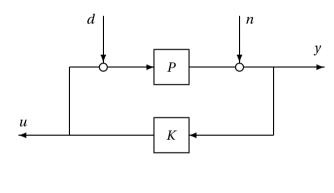


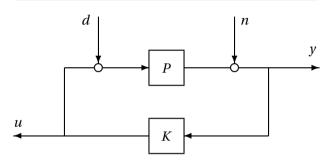
- An H_∞ Loop Shaping Procedure
- Properties of the robustness margin $b_{P,K}$
- Justification of H_{∞} Loop Shaping.

What is Good Performance?



$$\begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} K \\ I \end{bmatrix} (I + PK)^{-1} \begin{bmatrix} I & P \end{bmatrix} \begin{bmatrix} n \\ d \end{bmatrix}$$

What is Good Performance?



What is captured by the norm

$$\left\| \begin{bmatrix} K\\I \end{bmatrix} (I+PK)^{-1} \begin{bmatrix} I & P \end{bmatrix} \right\|_{\infty} ?$$

Remember: A controller should counteract disturbances, but be insensitive to measurement noise.

Recall from Lecture 2 that a good performance controller design requires

• in the low frequency region:

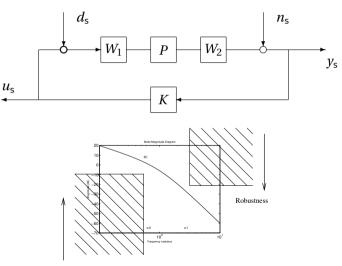
 $\underline{\sigma}(PK) >> 1, \quad \underline{\sigma}(KP) >> 1, \quad \underline{\sigma}(K) >> 1.$

• in the high frequency region:

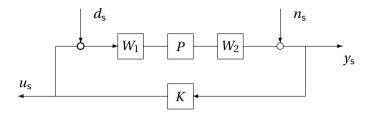
```
\overline{\sigma}(PK) << 1, \quad \overline{\sigma}(KP) << 1, \quad \overline{\sigma}(K) \le M
```

where M is not too large.

Use weighting matrices!



Disturbance rejection



- 1) Choose W_1 and W_2 and absorb them into the nominal plant P to get the shaped plant $P_s = W_2 P W_1$.
- 2) Design the controller K_{∞} to minimize the H_{∞} gain from (n_s, d_s) to (u_s, y_s) . If the gain is large, the return to Step 1.
- 3) The final controller is $K = W_1 K_{\infty} W_2$.

(The H_∞ loop shaping design procedure was suggested by Glover and McFarlane, 1990.)

- An H_{∞} Loop Shaping Procedure.
- Properties of the robustness margin $b_{P,K}$
- Justification of H_{∞} Loop Shaping.

Introduce the quantity $b_{P,K}$

$$b_{P,K} = \begin{cases} \left\| \begin{bmatrix} I \\ K \end{bmatrix} (I + PK)^{-1} \begin{bmatrix} I & P \end{bmatrix} \right\|_{\infty}^{-1} & \text{if } K \text{ stabilizes } P \\ 0 & \text{otherwise} \end{cases}$$

The larger $b_{P,K}$ is, the more robustly stable the closed loop system is.

Theorem: Let P be a SISO plant and K be a stabilizing controller. Then

gain margin
$$\geq \frac{1 + b_{P,K}}{1 - b_{P,K}}$$
,
phase margin $\geq 2 \arcsin(b_{P,K})$.

Proof: For SISO system at every ω

$$b_{P,K} = \frac{1}{\|\dots\|_{\infty}} \le \frac{|1 + P(j\omega)K(j\omega)|}{\left\| \begin{bmatrix} 1\\K \end{bmatrix} \begin{bmatrix} 1 & P \end{bmatrix} \right\|} = \frac{|1 + P(j\omega)K(j\omega)|}{\sqrt{1 + |P(j\omega)|^2}\sqrt{1 + |K(j\omega)|^2}}$$

So at frequencies where $k := -PK \in R^+$ we have

$$\begin{array}{rcl} b_{P,K} & \leq & \frac{|1-k|}{\sqrt{(1+|P|^2)(1+k^2/|P|^2)}} \leq \\ & \leq & \frac{|1-k|}{\sqrt{\min_P\{(1+|P|^2)(1+k^2/|P|^2)\}}} = \frac{|1-k|}{|1+k|} \end{array}$$

from which the gain margin result follows.

