7
H ., Synthesis

In this chapter we consider optimal synthesis with respect to the H,, norm
introduced in Chapter 3. Again we are concerned with the feedback ar-
rangement of Figure 6.1 where we have two state space systems G and K,
each having their familiar role.

We will pursue the answer to the following question: does there exist a
state space controller K such that

e The closed loop system is internally stable;
e The closed loop performance satisfies
IS(G, K)lloe < 1.

Thus we only plan to consider the problem of making the closed loop con-
tractive in the sense of H,. It is clear, however, that determining whether
there exists a stabilizing controller so that ||S(G, K)||s < 7, for some con-
stant -y, can be achieved by rescaling the « dependent problem to arrive
at the contractive version given above. Furthermore, by searching over v,
our approach will allow us to get as close to the minimal H., norm as we
desire, but in contrast to our work on Hs optimal control, we will not seek
a controller that exactly optimizes the H,, norm.

There are many approaches for solving the H, control problem. Proba-
bly the most celebrated solution is in terms of Riccati equations of a similar
style to the H» solution of Chapter 6. Here we will present a solution based
entirely on linear matrix inequalities, which has the main advantage that it
can be obtained with relatively straightforward matrix tools, and without
any restrictions on the problem data. In fact Riccati equations and LMIs
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are intimately related, an issue we will explain when proving the Kalman-
Yakubovich-Popov lemma concerning the analysis of the H,, norm of a
system, which will be key to the subsequent synthesis solution.

Before getting into the details of the problem, we make a few comments
about the motivation for this optimization.

As discussed in Chapter 3, the H, norm is the Ls-induced norm of a
causal, stable, linear-time invariant system. More precisely, given a causal
linear time-invariant operator G : La(—00,00) — L2(—00,00), the cor-
responding operator in the isomorphic space L (jR) is a multiplication
operator Mg, for a certain G(s) € Hy, and

NGl = IMglli,—z, = IGlloo

What is the motivation for minimizing such an induced norm? If we refer
back to the philosophy of “making error signals small” discussed in Chapter
6, we are minimizing the maximum “gain” of the system in the energy or
L sense. Equivalently, the excitation w is considered to be an arbitrary L,
signal and we wish to minimize its worst-case effect on the energy of z. This
may be an appropriate criterion if, as opposed to the situation of Chapter
6, we know little about the spectral characteristics of w. We will discuss,
in more detail, alternatives and tradeoffs for noise modeling in Chapter 9.

There is however a more important reason than noise rejection that mo-
tivates an induced norm criterion; as seen in Section 3.1.2, a contractive
operator () has the property that the invertibility of I — @) is ensured;
this so-called small-gain property will be key to ensuring stability of cer-
tain feedback systems, in particular when some of the components are not
precisely specified. This reason has made H,, control a central subject in
control theory; further discussion of this application is given later in the
course.

7.1 Two important matrix inequalities

The entire synthesis approach of the chapter revolves around the two tech-
nical results presented here. The first of these is a result purely about
matrices; the second is an important systems theory result and is frequently
called the Kalman-Yacubovich-Popov lemma, or KYP lemma for short.

We begin by stating the following which the reader can prove as an
exercise.

Lemma 7.1. Suppose P and Q are matrices satisfying ker P = 0 and
ker @ = 0. Then for every matrix Y there exists a solution J to

P*JjQ =Y.

The above lemma is used to prove the next one which is one of the two
major technical results of this section.



210 7. Ho Synthesis

Lemma 7.2. Suppose
(a) P,@ and H are matrices and that H is symmetric;

(b) The matrices Wp and Wg are full rank matrices satisfying ImWp =
ker P and ImWg = ker Q.

Then there exists a matriz J such that
H+PJQ+Q*JP<O, (7.1)
if and only if, the inequalities
WpHWp <0 and WHHWqo <0
both hold.

