

Lecture 2

- Well-posedness and internal stability.
- Coprime factorization over H_{∞} .
- ullet Performance specifications in terms of H_2 and H_∞ norms.

Well-Posedness

Even for a matrix equation Ax = b, the solution x does not always exist.

Feedback gives a linear equation in an infinite-dimensional space. Solvability?

Example: Let $P(s) = \frac{s+1}{s+2}$ and K(s) = 1. The closed-loop system is not proper

$$\frac{1}{1 - \frac{s+1}{s+2}} = \frac{s+2}{s+2-s-1} = s+2.$$

The system is solvable if the matrix of the system is invertible for almost all s. Then

$$\begin{pmatrix} e_1 \\ e_2 \end{pmatrix} = \begin{pmatrix} I & -K \\ -P & I \end{pmatrix}^{-1} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

Definition: The closed-loop system is called well-posed if

$$\begin{pmatrix} I & -K \\ -P & I \end{pmatrix}^{-1}$$

exists for almost all s and is a proper function.

Lemma: Let G be proper and square. Then G^{-1} exists for almost all s and is proper if and only if $G(\infty)$ is nonsingular.

Proof: Let $G(s) = C(sI - A)^{-1}B + D$. Hence $G(\infty) = D$.

" \Rightarrow ": G^{-1} exists and is proper $\Rightarrow G(\infty)^{-1}$ exists and is bounded $\Rightarrow G(\infty)$ is nonsingular.

"\(= ": \begin{cases} \delta = Ax + Bu \\ y = Cx + Du \end{cases} \] Solving the output equation for
$$u$$
 gives $u = D^{-1}(y - Cx)$. Inserting

this in the state equation gives

$$\begin{cases} \dot{x} = (A - BD^{-1}C)x + BD^{-1}y \\ u = -D^{-1}Cx + D^{-1}y \end{cases}$$

The transfer function from y to u therefore becomes

$$G(s)^{-1} = D^{-1} - D^{-1}C(sI - A + BD^{-1}C)^{-1}BD^{-1}.$$

Hence, the inverse exists for almost all s (except the eigenvalues of the matrix $A - BD^{-1}C$) and is proper.

Corollary: The following statements are equivalent

- The closed-loop system (P,K) is well-posed,
- $I K(\infty)P(\infty)$ is invertible.
- $I P(\infty)K(\infty)$ is invertible.

Proof: Due to [Zhou,p. 14] and det(I) = 1 we have

$$\det \begin{pmatrix} I & -K \\ -P & I \end{pmatrix} = \det(I - KP) = \det(I - PK)$$

Remark: Very often in practical cases we have $P(\infty) = 0$ (no direct feed-through). This gives well-posedness automatically

Internal Stability

Well-posedness guarantees solvability. What about stability?

Definition: The closed-loop system is called *internally stable* if

$$\begin{pmatrix} I & -K \\ -P & I \end{pmatrix}^{-1} \in RH_{\infty}$$

The H_{∞} -norm of this operator is the L_2 -gain from disturbances w to loop signals e. Using the formula in [Zhou,p. 14] we get the equivalent condition

$$\begin{pmatrix} (I - KP)^{-1} & K(I - PK)^{-1} \\ P(I - KP)^{-1} & (I - PK)^{-1} \end{pmatrix} \in RH_{\infty}.$$

Corollary 1: Let $K \in RH_{\infty}$. Then (P,K) is internally stable iff it is well-posed and $P(I-KP)^{-1} \in RH_{\infty}$

Corollary 2: Let $P \in RH_{\infty}$. Then (P, K) is internally stable iff it is well-posed and $K(I-PK)^{-1} \in RH_{\infty}$

Corollary 3: Let P and $K \in RH_{\infty}$. Then (P,K) is internally stable iff it is well-posed and $(I-PK)^{-1} \in RH_{\infty}$

See [Zhou,p.69] for proof (very easy).

Theorem

The system is internally stable if and only if it is well-posed and

- lacktriangle There are no unstable pole-zero cancellations in PK,
- $(I PK)^{-1} \in RH_{\infty}.$

Proof: See Zhou Theorem 5.5.

Coprime factorization

Definition: Let m, $n \in RH_{\infty}$. Then m and n are said to be *coprime over* RH_{∞} if there exist x, $y \in RH_{\infty}$ such that xm + yn = 1.

Definition: Two matrices M, $N \in RH_{\infty}$ are said to be

• right coprime over RH_{∞} if there exist $X, Y \in RH_{\infty}$ such that

$$\left(\begin{array}{cc} X & Y \end{array}\right) \, \left(\begin{array}{c} M \\ N \end{array}\right) = XM + YN = I.$$

• *left coprime over* RH_{∞} if there exist $X, Y \in RH_{\infty}$ such that

$$\left(\begin{array}{cc} M & N \end{array} \right) \, \left(\begin{array}{c} X \\ Y \end{array} \right) = MX + NY = I.$$

The right hand equations are called Bezout identities

Coprime Factorization over RH_{∞}

Let P be a proper real rational matrix. A right coprime factorization (rcf) of P is a factorization $P=NM^{-1}$ where N and M are right coprime over RH_{∞} .