Similarly at frequencies where $PK = -e^{i\theta}$

$$\begin{array}{ll} b_{P,K} &\leq & \frac{|1 - e^{i\theta}|}{\sqrt{(1 + |P|^2)(1 + 1/|P|^2)}} \leq \\ &\leq & \frac{|1 - e^{i\theta}|}{\sqrt{\min_P\{(1 + |P|^2)(1 + 1/|P|^2)\}}} = \frac{2|\sin(\theta/2)|}{2} \end{array}$$

which implies the phase margin result.

Robust Stabilization of Coprime Factors

Let $P = \tilde{M}^{-1}\tilde{N}$, where $\tilde{N}(i\omega)\tilde{N}(i\omega)^* + \tilde{M}(i\omega)\tilde{M}(i\omega)^* \equiv 1$. This is called *normalized* coprime factorization.

The process $P_{\Delta} = (\tilde{M} + \tilde{\Delta}_M)^{-1} (\tilde{N} + \tilde{\Delta}_N)$ in feedback with the controller K is stable for all $\Delta = [\tilde{\Delta}_N \ \tilde{\Delta}_M]$ with $\|\Delta\|_{\infty} \le \epsilon$ iff

$$\left\| \begin{bmatrix} K\\I \end{bmatrix} (I + PK)^{-1} \begin{bmatrix} I & P \end{bmatrix} \right\|_{\infty} < \frac{1}{\epsilon}$$
(1)

Finding K that achieves (1) is a problem of H_{∞} optimization. Lemma 16.4 (Zhou) shows equivalence between expression considered previously and the above.

H_∞ Optimization of Normalized Coprime Factors

Theorem: Let D = 0 and $L = -YC^*$ where $Y \ge 0$ is the stabilizing solution to $AY + YA^* - YC^*CY + BB^* = 0$. Then $P = \tilde{M}^{-1}\tilde{N}$ is a normalized left coprime factorization and

$$\inf_{K-\text{stab}} \left\| \begin{bmatrix} K \\ I \end{bmatrix} (I+PK)^{-1} \tilde{M}^{-1} \right\|_{\infty} = \frac{1}{\sqrt{1-\lambda_{\max}(YQ)}}$$
$$= \left(1 - \|\tilde{N} \ \tilde{M}\|_{H}^{2}\right)^{-1/2} = \gamma_{opt}$$

where Q is the solution to $Q(A - YC^*C) + (A - YC^*C)^*Q + C^*C = 0$. Moreover, a controller achieving $\gamma > \gamma_{opt}$ is

$$K(s) = \left(\begin{array}{c|c} A - BB^* X_{\infty} - YC^*C & | -YC^* \\ \hline -B^* X_{\infty} & | \end{array} \right)$$
$$X_{\infty} = \frac{\gamma^2}{\gamma^2 - 1} Q \left(I - \frac{\gamma^2}{\gamma^2 - 1} YQ \right)^{-1}$$

Carolina Bergeling Robust Control Lecture 6: H_{∞} loop shaping

Right Coprime Factors

What if we have a normalized right coprime factorization $P = NM^{-1}$?

Theorem:

$$\left\| \begin{bmatrix} I \\ K \end{bmatrix} (I + PK)^{-1} \begin{bmatrix} I & P \end{bmatrix} \right\| = \left\| \begin{bmatrix} I \\ P \end{bmatrix} (I + KP)^{-1} \begin{bmatrix} I & K \end{bmatrix} \right\|.$$

Corollary: Let $P = NM^{-1} = \tilde{M}^{-1}\tilde{N}$ be the normalized rcf and lcf, respectively. Then

$$\left\| \begin{bmatrix} K \\ I \end{bmatrix} (I + PK)^{-1} \tilde{M}^{-1} \right\|_{\infty} = \left\| M^{-1} (I + KP)^{-1} \begin{bmatrix} I & K \end{bmatrix} \right\|_{\infty}.$$

<u>Conclusion</u>: It does not matter what kind of factorization we have. One can work with either left or right.

