Chapter 3

Basic Concepts

This chapter and the next are the most fundamental. We concentrate on the single-loop feedback
system. Stability of this system is defined and characterized. Then the system is analyzed for its
ability to track certain signals (i.e., steps and ramps) asymptotically as time increases. Finally,
tracking is addressed as a performance specification. Uncertainty is postponed until the next
chapter.

Now a word about notation. In the preceding chapter we used signals in the time and frequency
domains; the notation was u(t) for a function of time and 4(s) for its Laplace transform. When the
context is solely the frequency domain, it is convenient to drop the hat and write u(s); similarly
for an impulse response G(t) and the corresponding transfer function G(s).

3.1 Basic Feedback Loop

The most elementary feedback control system has three components: a plant (the object to be
controlled, no matter what it is, is always called the plant), a sensor to measure the output of the
plant, and a controller to generate the plant’s input. Usually, actuators are lumped in with the
plant. We begin with the block diagram in Figure 3.1. Notice that each of the three components

— controller plant

sensor

Figure 3.1: Elementary control system.

has two inputs, one internal to the system and one coming from outside, and one output. These
signals have the following interpretations:
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reference or command input
sensor output

actuating signal, plant input
external disturbance

plant output and measured signal
sensor noise

S ag e 3

The three signals coming from outside—r, d, and n—are called exogenous inputs.

In what follows we shall consider a variety of performance objectives, but they can be summa-
rized by saying that y should approximate some prespecified function of r, and it should do so in
the presence of the disturbance d, sensor noise n, with uncertainty in the plant. We may also want
to limit the size of u. Frequently, it makes more sense to describe the performance objective in
terms of the measurement v rather than g, since often the only knowledge of y is obtained from v.

The analysis to follow is done in the frequency domain. To simplify notation, hats are omitted
from Laplace transforms.

Each of the three components in Figure 3.1 is assumed to be linear, so its output is a linear
function of its input, in this case a two-dimensional vector. For example, the plant equation has

the form
d
y—P<u>.

Partitioning the 1 x 2 transfer matrix P as

P=[P P,
we get

y = Pid+ Pyu.

We shall take an even more specialized viewpoint and suppose that the outputs of the three
components are linear functions of the sums (or difference) of their inputs; that is, the plant, sensor,
and controller equations are taken to be of the form

= P(d+uw),
F(y +mn),
u = C(r—vo).

The minus sign in the last equation is a matter of tradition. The block diagram for these equations
is in Figure 3.2. Our convention is that plus signs at summing junctions are omitted.

This section ends with the notion of well-posedness. This means that in Figure 3.2 all closed-
loop transfer functions exist, that is, all transfer functions from the three exogenous inputs to all
internal signals, namely, u, y, v, and the outputs of the summing junctions. Label the outputs of
the summing junctions as in Figure 3.3. For well-posedness it suffices to look at the nine transfer
functions from r, d, n to 1, z2, r3. (The other transfer functions are obtainable from these.) Write
the equations at the summing junctions:

ry = r— Fuxs,
o = d+ C(IIl,
r3 = n+ Pxo.
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Figure 3.2: Basic feedback loop.
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Figure 3.3: Basic feedback loop.

In matrix form these are

1 0 F T T
-C 1 0 T2 = d
0 —-P 1 T3 n

Thus, the system is well-posed iff the above 3 x 3 matrix is nonsingular, that is, the determinant
1 + PCF is not identically equal to zero. [For instance, the system with P(s) = 1, C(s) = 1,

F(s) = —1 is not well-posed.] Then the nine transfer functions are obtained from the equation
-1
T 1 0 F r
i) = —C 1 0 d s
I3 0 —-P 1 n
that is,
T 1 1 —-PF -F T
2 | =——F5| C 1 —CF d |. (3.1)
1+ PCF PC P 1 n

A stronger notion of well-posedness that makes sense when P, C, and F are proper is that
the nine transfer functions above are proper. A necessary and sufficient condition for this is that
1 + PCF not be strictly proper [i.e., PCF(00) # —1].

One might argue that the transfer functions of all physical systems are strictly proper: If a
sinusoid of ever-increasing frequency is applied to a (linear, time-invariant) system, the amplitude
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of the output will go to zero. This is somewhat misleading because a real system will cease to
behave linearly as the frequency of the input increases. Furthermore, our transfer functions will be
used to parametrize an uncertainty set, and as we shall see, it may be convenient to allow some of
them to be only proper. A proportional-integral-derivative controller is very common in practice,
especially in chemical engineering. It has the form

k
ky +f 1 k3s.