Similarly, a left coprime factorization (lcf) of P has the form $P = \tilde{M}^{-1}\tilde{N}$ and \tilde{M} are left coprime over RH_{∞} . Of course, M and \tilde{M} are square.

- Coprimeness means there is no cancellation in the fraction (no nontrivial common right/left divisors).
- For scalar plant rcf=lcf.
- For real rational matrices both factorizations always exist.
- They are not unique.
- There is a state space method to calculate them.

Feedback Interpretation

Let
$$P(s) = C(sI - A)^{-1}B + D$$
, that is

$$\dot{x} = Ax + Bu,$$

$$y = Cx + Du$$

Introduce a change of control v = u - Fx where A + BF is stable. Then we get

$$\dot{x} = (A + BF)x + Bv$$

$$v = (C + DF)x + Dv$$

$$u = Fx + v$$

Denote by M(s) the transfer function from v to u and by N(s) the transfer function from v to y

$$M(s) = F(sI - A - BF)^{-1}B + I,$$

 $N(s) = (C + DF)(sI - A - BF)^{-1}B + D.$

Therefore, u = Mv, y = Nv and, finally, $y = NM^{-1}u$

Coprime Factorization and Internal Stability

Consider a plant P and a controller K with some rcf and lcf

$$P = NM^{-1} = \tilde{M}^{-1}\tilde{N}$$

$$K = UV^{-1} = \tilde{V}^{-1}\tilde{U}$$

Theorem: The following conditions are equivalent:

- lacktriangledown The closed-loop system (P,K) is internally stable.

- $\tilde{M}V \tilde{N}U$ is invertible in RH_{∞} .

Proof: See [Zhou,p. 74].

Double Coprime Factorization

A double coprime factorization (dcf) of P over RH_{∞} is a factorization

$$P = NM^{-1} = \tilde{M}^{-1}\tilde{N}$$

such that there exist X_r , X_l , Y_r , $Y_l \in RH_{\infty}$ and it holds

$$\begin{pmatrix} X_r & Y_r \\ -\tilde{N} & \tilde{M} \end{pmatrix} \begin{pmatrix} M & -Y_l \\ N & X_l \end{pmatrix} = I.$$

- The only difference between the dcf and a couple of some rcf and lcf is in additional condition $X_r Y_l = Y_r X_l$
- The controller $K = -Y_l X_l^{-1} = -X_r^{-1} Y_r$ is internally stabilizing.
- There is a state space method to calculate dcf explicitly (see [Zhou]).

Performance Specifications

Introduce the following notations

$$L_i = KP,$$
 $L_o = PK,$
 $S_i = (I + L_i)^{-1},$ $S_o = (I + L_o)^{-1},$
 $T_i = I - S_i,$ $T_o = I - S_o.$

 L_i — the input loop transfer function,

 L_o — the output loop transfer function,

 S_i — the input sensitivity ($u_p = S_i d_i$).

 S_o — the output sensitivity ($y = S_o d$).

T — the complementary sensitivity.

Performance specifications

$$y = T_{o}(r-n) + S_{o}Pd_{i} + S_{o}d,$$

$$r-y = S_{o}(r-d) + T_{o}n - S_{o}Pd_{i},$$

$$u = KS_{o}(r-n) - KS_{o}d - T_{i}d_{i},$$

$$u_{n} = KS_{o}(r-n) - KS_{o}d + S_{i}d_{i}$$

1) Good performance requires

$$\sigma(L_0) >> 1$$
, $\sigma(L_i) >> 1$, $\sigma(K) >> 1$.

2) Good robustness and good sensor noise rejection requires

$$\overline{\sigma}(L_0) \ll 1$$
, $\overline{\sigma}(L_i) \ll 1$, $\overline{\sigma}(K) \leq M$.

Desired loop gain

Figure 6.2: Desired loop gain

H_2 and H_∞ Performance.

For good rejection of d at y and u both $\|S_o\|$ and $\|KS_o\|$ should be small at low-frequency range. It can be captured by the norm specification

$$\left\| \begin{pmatrix} W_e S_o W_d \\ \rho W_u K S_o W_d \end{pmatrix} \right\|_{2 \text{ or } \infty} \le 1$$

where W_d reflects the frequency contents of d or models the disturbance power spectrum, W_e reflects the requirement on the shape of S_o and W_u reflects restriction on the control.

For robustness to high frequency uncertainty, the complimentary sensitivity has to be limited

$$\left\| \begin{pmatrix} W_e S_o W_d \\ \rho W_u T_o W_d \end{pmatrix} \right\|_{\infty} \le 1$$

What have we learned today?

- Well-posedness to guarantee solvability.
- Internal stability stability of a feedback loop
- Coprime factorization and internal stability.
- State space formula to calculate coprime factors.
- Performance specifications
- Using norms to capture loop requirements.