Observe that when the kernels of P and () are not both nonzero the result
does not apply as stated. However it is readily seen from Lemma 7.1, that
if both of the kernels are zero then there is always a solution J. If for
example only ker P = 0 then W5HW¢q < 0 is a necessary and sufficient
condition for a solution to (7.1) to exist, as follows by simplified version of
the following proof.

Proof. We will show the equivalence of the conditions directly by
construction. To begin define V; to be a matrix such that

ImV; = ker PNker@,
and V5 and V3 such that
Im [Vl Vg] =kerP and Im [Vl V3] = ker Q.

Without loss of generality we assume that Vi, V5 and V3 have full column
rank and define V} so that

v=[n W Vi V]
is square and nonsingular. Therefore the LMI (7.1) above holds, if and only
if
V*HV + V*P*J*QV + V*Q*JPV <0 does. (7.2)

Now PV and QV are simply the matrices P and @ on the domain basis
defined by V; therefore they have the form

PV:[O 0 P1 Pz] and QV:[O Q1 0 QQ];
we also define the block components

Hll H12 H13 H14
HY, Hyy Hyz3 Hy
Hi; Hj; Hss Hs
Hy, Hj3 Hj, Hu

V*HV =:
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Further define the variable Y by
Yiu Y2 Prl o
Y = = W .
|:Y21 Y22:| |:P2 :| [Ql QQ]
From their definitions ker [Pl PQ] = 0 and ker [Q1 Qg] = 0, and so by
Lemma 7.1 we see that Y is freely assignable by choosing an appropriate

matrix J.
Writing out inequality (7.2) using the above definitions we get

H11 le H13 H14
Hy, Hyy Hys + 174 Hyy + Y5, <0
Hi; Hj;+Yn Hs3 H3y + Yo )

Hiy Hy+Yor Hy+Yy Hiu+Ye +Y5

Apply the Schur complement formula to the upper 3 x 3 block, and we see
the above holds, if and only if, the two following inequalities are met.

B [Hll H12 H13 -|
H = Hikz H22 H23 + Yl*l < 0
[Hf3 H;3 + Yll H33 J

*

Hiy B Hyy
and Hyy + Yoo + Y;Q — | Hoy + 1/2*1 B! Hyy + Y2*1 <0
Hsy + Y1 Hsy + Y12

As already noted above Y is freely assignable and so we see that provided
the first inequality can be achieved by choosing Y71, the second can always
be met by appropriate choice of Yis, Y21 and Y3,. That is the above two
inequalities can be achieved, if and only if, H < 0 holds for some Y;;. Now
applying a Schur complement on H with respect to Hy;, we obtain

Hyy 0 0
0 Hy— HiyH'Hys Yy + X <0,
0 Yiu+X Hss — HigHpy' Hys

where X = Hj; — Hi;Hy' Hio. Now since Y7 is freely assignable we see
readily that the last condition can be satisfied, if and only if, the diagonal
entries of the left hand matrix are all negative definite. Using the Schur
complement result twice these three conditions can be converted to the
equivalent conditions

Hll H12
Hf, Hj

Hll Hl3

<0 and .
[ <oana [ e

| <o

By the choice of our basis we see that these hold, if and only if, Wi HWp <
0 and W5 HWq < 0 are both met. [ ]

Having proved this matrix result we move on to our second result, the
KYP lemma.
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7.1.1 The KYP Lemma

There are many versions of this result, which establishes the equivalence
between a frequency domain inequality and a state-space condition in terms
of either a Riccati equation or an LMI. The version given below turns an
H, norm condition into an LMI. Being able to do this is very helpful for
attaining our goal of controller synthesis, however it is equally important
simply as a finite dimensional analysis test for transfer functions.

Lemma 7.3. Suppose M(s) = C(Is— A)" B+ D. Then the following are
equivalent conditions.