This is not proper, but it can be approximated over any desired frequency range by a proper one,
for example,

k kss
k24—
S Ts+1

Notice that the feedback system is automatically well-posed, in the stronger sense, if P, C, and
F' are proper and one is strictly proper. For most of the book, we shall make the following standing
assumption, under which the nine transfer functions in (3.1) are proper:

P is strictly proper, C' and F' are proper.

However, at times it will be convenient to require only that P be proper. In this case we shall
always assume that |[PCF| < 1 at w = oo, which ensures that 1 + PCF is not strictly proper.
Given that no model, no matter how complex, can approximate a real system at sufficiently high
frequencies, we should be very uncomfortable if |[PCF| > 1 at w = oo, because such a controller
would almost surely be unstable if implemented on a real system.

3.2 Internal Stability

Consider a system with input u, output y, and transfer function G’, assumed stable and proper.
We can write
G =Gy + Gy,

where Gy is a constant and Gy is strictly proper.

s 1
E le: —— =1- .
xample s+1 s+1

In the time domain the equation is
(0]
y(t) = Gou(t) +/ G1(t — 1)u(r) dr.
—00

If |u(t)| < c for all ¢, then

oo

ly(t)| < |G0|C+/ |G1(1)] dre.

The right-hand side is finite. Thus the output is bounded whenever the input is bounded. [This
argument is the basis for entry (2,2) in Table 2.2.]

If the nine transfer functions in (3.1) are stable, then the feedback system is said to be internally
stable. As a consequence, if the exogenous inputs are bounded in magnitude, so too are z, x2, and
x3, and hence u, y, and v. So internal stability guarantees bounded internal signals for all bounded
exogenous signals.
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The idea behind this definition of internal stability is that it is not enough to look only at
input-output transfer functions, such as from r to y, for example. This transfer function could be
stable, so that y is bounded when r is, and yet an internal signal could be unbounded, probably
causing internal damage to the physical system.

For the remainder of this section hats are dropped.

Example In Figure 3.3 take

s—1 1
()= Pl =, F)
Check that the transfer function from r to y is stable, but that from d to y is not. The feedback sys-
tem is therefore not internally stable. As we will see later, this offense is caused by the cancellation
of the controller zero and the plant pole at the point s = 1.

We shall develop a test for internal stability which is easier than examining nine transfer func-
tions. Write P, C, and F' as ratios of coprime polynomials (i.e., polynomials with no common
factors):

Ne o _Ne _Nr
Mp' M’ - My
The characteristic polynomial of the feedback system is the one formed by taking the product of
the three numerators plus the product of the three denominators:

P =

NpNeNp + MpMcMp.
The closed-loop poles are the zeros of the characteristic polynomial.
Theorem 1 The feedback system is internally stable iff there are no closed-loop poles in Res > 0.

Proof For simplicity assume that F' = 1; the proof in the general case is similar, but a bit messier.
From (3.1) we have

Il 1 1 -P -1 r
T2 | = o 1 -C d
I3 1 +PC PC P 1 n

Substitute in the ratios and clear fractions to get

7 X MpMe —NpMg —MpMe r
€2 = MPNC MPMC —MPNC d . (32)
3 NeNe+MpMo | o N NoMe  MpMe n

Note that the characteristic polynomial equals NpN¢o + MpMe. Sufficiency is now evident; the
feedback system is internally stable if the characteristic polynomial has no zeros in Res > 0.
Necessity involves a subtle point. Suppose that the feedback system is internally stable. Then
all nine transfer functions in (3.2) are stable, that is, they have no poles in Re s > 0. But we cannot
immediately conclude that the polynomial NpN¢c + Mp M has no zeros in Res > 0 because this
polynomial may conceivably have a right half-plane zero which is also a zero of all nine numerators
in (3.2), and hence is canceled to form nine stable transfer functions. However, the characteristic
polynomial has no zero which is also a zero of all nine numerators, MpM¢c, NpM¢, and so on.
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Proof of this statement is left as an exercise. (It follows from the fact that we took coprime factors
to start with, that is, Np and Mp are coprime, as are the other numerator-denominator pairs.) B

By Theorem 1 internal stability can be determined simply by checking the zeros of a polynomial.
There is another test that provides additional insight.

Theorem 2 The feedback system is internally stable iff the following two conditions hold:
(a) The transfer function 1 + PCF has no zeros in Res > 0.

(b) There is no pole-zero cancellation in Res > 0 when the product PCF is formed.

