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Lecture 6

@ An H, Loop Shaping Procedure
@ Properties of the robustness margin bpx

@ Justification of Hy, Loop Shaping.
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What is Good Performance?
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What is Good Performance?

d n
p O >
< K [
What is captured by the norm
K _
H[I (I+PK)[I P]H ?
[e.0]

Remember: A controller should counteract disturbances, but be insensitive to
measurement noise.
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Loop-Shaping Design

Recall from Lecture 2 that a good performance controller design requires

@ in the low frequency region:

o(PK)>>1, o(KP)>>1, o(K)>>1.
@ in the high frequency region:

0(PK)<<1, 0o(KP)<<l1l, oK)sM

where M is not too large.
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Use weighting matrices!
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Disturbance rejection
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ds t Ms
Wy p Wy -
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1) Choose Wj and W5 and absorb them into the nominal plant P to get the shaped plant
P, =WoPW;.

2) Design the controller Ky, to minimize the Hy, gain from (ns, ds) to (us, ys). If the gain
is large, the return to Step 1.

3) The final controller is K = W Koo Wh.

(The Hy loop shaping design procedure was suggested by Glover and McFarlane, 1990.)
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Lecture 6

@ An H,, Loop Shaping Procedure.

@ Properties of the robustness margin bpg

@ Justification of Hy, Loop Shaping.
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A Notion of Loop Stability Margin

Introduce the quantity bpx

-1

(I+PK)™L [1 P] if K stabilizes P

¥

0 otherwise

bP,K oo

The larger bpk is, the more robustly stable the closed loop system is.
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Relation to Gain and Phase Margins

Theorem: Let P be a SISO plant and K be a stabilizing controller. Then

1+ bP,K
1-bpx’
phase margin = 2arcsin(bP,K).

gain margin =

Proof: For SISO system at every w
1 - 1+ P(jw)K(jw)l _ 1+ P(jw)K(jw)|
Ieolloo ‘ ] 1 P H VI+IPG0)PyV1+IK(jw)?

bRKZ

1
K
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So at frequencies where k:= —PK € R* we have

11—k
bpx = <
VA +PR)A+k2/|P2)
- 11—k 11—kl

Vminp{(1+|PP)(1+ K2/|PP?)] |14kl

from which the gain margin result follows.

Similarly at frequencies where PK = —elf
1 _eiG
bP,K < | | <
VA +IPR)A+1/|P]?)
1-e" _ 2[sin(0/2)]
Vvminp{(1+|P2)(1+1/|P[2)} 2

which implies the phase margin result.

Carolina Bergeling Robust Control Lecture 6: Hoo loop shaping



Robust Stabilization of Coprime Factors

Let P= M "IN, where NGw)N(iw)* + M(iw)M(iw)* = 1. This is called normalized
coprime factorization.

The process Py = (M + AM)_I(NnL AN) in feedback with the controller K is stable for all
A =[An Ayl with [|A]lo < € iff

II:

4 1
(I+PK)"'[I P] <= (1)

Finding K that achieves (1) is a problem of Hy, optimization. Lemma 16.4 (Zhou) shows
equivalence between expression considered previously and the above.
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H_, Optimization of Normalized Coprime Factors

Theorem: Let D=0and L=-YC* where Y =0 is the stabilizing solution to

AY +YA* - YC*CY + BB* =0. Then P = M~ ' N is a normalized left coprime factorization
and

3 1
inf [K (I+PK)'M7! = —
K-stab || | 1 © V1= Amax(Y Q)
~  ~ -1/2
= (1-INMI%)" " =yop:

where Q is the solution to QLA-YC*C)+(A-YC*C)*Q+ C*C =0. Moreover, a
controller achieving y > yop¢ is

K(s)

A-BB*Xo-YC*C | -YC*
—B* X 0
2 2 -1

Y y
X = I- Y
YZ—IQ( y?-1 Q)

Carolina Bergeling Robust Control Lecture 6: Hoo loop shaping



Right Coprime Factors

What if we have a normalized right coprime factorization P = NM~1?