(i) The matriz A is Hurwitz and
HM”oo <1;
(ii) There ezists a matriz X > 0 such that

[C*] z D]+[A*X+XA XB| _ (7.3)

D~ B*X —I ’

The condition in (ii) is clearly an LMI and gives us a very convenient way
to evaluate the H,, norm of a transfer function. In the proof below we see
proving that condition (ii) implies that (i) holds is reasonably straightfor-
ward, and involves showing the direct connection between the above LMI
and the state space equations that describe M. Proving the converse is con-
siderably harder; fortunately we will be able to exploit the Riccati equation
techniques which were introduced in Chapter 6. An alternative proof, which
employs only matrix arguments, will be given later in the course.

Proof. We begin by showing (ii) implies (i). The top left block in (7.3)
states that A*X + XA 4+ C*C < 0. Since X > 0 we see that A must be
Hurwitz.

It remains to show contractiveness which we do by employing a system-
theoretic argument based on the state equations for M. Using the strict
inequality (7.3) choose 1 > € > 0 such that

{g] © D“[A*);QFXXA _(f(_Be)I <0 (7.4)

holds. Let w € L5[0, c0) and realize that in order to show that M is
contractive, it is sufficient to show that ||z]|2 < (1—¢)||w||2, where z := Mw.
The state space equations relating w and z are

z(t) = Az(t) + Bw(t), z(0) =0,

z(t) = Cz(t) + Dw(t).
Now multiplying inequality (7.4) on the left by [¢*(f) w*(t)] and on the
right by the adjoint we have
|2(t)]3 + 2" (t) X (Az(t) + Bw(t)) + (Az(t) + Bw(t))* Xz(t) — (1 — €)|w(t)|3 <0
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By introducing the storage function V' : R* — R, defined by V(z(t)) =
z*(t) X z(t), we arrive at the so-called dissipation inequality

V20 < (1= olw)];.

Integrating on an interval [0, T, recalling that x(0) = 0, gives

T T
oy Xa(T)+ [ < 1-0 [ o

Now let T — oo; since w € Ly and A is Hurwitz, then z(T") converges to
zero and therefore we find

12113 < (1= e)lwll3,

which completes this direction of the proof.

We now tackle the direction (i) implies (ii). To simplify the expressions
we will write the derivation in the special case D = 0, but an analogous
argument applies to the general case (see the exercises). Starting from

wo- (#2]

and recalling the definition of M~ (s) from Chapter 6, we derive the state-
space representation

. R A 0 |-B
I-M~(s)M(s)y=| -=C*C —-A*| 0
0 B> | I
It is easy to verify that
A R A BB* | B
[[—M~(s)M(s)]t=| -C*C —-A*|0 |. (7.5)
0 B* | I

Since || M||o < 1 by hypothesis, we conclude that [I — M~ (s)M(s)]* has
no poles on the imaginary axis. Furthermore we now show, using the PBH
test, that the realization (7.5) has no unobservable eigenvalues that are
purely imaginary. Suppose that

[ijI—A -BB* ]
[ c*C jon+A*J[

0 B* T2

.131:| _ 07

for some vectors x; and z>. Then we have the following chain of
implications:
B*zy =0 implies (jwol — A)z; = 0;
therefore 1 =0 since A is Hurwitz;
this means (jwol + A")z2 = 0;

which implies z; = 0 again because A is Hurwitz.
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We conclude that (7.5) has no unobservable eigenvalues on the imagi-
nary axis; an analogous argument shows the absence of uncontrollable
eigenvalues. This means that the matrix

A BB
i = [—c*c —A*]

has no purely imaginary eigenvalues. Referring to Theorem 5 in Chapter 6,
notice that BB* > 0 and (A, BB*) is stabilizable since A is Hurwitz. Hence
H is in the domain of the Riccati operator, and we can define Xy = Ric(H)
satisfying

A'Xg+ XgA+C*C + XoBB*Xy =0 (7.6)

and A + BB* Xy Hurwitz. Also note that (7.6) implies A* Xy + XoA <0,
therefore from our work on Lyapunov equations we see that

Xy >0

since A is Hurwitz. To obtain the LMI characterization of (ii) we must
slightly strengthen the previous relationships. For this purpose define X to
be the solution of the Lyapunov equation

(A+ BB*Xy)*X + X(A+ BB*X,) = —I. (7.7)

Since (A + BB*Xj) is Hurwitz we have X > 0. Now let X = Xy +€X > 0,
which is positive definite for all ¢ > 0. Using (7.6) and (7.7) we have

A*X + XA+ C*C+ XBB*X = —el + XBB*X.