Proof Recall that the feedback system is internally stable iff all nine transfer functions

1 —-PF -F
C 1 —-CF
pPC P 1

1
1+ PCF

are stable.

(=) Assume that the feedback system is internally stable. Then in particular (1 + PCF) ! is
stable (i.e., it has no poles in Res > 0). Hence 1 + PCF has no zeros there. This proves (a).

To prove (b), write P,C, F as ratios of coprime polynomials:

Np P Np
Mp’ Mc’ - My
By Theorem 1 the characteristic polynomial

NpNcNp + MpMcMp

has no zeros in Res > 0. Thus the pair (Np, M) have no common zero in Res > 0, and similarly
for the other numerator-denominator pairs.
(<) Assume (a) and (b). Factor P,C,F as above, and let so be a zero of the characteristic
polynomial, that is,
(NpNeNp + MpMcMp)(sg) = 0.

We must show that Resg < 0; this will prove internal stability by Theorem 1. Suppose to the
contrary that Resg > 0. If
(MpMcMp)(so) =0,

then
(NpNcNFE)(sp) = 0.

But this violates (b). Thus
(MpMcMF)(so) # 0,

so we can divide by it above to get

NpNcN.
1+ M(SO) =0,
MpMcMp
that is,
1+ (PCF)(sg) =0,
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which violates (a). B

Finally, let us recall for later use the Nyquist stability criterion. It can be derived from Theo-
rem 2 and the principle of the argument. Begin with the curve D in the complex plane: It starts
at the origin, goes up the imaginary axis, turns into the right half-plane following a semicircle of
infinite radius, and comes up the negative imaginary axis to the origin again:

As a point s makes one circuit around this curve, the point P(s)C(s)F(s) traces out a curve called
the Nyquist plot of PCF. If PCF has a pole on the imaginary axis, then D must have a small
indentation to avoid it.

Nyquist Criterion Construct the Nyquist plot of PCF, indenting to the left around poles on
the imaginary axis. Let n denote the total number of poles of P, C, and F in Res > 0. Then
the feedback system is internally stable iff the Nyquist plot does not pass through the point -1 and
encircles it exactly n times counterclockwise.

3.3 Asymptotic Tracking

In this section we look at a typical performance specification, perfect asymptotic tracking of a
reference signal. Both time domain and frequency domain occur, so the notation distinction is
required.

For the remainder of this chapter we specialize to the unity-feedback case, F= 1, so the block
diagram is as in Figure 3.4. Here e is the tracking error; with n = d = 0, e equals the reference
input (ideal response), r, minus the plant output (actual response), y.

We wish to study this system’s capability of tracking certain test inputs asymptotically as time
tends to infinity. The two test inputs are the step

¢, ift>0
T(t)_{ 0, ift<0

and the ramp

ct, ift>0
T(t)_{ 0, ift<0

(c is a nonzero real number). As an application of the former think of the temperature-control
thermostat in a room; when you change the setting on the thermostat (step input), you would like
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Y
FI\ "
/
Figure 3.4: Unity-feedback loop.

the room temperature eventually to change to the new setting (of course, you would like the change
to occur within a reasonable time). A situation with a ramp input is a radar dish designed to track
orbiting satellites. A satellite moving in a circular orbit at constant angular velocity sweeps out an
angle that is approximately a linear function of time (i.e., a ramp).
Define the loop transfer function L := PC. The transfer function from reference input r to
tracking error e is
§i=——,
1+L
called the sensitivity function—more on this in the next section. The ability of the system to track
steps and ramps asymptotically depends on the number of zeros of S at s =0.

Theorem 3 Assume that the feedback system is internally stable and n = d = 0.
(a) If r is a step, then e(t) — 0 as t — oo iff S has at least one zero at the origin.

(b) If r is a ramp, then e(t) — 0 as t — o© iff S has at least two zeros at the origin.

The proof is an application of the final-value theorem: If g(s) is a rational Laplace transform
that has no poles in Res > 0 except possibly a simple pole at s = 0, then lim;_, o, y(#) exists and it
equals lim,_,0 sy(s).

Proof (a) The Laplace transform of the foregoing step is 7(s) = ¢/s. The transfer function from
r to e equals S’, S0
é(s) = () .
s
Since the feedback system is internally stable, S is a stable transfer function. It follows from the
final-value theorem that e(¢) does indeed converge as ¢ — oo, and its limit is the residue of the
function é(s) at the pole s = 0:

e(o0) = S(0)e.
The right-hand side equals zero iff S(0) =
(b) Similarly with #(s) = c/s>. B

Note that S has a zero at s = 0 iff L has a pole there. Thus, from the theorem we see that if
the feedback system is internally stable and either P or C has a pole at the origin (i.e., an inherent
integrator), then the output y(¢) will asymptotically track any step input r.
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Example To see how this works, take the simplest possible example,

Pls) = % Es) = 1.