- An H_{∞} Loop Shaping Procedure.
- Properties of the robustness margin $b_{P,K}$
- Justification of H_{∞} Loop Shaping.

Recall from Lecture 2 that a good performance controller design requires

• in the low frequency region:

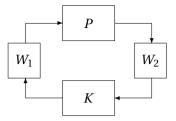
$$\underline{\sigma}(PK)>>1, \quad \underline{\sigma}(KP)>>1, \quad \underline{\sigma}(K)>>1.$$

• in the high frequency region:

```
\overline{\sigma}(PK) \ll 1, \quad \overline{\sigma}(KP) \ll 1, \quad \overline{\sigma}(K) \leq M
```

where M is not too large.

<u>Conclusion</u>: Performance depends strongly on open loop shape.



1) Choose W_1 and W_2 and absorb them into the nominal plant P to get the shaped plant $P_s = W_2 P W_1$.

2) Calculate $b_{opt}(P_s) = \sqrt{1 - \|\tilde{N}_s \|\tilde{M}_s\|_H^2}$. If it is small then return to Step 1 and adjust weights.

3) Select $\epsilon \leq b_{opt}(P_s)$ and design the controller K_{∞} such that

$$\left\| \begin{bmatrix} I\\K_{\infty} \end{bmatrix} (I + P_{s}K_{\infty})^{-1}\tilde{M}_{s}^{-1} \right\|_{\infty} < \epsilon^{-1}.$$

4) The final controller is $K = W_1 K_{\infty} W_2$.

Remarks:

- In contrast to the classical loop shaping design we do not treat explicitly closed loop stability, phase and gain margins. Thus the procedure is simple.
- Observe that

$$\left\| \begin{bmatrix} I \\ K_{\infty} \end{bmatrix} (I + P_{\delta}K_{\infty})^{-1} \bar{M}_{\delta}^{-1} \right\|_{\infty} = \left\| \begin{bmatrix} W_{2} \\ W_{1}^{-1}K \end{bmatrix} (I + PK)^{-1} \begin{bmatrix} W_{2}^{-1} & PW_{1} \end{bmatrix} \right\|_{\infty}$$

so it has an interpretation of the standard H_{∞} optimization problem with weights.

• BUT!!! The open loop under investigation on Step 1 is $K_{\infty}W_2PW_1$ whereas the actual open loop is given by $W_1K_{\infty}W_2P$ and $PW_1K_{\infty}W_2$. This is not really what we has shaped!

Thus the method needs validation.

Justification of H_∞ Loop Shaping

We show that the degradation in the loop shape caused by K_{∞} is limited. Consider low-frequency region first.

$$\underline{\sigma}(PK) = \underline{\sigma}(W_2^{-1}P_sK_{\infty}W_2) \ge \frac{\underline{\sigma}(P_s)\underline{\sigma}(K_{\infty})}{\kappa(W_2)},$$

$$\underline{\sigma}(KP) = \underline{\sigma}(W_1K_{\infty}P_sW_1^{-1}) \ge \frac{\underline{\sigma}(P_s)\underline{\sigma}(K_{\infty})}{\kappa(W_1)}$$

where κ denotes conditional number. Thus small $\underline{\sigma}(K_{\infty})$ might cause problem even if P_s is large. Can this happen?

Theorem: Any K_{∞} such that $b_{P_s,K_{\infty}} \ge 1/\gamma$ also satisfies

$$\underline{\sigma}(K_{\infty}) \geq \frac{\underline{\sigma}(P_s) - \sqrt{\gamma^2 - 1}}{\sqrt{\gamma^2 - 1}\underline{\sigma}(P_s) + 1} \quad \text{if } \underline{\sigma}(P_s) > \sqrt{\gamma^2 - 1}.$$

Corollary: If $\underline{\sigma}(P_s) >> \sqrt{\gamma^2 - 1}$ then $\underline{\sigma}(K_{\infty}) \ge 1/\sqrt{\gamma^2 - 1}$