Choose € > 0 sufficiently small so that this equation is negative definite.
Hence we have found X > 0 satisfying the strict Riccati Inequality

A* X+ XA+ C*"C+ XBB*X <0.

Now applying a Schur complement operation, this inequality is equivalent
to

A* X+ XA+ C*C XB <0
B*X -1 ’

which is (7.3) for the special case D = 0. [ ]

The preceding proof illustrates some of the deepest relationships of linear
systems theory. We have seen that frequency domain inequalities are asso-
ciated with dissipativity of storage functions in the time domain, and also
the connection between LMIs (linked to dissipativity) and Riccati equations
(which arise in quadratic optimization).

In fact this latter connection extends as well to problems of H., syn-
thesis, where both Riccati equations and LMIs can be used to solve the
suboptimal control problem. In this course we will pursue the LMI solu-
tion. Surprisingly the two results of this section are all we require, together
with basic matrix algebra, to solve our control problem.
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7.2 Synthesis

We start with the state space realizations that describe the systems G and

K:
[ A | B, By '|
A . A B
G(S) = C1 D11 D12 y K(S) = [TK’DiK] .
[ Co| Dy O J KV
Notice that we have assumed D,y = 0. Removing this assumption leads
to more complicated formulae, but the technique is identical. We make no

other assumptions about the state space systems. The state dimensions of

the nominal system and controller will be important: A € R**", Ag €
RTLK XNK .

Our first step is to combine these two state space realizations into one
which describes the map from w to z. We obtain

o 4 | B A+ ByDgCy  ByCg | By + ByDgDosy
S(G,K) = {TL’DiL] = BrC» Ak Bg D
L C1+ D1:DkCs> D13Ck | D11 + D12Dg Doy

Now define the matrix

J_AK Bk
" |Cxk Dkl

which collects the representation for K into one matrix. We can parametrize
the closed-loop relation in terms of the controller realization as follows. First
make the following definitions.

- A0 = | B
ami Y 5-[2] -
5 0 I
c=fc c=lg, o
0 B
2= [1 02] Dy, =[0 D]
0
D,, =
=2 [Dm]
which are entirely in terms of the state space matrices for G. Then we have
AL:A‘FBJQ BL:B+§JQ21

- 7.9
CL:C+212JQ Dy, = Dny +212J221 ( )
The crucial point here is that the parametrization of the closed loop state
space matrices is affine in the controller matrix .J.
Now we are looking for a controller K such that the closed loop is con-
tractive and internally stable. The following form of the KYP lemma will
help us.



216 7. Ho Synthesis

Corollary 7.4. Suppose ML(S) = Cp(Is — ApL) 'By + Dy. Then the
following are equivalent conditions.

(a) The matriz Ap is Hurwitz and || Mg < 1;
(b) There exists a symmetric positive definite matriz Xy, such that

AZXL“‘XLAL X1.By, Cz
Bi Xy, -I Dj| <0.
CL Dy —I
This result is readily proved from Lemma 7.3 by applying the Schur comple-
ment formula. Notice that the matrix inequality in (b) is affine in X, and
J individually, but it is not jointly affine in both variables. The main task
now is to obtain a characterization where we do have a convex problem.
Now define the matrices

Px, = [B*X;, 0 D]
Q = [Q Qzl O]
and further

A*X; + XLA XLB C*
Hy,=| B*X, I D
c Dy, -1

It follows that the inequality in (b) above is exactly
HXL +Q*‘]*PXL +P;(LJQ <0.