Then the transfer function from r to e equals

1 s

1+s 1 s+1°

So the open-loop pole at s = 0 becomes a closed-loop zero of the error transfer function; then this
zero cancels the pole of 7(s), resulting in no unstable poles in é(s). Similar remarks apply for a
ramp input.

Theorem 3 is a special case of an elementary principle: For perfect asymptotic tracking, the
loop transfer function L must contain an internal model of the unstable poles of 7.

A similar analysis can be done for the situation where r = n = 0 and d is a sinusoid, say
d(t) = sin(wt)1(t) (1 is the unit step). You can show this: If the feedback system is internally
stable, then y(t) — 0 as t —» oo iff either P has a zero at s = jw or C has a pole at s = jw
(Exercise 3).

3.4 Performance

In this section we again look at tracking a reference signal, but whereas in the preceding section
we considered perfect asymptotic tracking of a single signal, we will now consider a set of reference
signals and a bound on the steady-state error. This performance objective will be quantified in
terms of a weighted norm bound.

As before, let L denote the loop transfer function, L := PC. The transfer function from
reference input r to tracking error e is
1
Si=—
1+ L’

called the sensitivity function. In the analysis to follow, it will always be assumed that the feedback
system is internally stable, so S is a stable, proper transfer function. Observe that since L is strictly
proper (since P is), S(joo) = 1.

The name sensitivity function comes from the following idea. Let T' denote the transfer function

from r to y:
PC

T 1+PC

One way to quantify how sensitive 7" is to variations in P is to take the limiting ratio of a relative
perturbation in T' (i.e., AT/T) to a relative perturbation in P (i.e., AP/P). Thinking of P as a
variable and T" as a function of it, we get

T

o AT/T _dT'P
im —— = ——.
AP0 AP/P  dPT
The right-hand side is easily evaluated to be S. In this way, S is the sensitivity of the closed-loop
transfer function 7' to an infinitesimal perturbation in P.
Now we have to decide on a performance specification, a measure of goodness of tracking. This

decision depends on two things: what we know about r and what measure we choose to assign to
the tracking error. Usually, r is not known in advance—few control systems are designed for one
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and only one input. Rather, a set of possible rs will be known or at least postulated for the purpose
of design.

Let’s first consider sinusoidal inputs. Suppose that r can be any sinusoid of amplitude < 1 and
we want e to have amplitude < e. Then the performance specification can be expressed succinctly
as

1Sl < €.

Here we used Table 2.1: the maximum amplitude of e equals the co-norm of the transfer function.
Or if we define the (trivial, in this case) weighting function Wi (s) = 1/e, then the performance
specification is ||[W1S||o0 < 1.

The situation becomes more realistic and more interesting with a frequency-dependent weighting
function. Assume that Wi (s) is real-rational; you will see below that only the magnitude of W1 (jw)
is relevant, so any poles or zeros in Res > 0 can be reflected into the left half-plane without changing
the magnitude. Let us consider four scenarios giving rise to an oo-norm bound on W1S. The first
three require Wi to be stable.

1. Suppose that the family of reference inputs is all signals of the form r = Wir, ¢, where rp¢, a
pre-filtered input, is any sinusoid of amplitude < 1. Thus the set of rs consists of sinusoids
with frequency-dependent amplitudes. Then the maximum amplitude of e equals ||W1S||c.

2. Recall from Chapter 2 that
1 (o
Il = 5z [ i) d

2 J_ s

and that ||r]|3 is a measure of the energy of r. Thus we may think of |r(jw)|? as energy spectral
density, or energy spectrum. Suppose that the set of all rs is

{ror=Wirys, Irpsll2 < 13,
that is,

L[>, . .2

T Ir(jw) /Wi (jw)|” dw < 15%.

™ —00
Thus, 7 has an energy constraint and its energy spectrum is weighted by 1/|W;(jw)|?. For
example, if W; were a bandpass filter, the energy spectrum of » would be confined to the
passband. More generally, W7 could be used to shape the energy spectrum of the expected

class of reference inputs. Now suppose that the tracking error measure is the 2-norm of e.
Then from Table 2.2,

sup [lefl2 = sup{|[SWirpfll2 : [[rprll2 < 1} = [[W15]|co,
r

50 ||[W1S|lcc < 1 means that |le|l2 < 1 for all s in the set above .