Theorem:
TN 1y pro [ P]| = D vk [T K]
K p )
Corollary: Let P = NM~! = M~'N be the normalized rcf and Icf, respectively. Then
K “1y-1 -1 -1
”[1 (I+PK)'M = |[|Mta+kP)HI K],

[e]

Conclusion: It does not matter what kind of factorization we have. One can work with
either left or right.
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Lecture 6

@ An H,, Loop Shaping Procedure.

@ Properties of the robustness margin bpx

@ Justification of H,, Loop Shaping.
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Loop-Shaping Design

Recall from Lecture 2 that a good performance controller design requires

@ in the low frequency region:

o(PK)>>1, o(KP)>>1, o(K)>>1.
@ in the high frequency region:

o(PK)<<1, 0o(KP)<<l1, oK)=sM

where M is not too large.

Conclusion: Performance depends strongly on open loop shape.

Carolina Bergeling Robust Control Lecture 6: Hoo loop shaping



[ |

[ e

2

1) Choose Wj and W, and absorb them into the nominal plant P to get the shaped plant
P;=WoPW;.

2) Calculate bopt(Ps) =4/1- | N, Msllil. If it is small then return to Step 1 and adjust
weights.

3) Select € < byp(Ps) and design the controller Ko, such that

<.

4) The final controller is K = W) Koo Wa.

(I+PsKoo) "M <€

[ee]
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Remarks:

@ In contrast to the classical loop shaping design we do not treat explicitly closed loop
stability, phase and gain margins. Thus the procedure is simple.

@ Observe that

a+p wy 'l Py

! -1 _f| Y
eformran |

oo

so it has an interpretation of the standard H, optimization problem with weights.

@ BUT!!! The open loop under investigation on Step 1 is Koo W> PW; whereas the actual
open loop is given by W KooW> P and PW; Koo W>. This is not really what we has
shaped!

Thus the method needs validation.
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Justification of H,, Loop Shaping

We show that the degradation in the loop shape caused by K, is limited. Consider
low-frequency region first.

G(PK) = oWy PykoWy) = 22K
= - =2 sRoo VV2) = K(Wz) R
0(KP) = o(WiKePoWj )z ZLILE)
=z = 9UWilhoolsVVy = (WD)

where x denotes conditional number. Thus small 0(K) might cause problem even if Ps is
large. Can this happen?

Theorem: Any K, such that bp_x_ = 1/y also satisfies

a(Py)—vy?-1
0(Ky) = = if a(Ps) >1/y?—1.
N VY?-1laP)+1  — ) Y

Corollary: If a(Ps) >> /y?—1then d(Ky) = 1/1/y* -1
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Consider now high frequency region.

o(PK)
o(KP)

T(Wy 1 PsKoo Wa) < G (P5)T (Koo) K (Wh),
T(W1 Koo PsWT ) < G (P5)T (Koo) K (W1).

Can 0(Ky) be large if a(Ps) is small?

Theorem: Any K, such that bp k. =1/y also satisfies

—
VY~ —1+0Py)  mpy <« 1
1-/y?-10(Py) VY2-1

Corollary: If G(Ps) << 1/y/y?>—1then 0(Ky) <1/ y* -1

T(Kao) <
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Denote
Gi=0W), g;=0Wy), xi=x(W,).

Theorem: Let P be the nominal plant and let K = W; K, W> be the controller designed by
loop shaping. If bp_ k. =1/y then

IA

T(K(I+PK)™H
o((I+PK)™H

YG (M;)T102,

IA

min{ya (M)xz, 1+ya (Ny)xz},

G(KUI+PK)'P) < min{yc(Nyki,1+y5 (M)},
F(I+PR)lp) < YW
0,0,

o(I+KP)Y) < min{l+yo(Nox1,yo (M1},

o(PUI+KP)'K) < min{1+yE(Ms)K2,y5(Ns)K2}
where
—2 1/2 1/2
_ P _ 1
TN = (% T = (T)
1+0°(Ps) 1+0°(Pys)
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Lecture 6

@ An H,, Loop Shaping Procedure.

@ Properties of the robustness margin bpx

@ Justification of Hy, Loop Shaping.
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What have we learned today?

@ H,, optimization of normalized coprime factors.
@ Left or right coprime factors - does not matter.
@ Stability margin bpk. The larger the better. Relation to gain and phase margins.

@ H,, loop shaping via pre- and postcompensations and optimization of bpk.
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