

Robust Control, 9hp

- 7 Lectures, 7 exercises
- Literature: Essentials of Robust Control, Zhou/Doyle, + Handouts
- Tools: Matlab
- Schedule and material: see Canvas page
- Examination: Exercises + Handins + Exam
- Collaboration encouraged on exercises and handins!
- Handins are due before the exercise session, email to: carolina.bergeling@control.lth.se with subject Robust control handin X
- Prepare so that you are able to share your solutions to the exercises at the session.
 (Take a photo of handwritten notes or typeset)

Contents

Lecture 1, [Zhou 4]

What the course is about. Maths.

Lecture 2, [Zhou 5-6]

Internal stability, performance specifications and limitations

Lecture 3, [Zhou 8-9]

Uncertainty and robustness, LFTs

Lecture 4, [Zhou 10]

Structured uncertainty, μ synthesis

Lecture 5, [Zhou 12-13]

Algebraic Riccati equations. H2 control.

Lecture 6, [Zhou 14 + Dullerud (Ch. 7)]

Hinf and LMIs

Lecture 7, [Zhou 16-17]

H-infinity loop shaping and gap metric

Controls education (related to robust control)

- Linear Algebra
- Control course, basic
- Matrix Theory
- Multivariable Control
- Functional Analysis (for Systems Theory)
- Linear Systems
- Robust Control

Lecture 1 - today

- Why robust control?
- What the course (and book) is about
- How to compare systems Norms and spaces

Why robust control?

Figure 1.1: General system interconnection

Background: LQR guarantees 60° phase margin and 6 dB gain margin. Does there exist similar guarantees for LQG (Kalman filter in the loop)?

Counterexample: Given

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u + \begin{bmatrix} 1 \\ 1 \end{bmatrix} w$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + v,$$

with $Q = qCC^T$, q > 0, R = 1, the optimal control and filter gain vectors are given by

$$L = f \begin{bmatrix} 1 & 1 \end{bmatrix}, \quad K = d \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

where
$$f = 2 + \sqrt{4 + q}$$
 and $d = 2 + \sqrt{4 + \sigma}$.

Assume u = -mLx, m nominally equals 1. Then stability (as dependent on m) requires

$$d + f - 4 + 2(m - 1)df > 0$$
$$1 + (1 - m)df > 0$$

Assume u = -mLx, m nominally equals 1. Then stability (as dependent on m) requires

$$d + f - 4 + 2(m-1)df > 0$$
$$1 + (1-m)df > 0$$

For sufficiently large f and d (or q and σ), the system is unstable for arbitrarily small perturbations in m in either direction.

What is this course about?

We design a controller ${\cal C}$ for a mathematical model ${\cal M}$ and want the corresponding real process ${\cal P}$ to behave well.

Problems:

- $P \neq M$
- Even if P = M there is controller implementation errors

Robustness philosophy: The controller C is *robust* if

$$\begin{array}{ccc} P & \approx & M \\ C_r & \approx & C \end{array} \Rightarrow (P, C_r) \approx (M, C).$$

- What does it mean "≈"? (This lecture)
- How to check this? Analysis.
- How to find the controller? Synthesis

We want to be able to compare different systems. How to do that?

• Simpler question, how do you compare the maginitude of a scalar x with a scalar y?

- Simpler question, how do you compare the maginitude of a scalar x with a scalar y?
- One level up, what if x and y are vectors in \mathbb{R}^n ?

- Simpler question, how do you compare the maginitude of a scalar x with a scalar y?
- One level up, what if x and y are vectors in \mathbb{R}^n ?
- Yet another level up, what if x and y are functions of time, i.e., x(t) and y(t)?

- Simpler question, how do you compare the maginitude of a scalar x with a scalar y?
- One level up, what if x and y are vectors in \mathbb{R}^n ?
- Yet another level up, what if x and y are functions of time, i.e., x(t) and y(t)?
- And what if we want to compare a system G_1 to another system G_2 ?

We want to be able to compare different systems. How to do that?

- Simpler question, how do you compare the maginitude of a scalar x with a scalar y?
- One level up, what if x and y are vectors in \mathbb{R}^n ?
- Yet another level up, what if x and y are functions of time, i.e., x(t) and y(t)?
- And what if we want to compare a system G_1 to another system G_2 ?