3. This scenario is like the preceding one except for signals of finite power. We see from Table 2.2
that ||W1S|lo equals the supremum of pow(e) over all r,r with pow(r,r) < 1. So W; could
be used to shape the power spectrum of the expected class of rs.

4. In several applications, for example aircraft flight-control design, designers have acquired
through experience desired shapes for the Bode magnitude plot of S. In particular, suppose
that good performance is known to be achieved if the plot of |S(jw)| lies under some curve.
We could rewrite this as

1S(jw)| < [Wi(jw)|™",  Vu,

or in other words, ||W;S|s < 1.
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There is a nice graphical interpretation of the norm bound ||[W1S]| < 1. Note that
W1 (jw)
1+ L(jw)
& |Wi(jw)| < 1+ L(jw)|, Yw.

[WiS|leo <1 & ‘ <1l, Vw

The last inequality says that at every frequency, the point L(jw) on the Nyquist plot lies outside
the disk of center -1, radius |W;(jw)| (Figure 3.5).

|Wr|

1N
N

Figure 3.5: Performance specification graphically.

Other performance problems could be posed by focusing on the response to the other two
exogenous inputs, d and n. Note that the transfer functions from d, n to e, v are given by

MR}

PC
1+ PC’

where

T:=1-85=

called the complementary sensitivity function.

Various performance specifications could be made using weighted versions of the transfer func-
tions above. Note that a performance spec with weight W on PS is equivalent to the weight W P on
S. Similarly, a weight W on C'S = T/ P is equivalent to the weight W/P on T. Thus performance
specs that involve e result in weights on S and performance specs on u result in weights on T
Essentially all problems in this book boil down to weighting S or T' or some combination, and the
tradeoff between making S small and making 7" small is the main issue in design.

Exercises

1. Consider the unity-feedback system [F'(s) = 1]. The definition of internal stability is that all
nine closed-loop transfer functions should be stable. In the unity-feedback case, it actually
suffices to check only two of the nine. Which two?

2. In this problem and the next, there is a mixture of the time and frequency domains, so the”
-convention is in force.

Let
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Find the least positive gain k so that the following are all true:

(a) The feedback system is internally stable.
(b) |e(oo)| < 0.1 when r(t) is the unit step and n =d = 0.
(¢) lylloo < 0.1 for all d(¢) such that ||d||2 < 1 when r =n = 0.

. For the setup in Figure 3.4, take r = n = 0, d(t) = sin(wt)1(t). Prove that if the feedback

system is internally stable, then y(¢) — 0 as t — oo iff either P has a zero at s = jw or C has
a pole at s = jw.

. Consider the feedback system with plant P and sensor F. Assume that P is strictly proper

and F is proper. Find conditions on P and F for the existence of a proper controller so that

The feedback system is internally stable.
y(t) —r(t) = 0 when r is a unit step.
y(t) — 0 when d is a sinusoid of frequency 100 rad/s.

Notes and References

The material in Sections 3.1 to 3.3 is quite standard. However, Section 3.4 reflects the more recent
viewpoint of Zames (1981), who formulated the problem of optimizing W3S with respect to the
oo-norm, stressing the role of the weight W;. Additional motivation for this problem is offered in
Zames and Francis (1983).



Chapter 5

Stabilization

In this chapter we study the unity-feedback system with block diagram shown in Figure 5.1. Here

r

d
e U Yy
C O P

()
-/

Figure 5.1: Unity-feedback system.

P is strictly proper and C' is proper.

Most synthesis problems can be formulated in this way: Given P, design C' so that the feedback
system (1) is internally stable, and (2) acquires some additional desired property; for example,
the output y asymptotically tracks a step input r. The method of solution is to parametrize all
Cs for which (1) is true, and then to see if there exists a parameter for which (2) holds. In this
chapter such a parametrization is derived and then applied to two problems: achieving asymptotic
performance specs and internal stabilization by a stable controller.

5.1 Controller Parametrization: Stable Plant

In this section we assume that P is already stable, and we parametrize all C's for which the
feedback system is internally stable. Introduce the symbol & for the family of all stable, proper,
real-rational functions. Notice that S is closed under addition and multiplication: If F,G € S, then
F+G,FGeS. Also, 1 € S. (Thus S is a commutative ring with identity.)

