462 H CONTROL: GENERAL CASE

formulae in Theorems 16.4 and 16.5. This approach is exactly the procedure used in
Doyle [1984] and Francis [1987] with Lemma 15.7 used to solve the general distance
problem. Although this approach is conceptually straightforward and was, in fact, used
to obtain the first proof of the current state space results in this chapter, it seems
unnecessarily cumbersome and indirect.

17.8 State Feedback and Differential Game

It has been shown in Chapters 15 and 16 that a (central) suboptimal full information

Ho control law is actually a pure state feedback if Dy; = 0. However, this is not true

in general if Dy; # 0, as will be shown below. Nevertheless, the state feedback H

control is itself a very interesting problem and deserves special treatment. This section

and the section to follow are devoted to the study of this state feedback H., control

problem and its connections with full information control and differential game.
Consider a dynamical system

T = Az + Biw+ Bou (17.7)
= Ciz+ Djyw + Disu (178)

where z(t) € RP*, y(t) € RP2, w(t) € R™, u(t) € R™2, and z(t) € R*. The following
assumptions are made:

(AS1) (A, B,) is stabilizable;

(AS2) There is a matrix D such that [ D, D, ] is unitary;

A—jwl B

Cl 12

(AS3) has full column rank for all w.

We are interested in the following two related quadratic min-max problems: given v > 0,
check if
sup min  ||z]l2 <7
wEB,Cg{O,oo) uE,CQ[O,oo)
and
min sup  lz]lz <.
u€L2[0,00) we BL,[0,00)
The first problem can be regarded as a full information control problem since the control
signal u can be a function of the disturbance w and the system state z. On the other
hand, the optimal control signal in the second problem cannot depend on the disturbance
w (the worst disturbance w can be a function of u and z). In fact, it will be shown that
the control signal in the latter problem depends only on the system state; hence, it is
equivalent to a state feedback control.
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Theorem 17.6 Let v > 0 be given and define

I, O
R = DT.Dl. — [ 7 0 ! 0 ] , where D1. = [Dll D12]
A 0 B
H., = _ R [ D:,Ci B ]
0y — A —CiDye

where B := [ B, B, ]

(a) sup min ||z||2 <7 if and only if
wEBL3[0,00) u€L2[0,00)

(D’ D11) <7, Ho € dom(Ric), Xo = Ric(Hx) > 0.
Moreover, an optimal u is given by
v=—-D{,Dnw+ | D{,D;; I |Fz,
and a worst Waworst S given by

Whworst = Floox

where
FlOO —1 * *
Fo= = —R[D:.C + B*X.].
FQOO
(b)  min sup  ||z]l2 < if and only if

u€L2[0,00) we BL1[0,00)

o(D11) <7, Hy € dom(Ric), Xo = Ric(Hx > 0.
Moreover, an optimal w is given by

U = Froo® = —D{9D11Waworst + | DisDyyp 1 ] Fuz,
and the worst Wseworsy S given by

Wtworst = (Y1 — Dy D11) ™" {(D},C1 + By Xoo ) + Df  Dygu} .

Proof. The condition for part (a) can be shown in the same way as in Chapter 15
and is, in fact, the solution to the FI problem for the general case. We now prove the
condition for part (b). It is not hard to see that (D;1) < v is necessary since control
u cannot feed back w directly, so the Dj; term cannot be (partially) eliminated as in
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the FI problem. The conditions H., € dom(Ric) and X, = Ric(H > 0 can be easily
seen as necessary since

sup min  [|z]l2 £ min sup  ||z]l2-
wEBL[0,00) ¥EL2[0,00) u€L2[0,00) e BL,[0,00)

It is easy to verify directly that the optimal control and the worst disturbance can be

chosen in the given form. a
Define
Ry = I—Dj D,D%Dy/v*
R() = I + DI2D11(’)/21 — DrlDll)_lDrlDIQ
RO = - DT1D11/72.

Then it is easy to show that

d, . . 2
||Z||2 _ 72 ||’IU||2 + %(Z’ X:L') = Hu + D12D11’LU — [ DI2D11 I ] Fl‘H

2
R o)
if conditions in (a) are satisfied. On the other hand, we have

d, . N 2 .
el =2 ol + 2 (0" Xa) = | B/ (u = Faoo)| =7 |5/ (w = wstworss)

‘ 2

if conditions in (b) are satisfied. Integrating both equations from ¢ = 0 to co with
x(0) = z(oc0) = 0 gives

2 2 2 _ % . 2 2 || p1/2 2

203 =2 llly = |u+ DisDnw = | DiDy 1] Fef) =92 || Ry (w = Fiow)|
if conditions in (a) are satisfied, and

2 22 _ |l pl/2 2 olp1y/z 2

2]l =77 lwllz = || By (u — Faoox) 5y 7[R (W — Wetworst) )

if conditions in (b) are satisfied. These relations suggest that an optimal control law
and a worst disturbance for problem (a) are

w=—DiDiw + [ DLDy I ] Fz, w=For
and that an optimal control law and a worst disturbance for problem (b) are

u = FQoo-r W = Wsfworst -
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Moreover, if problem (b) has a solution for a given -, then the corresponding differential
game problem

. 2 2 2
min sup z||l3 =77 ||lw
e e {1203 = »*llwli3 }

has a saddle point, i.e,

. 2 2 2 . 2 2 2
sup min z||53 — v ||w = min sup z||53 —v°||lw
weﬁz[m)uewovm){ll 15 =7 lwliz} uELQ[Om)weEQ[Om){II 13 = *llwll3 }

since the solvability of problem (b) implies the solvability of problem (a). However,
the converse may not be true. In fact, it is easy to construct an example so that the
problem (a) has a solution for a given v and problem (b) does not. On the other hand,
the problems (a) and (b) are equivalent if Dy = 0.

17.9 Parameterization of State Feedback H, Con-
trollers
In this section, we shall consider the parameterization of all state feedback control laws.

We shall first assume for simplicity that D;; = 0 and show later how to reduce the
general D11 # 0 case to an equivalent problem with Di; = 0. We shall assume

A| B B

G = Cl 0 D12

Note that the state feedback H., problem is not a special case of the output feedback
problem since Ds; = 0. Hence the parameterization cannot be obtained from the output
feedback.

Theorem 17.7 Suppose that the assumptions (AS1) — (AS3) are satisfied and that By
has the following SVD:

X 0

B =U VY, UU*=1I, V'V=I,, 0<XeRX.

There exists an admissible controller K (s) for the SF problem such that ||T..| . <~ if
and only if Hs € dom(Ric) and Xo, = Ric(Hs) > 0. Furthermore, if these conditions
are satisfied, then all admissible controllers satisfying ||T-wl||,, < can be parameterized
as

~

¥l 0
U~'(sI — A)

O Imlfr

y! 0

—1
K=Fy+<{In +Q U™'B, Q
O ImlfT

where Fog = —(D1yC1+ B X o), A = Aty 2By Bi Xoo+ BoFoo, and Q = [ O O ] €

RH2 with ||Q1]l,, < - The dimensions of Q1 and Q2 are mo X r and my X (my — 1),
respectively.