Dream: To use intuition from \mathbb{R}^n in more general situations

Linear (or vector) space

Consider a set $X = \{x\}$ and $\mathbb{F} = \mathbb{R}$ or \mathbb{C} with two operations $+: X \times X \to X$ and $\cdot: \mathbb{F} \times X \to X$. Then X is a linear space if

- $(x_1 + x_2) + x_3 = x_1 + (x_2 + x_3).$
- $\forall x \in X \ \exists (-x) \in X \ \text{such that} \ x + (-x) = 0.$
- $(\lambda_1 + \lambda_2)x = \lambda_1 x + \lambda_2 x.$

- **3** 1x = x.

Linear (or vector) space

Consider a set $X = \{x\}$ and $\mathbb{F} = \mathbb{R}$ or \mathbb{C} with two operations $+: X \times X \to X$ and $\cdot: \mathbb{F} \times X \to X$. Then X is a linear space if

$$(x_1 + x_2) + x_3 = x_1 + (x_2 + x_3).$$

$$\forall x \in X \ \exists (-x) \in X \ \text{such that} \ x + (-x) = 0.$$

$$(\lambda_1 + \lambda_2)x = \lambda_1 x + \lambda_2 x.$$

$$0 1x = x$$
.

Example 1: \mathbb{R}^n or \mathbb{C}^n

Example 2: functions from any field Ω to \mathbb{F} (f+g)(t)=f(t)+g(t)

$$(\lambda \cdot g)(t) = \lambda \cdot g(t)$$

The space of linear systems

Denote by $\mathscr L$ the set of all linear systems. It becomes the linear space with the following natural definition of + and \cdot

$$y_1 = G_1 u,$$

$$y_2 = G_2 u \Rightarrow (G_1 + G_2) u = y_1 + y_2,$$

$$y = Gu \Rightarrow (\lambda G) u = \lambda y.$$

The space of linear systems

Denote by $\mathscr L$ the set of all linear systems. It becomes the linear space with the following natural definition of + and \cdot

$$y_1 = G_1 u,$$

$$y_2 = G_2 u \Rightarrow (G_1 + G_2) u = y_1 + y_2,$$

$$y = Gu \Rightarrow (\lambda G) u = \lambda y.$$

Only algebraic linearity is rather poor generalization of \mathbb{R}^n . What about the distance between two linear systems? What does it mean

$$G_1 \approx G_2$$
?

Normed linear space

A linear space X is called *normed* if every vector $x \in X$ has an associated real number ||x|| — its "length", called the norm of the vector x, — with the following properties

- $||x_1 + x_2|| \le ||x_1|| + ||x_2||.$

Now we can say that $x_1 \approx x_2$ if $||x_2 - x_1||$ is small.

Normed linear space

A linear space X is called *normed* if every vector $x \in X$ has an associated real number ||x|| — its "length", called the norm of the vector x, — with the following properties

Now we can say that $x_1 \approx x_2$ if $||x_2 - x_1||$ is small.

Norms for signals

Consider signals mapping $(-\infty,\infty)$ to $\mathbb R$ (piecewise continuous) Some norms for a signal u(t)

$$\|u\|_1 = \int_{-\infty}^{\infty} |u(t)| dt$$

$$\|u\|_2 = \left(\int_{-\infty}^{\infty} u(t)^2 dt\right)^{\frac{1}{2}}$$

$$\|u\|_{\infty} = \sup_{t} |u(t)|$$

Norms for signals

Consider signals mapping $(-\infty, \infty)$ to \mathbb{R} (piecewise continuous)

Some norms for a signal u(t)

$$||u||_1 = \int_{-\infty}^{\infty} |u(t)| dt$$

$$||u||_2 = \left(\int_{-\infty}^{\infty} u(t)^2 dt\right)^{\frac{1}{2}}$$

$$\|u\|_{\infty} = \sup_{t} |u(t)|$$

Reminder: For $u \in \mathbb{R}^N$

$$||u||_1 = \sum_{i=1}^N |u_i|$$

$$\|u\|_2 = \left(\sum_{i=1}^N u_i^2\right)^{\frac{1}{2}}$$

$$\|u\|_{\infty} = \max_{i} |u_{i}|$$

System definition and properties

Consider systems that are linear, time-invariant, causal, and finite-dimensional.