Theorem 1 Assume that P € S. The set of all Cs for which the feedback system is internally
stable equals
Q |
{1 50 QeS;.

o7
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Proof (C) Suppose that C achieves internal stability. Let () denote the transfer function from r
to u, that is,

C
Q= 1+ PC
Then Q € S and
_ . Q
C= e
(D) Conversely, suppose that @ € S and define
. Q
c._l_PQ. (5.1)

According to the definition in Section 3.2, the feedback system is internally stable iff the nine
transfer functions

1 1 =P -1
o 1 -C
1+ PC PC P 1

all are stable and proper. After substitution from (5.1) and clearing of fractions, this matrix
becomes
1-PQ —P(1-PQ) —(1-PQ)
Q 1-PQ -Q
PQ P(1 - PQ) 1-PQ

Clearly, these nine entries belong to S. B

Note that all nine transfer functions above are affine functions of the free parameter @Q; that is,
each is of the form T} 4+ T5@Q) for some 717,75 in S. In particular the sensitivity and complementary
sensitivity functions are

S = 1-PQ,
T = PQ.

Let us look at a simple application. Suppose that we want to find a C' so that the feedback
system is internally stable and y asymptotically tracks a step r (when d = 0). Parametrize C as in
the theorem. Then y asymptotically tracks a step iff the transfer function from r to e (i.e., S) has
a zero at s = 0, that is,

P(0)Q(0) = 1.

This equation has a solution @ in § iff P(0) # 0. Conclusion: The problem has a solution iff
P(0) # 0; when this holds, the set of all solutions is

{CZI_QPQ:QGS,Q(O):%}.

Observe that @ inverts P at dc. Also, you can check that a controller of the latter form has a pole
at s = 0, as it must by Theorem 3 of Chapter 3.

Example For the plant
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suppose that it is desired to find an internally stabilizing controller so that y asymptotically tracks
a ramp r. Parametrize C' as in the theorem. The transfer function S from r to e must have (at
least) two zeros at s = 0, where r has two poles. Let us take

as+b
s+1°

Q(s) =

This belongs to S and has two variables, a and b, for the assignment of the two zeros of S. We
have

as+b
(s +1)2(s +2)
s34+ 452+ (5 —a)s+ (2 —b)
(s+1)%(s+2) ’

S(s) =

so we should take ¢ = 5,b = 2. This gives

95 + 2
Q(S) = S—I——]_’
C(s) = (53—!—2)(3—!—1)(3—!—2).

s2(s+4)

The controller is internally stabilizing and has two poles at s = 0.

5.2 Coprime Factorization

Now suppose that P is not stable and we want to find an internally stabilizing C. We might try as
follows. Write P as the ratio of coprime polynomials,

N

P=—.

M
By Euclid’s algorithm (reviewed below) we can get two other polynomials X, Y satisfying the
equation

NX + MY =1.

Remembering Theorem 3.1 (the feedback system is internally stable iff the characteristic polynomial
has no zeros in Re s > 0), we might try to make the left-hand side equal to the characteristic

polynomial by setting

X
C’—?.

The trouble is that Y may be 0; even if not, this C' may not be proper.

Example 1 For P(s) = 1/s, we can take N(s) = 1, M(s) = s. One solution to the equation
NX + MY =11is X(s) =1, Y(s) =0, for which X/Y is undefined. Another solution is X (s) =
—s+1, Y(s) =1, for which X/Y is not proper.

The remedy is to arrange that N, M, X, Y are all elements of S instead of polynomials. Two
functions N and M in S are coprime if there exist two other functions X and Y also in § and
satisfying the equation

NX + MY =1.
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Notice that for this equation to hold, N and M can have no common zeros in Res > 0 nor at the
point s = oco—if there were such a point sy, there would follow

0 = N(so)X(so) + M(s0)Y (so) # 1.

It can be proved that this condition is also sufficient for coprimeness.
Let G be a real-rational transfer function. A representation of the form

N
G == M’ N, M S S,
where N and M are coprime, is called a coprime factorization of G over S. The purpose of this
section is to present a method for the construction of four functions in S satisfying the two equations

N
G=— NX + MY =1.
M’ +

The construction of N and M is easy.
Example 2 Take G(s) = 1/(s —1). To write G = N/M with N and M in S, simply divide the

numerator and denominator polynomials, 1 and s — 1, by a common polynomial with no zeros in
Res > 0, say (s + 1)*:

1 N(s) B 1 s —1
o1 me)y YT Grope MO =R

If the integer k is greater than 1, then N and M are not coprime—they have a common zero at

s = 00. So ! !
5 —
N(s) = M(S)_s—i—l

suffice.