Lemma 7.5. Given the above definitions there exists a controller synthesis
K if and only if there exists a symmetric matriz Xy, > 0 such that

W;SXL HXLWPXL <0 and WéHXLWQ <0,
where Wpy —and W are as defined in Lemma 7.2.

Proof. From the discussion above we see that a controller K exists if and
only if there exists X > 0 satisfying

Hx, +Q*J*Px, +P)*(LJQ <0.

Now invoke Lemma 7.2.
[ |

This lemma says that a controller exists if and only if the two matrix
inequalities can be satisfied. Each of the inequalities is given in terms of the
state space matrices of G and the variable X;. However we must realize
that since X, appears in both Hx, and Wp, , that these are not LMI
conditions. Converting to an LMI formulation is our next goal, and will



7.2. Synthesis 217

require a number of steps. Given a matrix X > 0 define the related matrix
AX;'+Xp'A* B Xp'Cr
Tx, = B —I Dy, |, (7.10)
cx; ! Dy -1
and the matrix

P=[B" 0 D] (7.11)

which only depends on the state space realization of G. The next lemma
converts one of the two matrix inequalities of the lemma, involving Hx, ,
to one in terms of T'x, .

Lemma 7.6. Suppose X > 0. Then
Wp Hx,Wpy, <0, if and only if, WpTx, Wp < 0.

X

Proof. Start by observing that

Px, =PS,
where
X, 00
S=|10 I 0
0 0 I

Therefore we have
ker Px, =S ' ker P .
Then using the definitions of WpXL and Wp we can set
Wpy, =S Wp..
Finally we have that Wp, Hx,Wp, <0 if and only if
Wi(S™Y)*Hx, S 'Wp <0

and it is routine to verify (S71)*Hx, S~ =T, .
|

Combining the last two lemmas we see that there exists a controller of
state dimension ng if and only if there exists a symmetric matrix X; > 0
such that

WiTx,Wp <0 and WSHx, Wq <0. (7.12)

The first of these inequalities is an LMI in the matrix variable XL_l, where
as the second is an LMI in terms of X;. However the system of both
inequalities is not an LMI. Our intent is to convert these seemingly non-
convex conditions into an LMI condition.
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Recall that X, is a real and symmetric (n+ng) X (n 4+ ng) matrix; here
n and ng are state dimensions of G and K. Let us now define the matrices
X and Y which are n x n submatrices of X, and X;l, by

X X Y Y2] (7.13)

. -1 _.
X = {X; X3] and X =: {Y; Y,

We now show that the two inequality conditions listed in (7.12), only
constrain the submatrices X and Y.

Lemma 7.7. Suppose X, is a positive definite (n+ng) x (n+ng) matriz
and X andY are n x n malrices defined as in (7.13). Then

W;TXLWP <0 and WéHXL WQ <0,

if and only if, the following two matriz inequalities are satisfied

(a)
- [A*X + XA XB, Cf
{ASX ?] B: X -I D} [ASX ?]<0;
C Dy I
(b)
«[AY +YA* YOF B
[]\SY (I)] Y -1 Dn {]\(T)Y ?]<0,
By by, -1

where Nx and Ny are full-rank matrices whose images satisfy

ImNx =ker [Co Do
ImNy =ker [B; Di,] .

Proof. The proof amounts to writing out the definitions and removing
redundant constraints. Let us show that WiTx, Wp < 0 is equivalent to
the LMI in (b).

From the definitions of Tx, in (7.10), and A, B and C in (7.8) we get

AY +YA* AY, B, YCf
Yy A* 0 0 YyCr
B} o -I D
Cl Y C1 Y2 D11 -1

Tx, =

Also recalling the definition of P in (7.11), and substituting for B and D,
from (7.8) yields

r=ls 00 ol

By 0 0 D
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Thus the kernel of P is the image of

Vi 0
0 O
We=1y 71
Vo 0
where
Vi| _
M =

spans the kernel of [B5 Dj,| as defined above. Notice that the second
block row of Wp is exactly zero, and therefore the second block-row and
block-column of T’x, , as explained above, do not enter into the constraint
WgTx, Wp < 0. Namely this inequality is

*

i 0 AY+YA* B, YCy|l (Wi O
0 I B} -I D;|]o I|<o.
sz 0 Cly D11 _I V2 0

By applying the permutation
[Vl 0-| - [I 0 0-|
o] o 7o)
we arrive at (b).