Carolina Bergeling

Consider now high frequency region.

$$\begin{split} \overline{\sigma}(PK) &= \overline{\sigma}(W_2^{-1}P_sK_{\infty}W_2) \leq \overline{\sigma}(P_s)\overline{\sigma}(K_{\infty})\kappa(W_2), \\ \overline{\sigma}(KP) &= \overline{\sigma}(W_1K_{\infty}P_sW_1^{-1}) \leq \overline{\sigma}(P_s)\overline{\sigma}(K_{\infty})\kappa(W_1). \end{split}$$

Can $\overline{\sigma}(K_{\infty})$ be large if $\overline{\sigma}(P_s)$ is small?

Theorem: Any K_{∞} such that $b_{P_s,K_{\infty}} \ge 1/\gamma$ also satisfies

$$\overline{\sigma}(K_{\infty}) \leq \frac{\sqrt{\gamma^2 - 1} + \overline{\sigma}(P_s)}{1 - \sqrt{\gamma^2 - 1}\overline{\sigma}(P_s)} \quad \text{if } \overline{\sigma}(P_s) < \frac{1}{\sqrt{\gamma^2 - 1}}$$

Corollary: If $\overline{\sigma}(P_s) << 1/\sqrt{\gamma^2 - 1}$ then $\overline{\sigma}(K_\infty) \le \sqrt{\gamma^2 - 1}$

Denote

$$\overline{\sigma}_i = \overline{\sigma}(W_i), \quad \underline{\sigma}_i = \underline{\sigma}(W_i), \quad \kappa_i = \kappa(W_i).$$

Theorem: Let *P* be the nominal plant and let $K = W_1 K_{\infty} W_2$ be the controller designed by loop shaping. If $b_{P_s,K_{\infty}} \ge 1/\gamma$ then

$$\begin{split} \overline{\sigma}(K(I+PK)^{-1}) &\leq \gamma \overline{\sigma}(\tilde{M}_s)\overline{\sigma}_1\overline{\sigma}_2, \\ \overline{\sigma}((I+PK)^{-1}) &\leq \min\{\gamma \overline{\sigma}(\tilde{M}_s)\kappa_2, 1+\gamma \overline{\sigma}(\tilde{N}_s)\kappa_2\}, \\ \overline{\sigma}(K(I+PK)^{-1}P) &\leq \min\{\gamma \overline{\sigma}(\tilde{N}_s)\kappa_1, 1+\gamma \overline{\sigma}(\tilde{M}_s)\kappa_1\}, \\ \overline{\sigma}((I+PK)^{-1}P) &\leq \frac{\gamma \overline{\sigma}(\tilde{N}_s)}{\underline{\sigma}_1\underline{\sigma}_2}, \\ \overline{\sigma}((I+KP)^{-1}) &\leq \min\{1+\gamma \overline{\sigma}(\tilde{N}_s)\kappa_1, \gamma \overline{\sigma}(\tilde{M}_s)\kappa_1\}, \\ \overline{\sigma}(P(I+KP)^{-1}K) &\leq \min\{1+\gamma \overline{\sigma}(\tilde{M}_s)\kappa_2, \gamma \overline{\sigma}(\tilde{N}_s)\kappa_2\} \end{split}$$

where

$$\overline{\sigma}(\tilde{N}_s) = \left(\frac{\overline{\sigma}^2(P_s)}{1 + \overline{\sigma}^2(P_s)}\right)^{1/2} \qquad \overline{\sigma}(\tilde{M}_s) = \left(\frac{1}{1 + \overline{\sigma}^2(P_s)}\right)^{1/2}$$

Carolina Bergeling

Robust Control Lecture 6: H_{∞} loop shaping

- An H_{∞} Loop Shaping Procedure.
- Properties of the robustness margin $b_{P,K}$
- Justification of H_{∞} Loop Shaping.

- H_{∞} optimization of normalized coprime factors.
- Left or right coprime factors does not matter.
- Stability margin $b_{P,K}$. The larger the better. Relation to gain and phase margins.
- H_{∞} loop shaping via pre- and postcompensations and optimization of $b_{P,K}$.