More generally, to get N and M we could divide the numerator and denominator polynomials
of G by (s + 1)¥, where k equals the maximum of their degrees. What is not so easy is to get the
other two functions, X and Y, and this is why we need Euclid’s algorithm.

Euclid’s algorithm computes the greatest common divisor of two given polynomials, say n(\)
and m(\). When n and m are coprime, the algorithm can be used to compute polynomials z(\),
y(A) satisfying

nr +my = 1.

Procedure A: Euclid’s Algorithm
Input: polynomials n, m
Initialize: If it is not true that degree (n) > degree (m), interchange n and m.
Step 1 Divide m into n to get quotient g; and remainder r;:
n =mq +ri,

degree r; < degree m.
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Step 2 Divide r; into m to get quotient g2 and remainder r9:
m=r1q2 + T2,
degree r < degree 7.

Step 3 Divide ry into ry:
1 =T2Gq3 + T3,

degree r3 < degree 9.

Continue.

Stop at Step k when 7y is a nonzero constant.

Then z, y are obtained as illustrated by the following example for k¥ = 3. The equations are
n =mq +71,

m =Triqz + ra2,
r1 = T2q3 + 73,

that is,
1 0 0 1

L —q n
q2 1 0 (] == 0 1 |: :| .
-1 q3 1 r3 0

Solve for r3 by, say, Gaussian elimination:

r3 = (1 + qq3)n + [—q3 — q1 (1 + gag3)]m.

Set
1
r = —(1+Q2Q3),
T3
1
y = —[—q3— qi(1+ qq3)].
r3

Example 3 The algorithm for n()\) = A2, m()\) = 6A% — 5\ + 1 goes like this:

a(A) = é’

noy = Ia-g
B0 = TA-oo,
P = o

Since 79 is a nonzero constant, we stop after Step 2. Then the equations are

n = mq; +ri,

= T1q2 + 712,
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yielding
ro = (1 4+ q1q2)m — gan.
So we should take
] _ 1+ aqe
’r2 b y ’r2 )

Tr =
that is,
z(A) = =301 419, y(A)=51+1.

Next is a procedure for doing a coprime factorization of G. The main idea is to transform
variables, s — A, so that polynomials in A yield functions in S.

Procedure B
Input: G
Step 1 If G is stable,set N =G, M =1, X =0, Y =1, and stop; else, continue.

Step 2 Transform G(s) to G(\) under the mapping s = (1 — A\)/\. Write G as a ratio of
coprime polynomials:

Step 3 Using Euclid’s algorithm, find polynomials 2()), y(A) such that

nx +my = 1.

Step 4 Transform n(\), m(\), z(\), y(A) to N(s), M(s), X(s), Y(s) under the mapping
A=1/(s+1).

The mapping used in this procedure is not unique; the only requirement is that polynomials n, and
so on, map to IV, and so on, in S.

Example 4 For

1
CO =569
the algorithm gives

- 22
G\ = ——————

) 6A2 — 5+ 17
n(A) = X2
m(A) = 6A2—5BA+1,
z(A) = =30+ 19,
y(A) = 5X+1 (from Example 3),

1

N(s) =
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s—1)(s—2
M(s) = : (s—?-(l)2 )’
X(s) = 1985—;111,

5.3 Coprime Factorization by State-Space Methods (Optional)

This optional section presents a state-space procedure for computing a coprime factorization over
S of a proper G. This procedure is more efficient than the polynomial method in the preceding
section.

We start with a new data structure. Suppose that A, B, C, D are real matrices of dimensions

nxn, nx1l, 1xn, 1xI1.
The transfer function going along with this quartet is
D+ C(sI —A)'B.

Note that the constant D equals the value of the transfer function at s = oco; if the transfer function
is strictly proper, then D = 0. It is convenient to write

7]
D+ C(sI — A)~'B.

oo~ [445].

the goal is to get state-space realizations for four functions N, M, X, Y, all in §, such that

instead of

Beginning with a realization of G,

N
G=—, NX+MY-=1
M’ +

First, we look at how to get NV and M. If the input and output of G are denoted u and y,
respectively, then the state model of G is
&t = Az + Bu, (5.2)
= Cz+ Du.
Choose a real matrix F', 1 x n, such that A + BF is stable (i.e., all eigenvalues in Res < 0). Now
define the signal v := u — F'z. Then from (5.2) and (5.3) we get
(A+ BF)z + B,

Fx +v,
(C + DF)x + Dv.
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Evidently from these equations, the transfer function from v to u is

A+ BF | B ]
and that from v to y is
A+ BF | B |
N(s):= [WT_ : (5:5)

Therefore,
u= Mv, y= N,

so that y = NM ~'u, that is, G = N/M. Clearly, N and M are proper, and they are stable because
A+ BF is. Thus N, M € S. Suggestion: Test the formulas above for the simplest case, G(s) =1/s
(A=0,B=1,C=1,D=0).