Using a nearly identical argument, we can readily show that W Hx, Wq <
0 is equivalent to LMI (a) in the theorem statement.
]

What we have shown is that a controller synthesis exists if and only if
there exists an (n +ng) x (n + ng) matrix X, that satisfies conditions (a)
and (b) of the last lemma. These latter two conditions only involve X and
Y, which are submatrices of Xy and X ;1 respectively. Our next result tell
us under what conditions, given arbitrary matrices X and Y, it is possible
to find a positive definite matrix Xy, that satisfies (7.13).

Lemma 7.8. Suppose X and Y are symmetric, positive definite matrices
in R" ™ and ng is a positive integer. Then there exist matrices Xo,Ys €
R "% gnd symmetric matrices X3, Y3 € R"6 XK sqtisfying

X X,
X5 X Yy Y

X X7 (v v
X5 X -

>0 and {

if and only if

>0 and rank [‘); 1{,] <n+ng . (7.14)
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Proof. First we prove that the first two conditions imply the second two.

From
X Xo||Y Yo
5l vl )

it is routine to verify that
0< I 0 X X\ (I Y| |X 1
Sy wl|xr xs|lo w| T |1 v
Also the Schur complement relationship

L S | I

implies that

X I
rank{l v

where the last inequality follows from (7.15): I — XY = X,V and X, €

RTLXTLK .

] =n+4rank(X — Y ') = n+rank(XY —I) < n + ny,

To prove “if” we start with the assumption that (7.14) holds; therefore
(7.16) gives

X—-Y '>0 andrank (X —Y 1) <ng .
These conditions ensure that there exists a matrix Xs € R**"K g0 that
X-Y'=XX5>0.

From this and the Schur complement argument we see that

X X,
&
Also
X X7 [ v Y X,
X3 I| T|-X3Y X3YXo+1

and so we set X3 = 1.
[ |

The lemma states that a matrix Xy, in R(v+72x)x(n4nx) satisfying (7.13),
can be constructed from X and Y exactly when the LMI and rank condi-
tions in (7.14) are satisfied. The rank condition is not in general an LMI,
but notice that

X I
rank {I v

]SZn.

Therefore we see that if ng > n in the lemma, the rank condition becomes
vacuous and we are left with only the LMI condition. We can now prove
the synthesis theorem.
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Theorem 7.9. A synthesis exists for the Hy, problem, if and only if there
ezist symmetric matrices X >0 and 'Y > 0 such that

(a)

« [A*X + XA XB; Cf
{ASX ?] BiX -1 D}, [ASX ?]<0;
C1 D -1
(b)
« [AY +YA* YC; By
[ASY ?] { ay -1 D11-| H)Y ?]<o,
L & on -

(c)
{X I

where Nx and Ny are full-rank matrices whose images satisfy

ImNx =ker [Co Do
ImNy = ker [B; D{2] .

Proof. Suppose a controller exists, then by Lemma, 7.7 a controller exists
if and only if the inequalities

WpTx, Wp <0 and WéHXL Wgo <0

hold for some symmetric, positive definite matrix X, in R(?H7x)x(ntni),
By Lemma 7.7 these LMIs being satisfied imply that (a) and (b) are met.
Also invoking Lemma 7.8 we see that (c) is satisfied.

Showing that (a—c) imply the existence of a synthesis is essentially the
reverse process. We choose nx > n, in this way the rank condition in
Lemma 7.8 is automatically satisfied, and thus there exists an X in
R(wtnu ) x(ntns) which satisfies (7.13). The proof is now completed by using
X1, and (a—b) together with Lemma 7.7.

|

This theorem gives us exact conditions under which a solution exists
to our H, synthesis problem. Notice that in the sufficiency direction we
required that n; > n, but clearly it suffices to choose nj, = n. In other words
a synthesis exists if and only if one exists with state dimension nx = n.

