ from

Assignment 5.5.?

When integral action is introduced, the term lrr is no longer needed in the control law to

obtain the correct static gain – this is handled by the integrator. Instead lr can be chosen

to trim the step response at reference value changes. As seen in (6), lr 6= 0 means a direct

connection between reference value and control signal. A value lr > 0 can also be used to

give the process an extra ”push” at a reference value step. (This could be especially useful

when controlling the “real” process, which has friction.)

Assignment 6.6 What value does lr have now? Change the value of lr in design3.m

and conduct new experiments on the “real” process. What is a suitable value for lr? What

happens if lr is negative?
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7. Summary

This summary is intended to review relevant questions which you should be able to answer

after finishing the experimental part. The lab assistant will go through your summary before

you can pass the lab.

Assignment 8.1 The flexible servo is a strongly resonant process. How can this be seen

in its Bode plot and pole-zero diagram, respectively?

Assignment 8.2 How can state feedback be used if all states are not measurable?

Assignment 8.3 When using state feedback from estimated states (Section 5), how many

poles does the closed loop system have?

Assignment 8.4 How many states did the controller with integral action (Section 6) con-

tain? Which?

Assignment 8.5 Draw all poles of the closed-loop system when using the final controller

with integral action (Section 6) in the pole zero plot below:

Assignment 8.6 How can it be seen in the Bode plot of a controller whether it has integral

action or not?
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A. MATLAB Scripts

define_process.m

% Create a linear model of the process

m1 = 2.29; m2 = 2.044; % masses

d1 = 3.12; d2 = 3.73; % damping constants

k = 400; % spring constant

km = 2.96; % motor constant

ky = 280; % measurement constant

A = [0 1 0 0; -k/m1 -d1/m1 k/m1 0; 0 0 0 1; k/m2 0 -k/m2 -d2/m2];

B = [0; km/m1; 0; 0];

C = [0 0 ky 0];

D = 0;

Gp = ss(A,B,C,D); % create state space model of the process

design1.m — Calculation of controller based on pure state feedback

% Design of state feedback

omegaa = ...; % speed of one pole pair

zetaa = ...; % damping of one pole pair

omegab = ...; % speed of the other pole pair

zetab = ...; % damping of the other pole pair

pc = conv([1 2*omegaa*zetaa omegaa^2],[1 2*omegab*zetab omegab^2]);

poles1 = roots(pc);

L = place(A,B,poles1); % compute the state feedback vector L

lr = 1/(C*inv(-A+B*L)*B); % compute lr such that the static gain

% from r->y becomes 1

design2.m — Calculation of controller based on state feedback from observer

% Design of state feedback

omegaa = ...; % speed of one pole pair

zetaa = ...; % damping of one pole pair

omegab = ...; % speed of the other pole pair

zetab = ...; % damping of the other pole pair

pc = conv([1 2*omegaa*zetaa omegaa^2],[1 2*omegab*zetab omegab^2]);

poles1 = roots(pc);

L = place(A,B,poles1); % compute the state feedback vector L

lr = 1/(C*inv(-A+B*L)*B); % compute lr such that the static gain

% from r->y becomes 1

% Design of Observer

omegac = ...; % speed of one pole pair

zetac = ...; % damping of one pole pair

omegad = ...; % speed of the other pole pair

zetad = ...; % damping of the other pole pair

po = conv([1 2*omegac*zetac omegac^2],[1 2*omegad*zetad omegad^2]);

poles2 = roots(po);
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K = place(A’,C’,poles2)’; % compute the Kalman gain K

% Computation of controller (observer + state feedback)

AR = A-B*L-K*C;

BRy = K;

BRr = B*lr;

CR = -L;

DRy = 0;

DRr = lr;

Gr = -ss(AR, BRy, CR, DRy); % transfer function from -y to u

design3.m — Calculation of controller based on state feedback from observer with

integral action

% Design of state feedback with integral action

Ae = [A zeros(4,1); -C 0]; % A-matrix for the extended system

Be = [B; 0]; % B-matrix for the extended system

omegaa = ...; % speed of one pole pair

zetaa = ...; % damping of one pole pair

omegab = ...; % speed of the other pole pair

zetab = ...; % damping of the other pole pair

omegae = ...; % speed of the fifth pole

pc = conv([1 2*omegaa*zetaa omegaa^2],[1 2*omegab*zetab omegab^2]);

pc = conv(pc, [1 omegae]);

poles1 = roots(pc);

Le = place(Ae,Be,poles1); % compute the state feedback vector Le

L = Le(1:4);

li = Le(5);

lr = 0; % direct term from reference value

% Design of observer

omegac = ...; % speed of one pole pair

zetac = ...; % damping of one pole pair

omegad = ...; % speed of the other pole pair

zetad = ...; % damping of the other pole pair

po = conv([1 2*omegac*zetac omegac^2],[1 2*omegad*zetad omegad^2]);

poles2 = roots(po);

K = place(A’,C’,poles2)’; % compute the Kalman gain K

% Computation of controller (observer + state feedback with integral action)

AR = [A-B*L-K*C -B*li; zeros(1,4) 0];

BRy = [K; -1];

BRr = [B*lr; 1];

CR = [-L -li];

DRy = 0;

DRr = lr;

Gr = -ss(AR,BRy,CR,DRy); % transfer function from -y to u
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