The theory behind the formulas for X and Y is beyond the scope of this book. The procedure
is to choose a real matrix H, n x 1, so that A + HC is stable, and then set

X(s) = [LFHO%] (5.6)
) [A+FHC —BIHD]' .

In summary, the procedure to do a coprime factorization of G is this:
Step 1 Get a realization (A4, B,C, D) of G.
Step 2 Compute matrices F' and H so that A+ BF and A+ HC are stable.

Step 3 Using formulas (5.4) to (5.7), compute the four functions N, M, X, Y.

5.4 Controller Parametrization: General Plant

The transfer function P is no longer assumed to be stable. Let P = N/M be a coprime factorization
over § and let X, Y be two functions in § satisfying the equation

NX + MY =1. (5.8)

Theorem 2 The set of all C's for which the feedback system is internally stable equals

{X+MQ

Y _NQ :QES}.

It is useful to note that Theorem 2 reduces to Theorem 1 when P € S§. To see this, recall from
Section 5.2 (Step 1 of Procedure B) that we can take

N=P, M=1, X=0, V=1

when P € §. Then
X+MQ  Q
Y -NQ 1-PQ

The proof of Theorem 2 requires a preliminary result.
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Lemma 1 Let C = N¢/Mc be a coprime factorization over S. Then the feedback system is
internally stable iff
(NNc+MMc)™'eS.

The proof of this lemma is almost identical to the proof of Theorem 3.1, and so is omitted.

Proof of Theorem 2 (D) Suppose that @ € S and

0. X+MQ
=Y —No-

To show that the feedback system is internally stable, define
Ne =X+ MQ, Mc:=Y —NQ.

Then from the equation
NX+ MY =1

it follows that
NNg+MMo = 1.

Therefore, C = N¢/M¢ is a coprime factorization, and from Lemma 1 the feedback system is
internally stable.
(C) Conversely, let C' be any controller achieving internal stability. We must find a @ in S such

that
X+ MQ

T Y-NQ°
Let C'= N¢/Mc be a coprime factorization over S and define

C

V :=(NN¢ + MMc)™*

so that
NNcV +MMaV = 1. (5.9)

By Lemma 1, V € §. Let @ be the solution of
MoV =Y - NQ. (5.10)
Substitute (5.10) into (5.9) to get
NNoV + M(Y — NQ) = 1. (5.11)
Also, add and subtract NM@ in (5.8) to give
N(X +MQ)+M(Y —NQ) = 1. (5.12)
Comparing (5.11) and (5.12), we see that
NV =X+ MQ. (5.13)
Now (5.10) and (5.13) give

_NeV X+ MQ

C_MCV_ Y -NQ’
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It remains to show that € S. Multiply (5.10) by X and (5.13) by Y, then subtract and switch
sides:
(NX + MY)Q = YNcV — XMcV.

But the left-hand side equals @) by (5.8), while the right-hand side belongs to S. So we are done. B
Theorem 2 gives an automatic way to stabilize a plant.

Example Let

PO = e
Apply Procedure B to get

NGO =

mis = B,

X(s) = 1985—;1117

According to the theorem, the controller
X(s) 19s—11

€)= 35 " 516

achieves internal stability.

As before, when P was stable, all closed-loop transfer functions are affine functions of @) if
C' is parametrized as in the theorem statement. For example, the sensitivity and complementary
sensitivity functions are

S = MY -NQ),
T = NX+MQ).

Finally, it is sometimes useful to note that Lemma 1 suggests another way to solve the equation
NX + MY =1 given coprime N and M. First, find a controller C achieving internal stability for
P = N/M—this might be easier than solving for X and Y. Next, write a coprime factorization of
C: C = N¢/Mc. Then Lemma 1 says that

V:=NN¢c+ MMc
is invertible in S. Finally, set X = NoV 'and Y = MoV L.

5.5 Asymptotic Properties

How to find a C' to achieve internal stability and asymptotic properties simultaneously is perhaps
best shown by an example.
Let

The problem is to find a proper C' so that