What if we want controllers of order ng less than n? Then clearly from
the above proof we have the following characterization.

Corollary 7.10. A synthesis of order ny exists for the Hy, problem, if and
only if there exist symmetric matrices X > 0 and Y > 0 satisfying (a), (b),
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and (c¢) in Theorem 7.9 plus the additional constraint

X I
rank{l Y] <n+4+ng.

Unfortunately this constraint is not convex when ng < mn, so this
says that in general the reduced order H,, problem is computationally
much harder than the full order problem. Nevertheless, the above explicit
condition can be exploited in certain situations.

7.3 Controller reconstruction

The results of the last section provide us with an explicit way to determine
whether a synthesis exists which solves the H,, problem. Implicit in our
development is a method to construct controllers when the conditions of
Theorem 7.9 are met. We now outline this procedure, which simply retraces
our steps so far.

Suppose X and Y have been found satisfying Theorem 7.9 then by
Lemma 7.8 there exists a matrix Xj € R"*"K satisfying

? ?
X = F,f ,;] and X;!= [1; ;,]

From the proof of the lemma we can construct Xy by finding a matrix
X, € R™"x such that X — Y ! = X5 X3, Then

X, = [X Xz]

Xy, I

has the properties desired above. As seen before, the order nx need be no
larger than n, and in general can be chosen to be the rank of X — Y 1.
Next by Lemma 7.2 we know that there exists a solution to

HXL +Q*J*PXL +P)*(LJQ <0 )
and that any such solution J provides the state space realization for a

feasible controller K. The solution of this LMI can be accomplished using
standard techniques, and there is clearly an open set of solutions J.

7.4 Exercises

1. Prove Lemma 7.1.
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2. Generalization of the KYP Lemma. Let A be a Hurwitz matrix, and

let ¥ = LC?* ;] be a symmetric matrix with R > 0. We define

D) = {(ij —IA)lB] * v {(jwf —IA)lB]

Show that the following are equivalent:

~

(i) Y(jw) >e>0forall we R
(ii) The Hamiltonian matrix
= A— BR™'S* —~BR™'B*
“|-(Q —BR'S*) —(A—BR'S*)*
is in the domain of the Riccati operator.

(iii) The LMI

{A*X+XA XB

ey 0]+xp>0

admits a symmetric solution X.
(iv) There exists a quadratic storage function V(z) = z* Pz such the
dissipation inequality

ve] & R )

is satisfied over any solutions to the equation ¢ = Az + Bu.

Hint: The method of proof from §7.1.1 can be replicated here.

3. Spectral Factorization. This exercise is a continuation of the previous
one on the KYP Lemma. We take the same definitions for ¢, H, etc.,
and assume the above equivalent conditions are satisfied. Now set

. A | B
MO = T 0 /Y|

where X = Ric(H). Show that M(s) € RHy, M(s)™' € RH,,, and
the factorization

~ ~ ~

P(jw) = M(jw)" M (jw)
holds for every w € R.
4. Mixed Hs/H,, control.

(a) We are given a stable system with the inputs partitioned in two
channels wi, ws and a common output z:

A L A|B, B
Polh Bl- | o]
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(d)

Suppose there exists X > 0 satisfying

A*X+XA XB, C*

BrX -1 D*| <0, (7.17)
C D -1
Tr(B: X B,) < v2. (7.18)

Show that P satisfies the specifications ||P||z. <1, [|Ps|lm <
~. Is the converse true?

We now wish to use part (a) for state-feedback synthesis. In
other words, given an open loop system

T = Agx + Biwi + Baws + Byu,
z = Cox + Dwy + Dyu,

we want to find a state feedback v = F'z such that the closed
loop satisfies (7.17)-(7.18). Substitute the closed loop matrices
into (7.17); does this give an LMI problem for synthesis?

Now modify (7.17) to an LMI in the variable X!, and show
how to replace (7.18) by two convex conditions in X ~! and an
appropriately chosen slack variable Z.

Use part (c) to obtain a convex method for mixed Ho,/H> state
feedback synthesis.

5. As a special case of reduced order H,, synthesis, prove Theorem 4.20
on model reduction.

6. Prove Theorem 5.8 involving stabilization. Hint: Reproduce the steps
of the H,, synthesis proof, using a Lyapunov inequality in place of
the KYP Lemma.

7. Connections to Riccati solutions for the H,, problem. Let

A A| B B
G(S) = 01 0 D12
02 D21 0

satisfy the normalization conditions

DI2 [Ol DIZ] = [0 I] and D21 I:Bf D;l] = [0 I] .

Notice that these (and D;; = 0) are part of the conditions we imposed
in our solution to the Hs-optimal control in the previous chapter.
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(a) Show that the H,, synthesis is equivalent to the feasibility of
the LMIs X > 0,Y > 0 and

A*X + XA+ CfCL — C50C; XB,] <0
B X =1 ’
AY +YA* + B1Bf — B3B; YCT_ <0
c\Y -1 ’

X I
I Y] 2 0.

(b) Now denote @ =Y 1, P = X1, Convert the above conditions
to the following:

A*P+PA+C;C, + P(BiB} — B,B;)P < 0,
AQ+ QA" + B1Bf + Q(C;CL — C5C2)Q < 0,
p(PQ) <1

These are two Riccati inequalities plus a spectral radius cou-
pling condition. Formally analogous conditions involving the
corresponding Riccati equations can be obtained when the
plant satisfies some additional technical assumptions. For details
consult the references.

Notes and references

The H,, control problem was formulated in [152], and was motivated by
the necessity for a control framework that could systematically incorporate
errors in the plant model. At the time this had been a goal of control
research for a number of years, and Hs control seemed poorly suited for
this task [22]. The main observation of [152] was that these requirements
could be met by working in a Banach algebra such as H,, but not H> which
lacks this structure. We will revisit this question in subsequent chapters.

The formulation of the H,, problem precipitated an enormous research
effort into its solution. The initial activity was based on the parametriza-
tion of stabilizing controllers discussed in Chapter 5, which reduced the
problem to approximation in analytic function space. This problem was
solved in the multivariable case by a combination of function theory and
state space methods, notably Riccati equations. For an extensive account
of this approach to the H,, problem, see the book [41]. Recent extensions
to infinite dimensional systems can be found in [38].

Ultimately, these efforts led to a solution to the H,, problem in terms
of two Riccati equations and based entirely on state-space methods [24];
see the books [50, 155] for an extensive presentation of this approach and
historical references. This solution has close ties to the theory of differ-
ential games (see [6]). For extensions of the Riccati equation method to
distributed parameter systems, see [132].
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One of the drawbacks of the Riccati equation theory was that it required
unnecessary rank conditions on the plant; the ensuing research in removing
such restrictions [16, 126] led to the use of Riccati inequalities [117, 119]
which pointed in the direction of LMIs. Complete LMI solutions to the
problem with no unnecessary system requirements appeared in [42, 89];
these papers form the basis for this chapter, particularly the presentation
in [42].

The LMI solution has, however, other advantages beyond this regular-
ity question. In the first place, a family of controllers is parameterized,
in contrast to the Riccati solution which over-emphasizes the so-called
“central” solution. This increased flexibility can be exploited to impose
other desirable requirements on the closed loop; for a recent survey of these
multi-objective problems see [120].

Also, the LMI solution has led to powerful generalizations: in [18] a
more general version is solved where spatial constraints can be specified;
[31] solves the time varying and periodic problems; finally, the extension
of this solution to multi-dimensional systems forms the basis of Linear
Parameter-Varying control, a powerful method for gain-scheduling design
[89].