Time domain: $y = g * u = \int_{-\infty}^{\infty} g(t - \tau)u(\tau)d\tau$. (Causality means that g(t) = 0 for t < 0.)

Frequency domain: $\hat{y} = G\hat{u}$ where G is the Laplace transform of g

G is

- rational by finite-dimensionality, and has real coefficients.
- stable if it is analytic in the closed right half-plane
- proper if $G(j\infty)$ is finite
- *strictly proper* if $G(j\infty) = 0$

Norms for systems

Some norms for the transfer function G

$$||G||_2 = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} |G(j\omega)|^2 d\omega\right)^{\frac{1}{2}}$$
$$||G||_{\infty} = \sup_{\omega} |G(j\omega)|$$

Notice that if G is stable, then $||G||_2 = ||g||_2$ (by Parseval's theorem).

When are they finite? No poles on imaginary axis, and strictly proper/proper for 2-norm and ∞ -norm, respectively.

Input-Output Relationships

 ${\it G}$ stable and strictly proper.

	$u(t) = \delta(t)$	$u(t) = \sin(\omega t)$
$ y _{2}$	$\ G\ _2$	∞
$\ y\ _{\infty}$	$\ g\ _{\infty}$	$ G(j\omega) $

Input-Output Relationships

G stable and strictly proper.

	$ u _{2}$	$\ u\ _{\infty}$
$ y _{2}$	$\ G\ _{\infty}$	∞
$\ y\ _{\infty}$	$ G _{2}$	$\ g\ _{1}$

Entries given by $\sup_{\|u\|_{H} \le 1} \|y\|_{Y}$ - what is such a norm called?

Induced norm

A linear system can be considered as an operator from the input space U to the output space Y. If U and Y are normed linear spaces then the following system norm is said to be induced by the signal norms on U and Y

$$||G|| = \sup_{\|u\|_{II} \le 1} ||Gu||_{Y}.$$

Now we can compare G_1 and G_2 through $||G_1 - G_2||$.

Banach spaces

A complete normed linear space is called Banach space.

Completeness means that there are no holes in the space. (Cauchy sequences converge to a well defined limit within the space)

Hilbert spaces

An *inner product* is a functional \langle , \rangle with the properties

If there is an inner product on X then the norm can be defined as

$$||x|| = \sqrt{\langle x, x \rangle}. (1)$$

A Banach space with inner product and the norm (1) is called Hilbert space.

Remark:

• Existence of the inner product gives an additional nice property of the corresponding norm which makes the space be very similar to \mathbb{R}^n . This property is

$$||x_1 + x_2||^2 + ||x_1 - x_2||^2 = 2(||x_1||^2 + ||x_2||^2).$$

It simplifies drastically the optimization in Hilbert spaces.

Examples: L_2 and L_{∞} spaces.

Example 1: L_2 **space.** Consider the linear space of all matrix-valued functions on $\mathbb R$

$$L_2(\mathbb{R}) = \{F : \int_{\mathbb{R}} \operatorname{tr}[F(t)^* F(t)] dt < +\infty\}.$$

This is the Hilbert space with the inner product

$$\langle F, G \rangle_2 = \int_{\mathbb{R}} \operatorname{tr}[F(t)^* G(t)] dt$$

Example 2: L_{∞} **space.** Consider the linear space of all matrix-valued functions on $\mathbb R$

$$L_{\infty}(\mathbb{R}) = \{F : \operatorname{ess sup} \sigma_{max}[F(t)] < +\infty\}.$$

This is a Banach space with $||F||_{\infty} = \operatorname{ess\ sup}_{t \in \mathbb{R}} \sigma_{\max}[F(t)]$

Choice of U and Y as L_2 .

One of the simplest choices of the input and output spaces is L_2 mainly because it is the Hilbert space. In this case the linear system G is a stable linear operator on $L_2[0,\infty)$

$$G: L_2[0,\infty) \to L_2[0,\infty)$$

and the norm of the linear system is L_2 -induced norm

$$||G|| = \sup_{\|u\|_2 \le 1} ||Gu||_2 = ||G(j\omega)||_{\infty}$$

where G(s) is the transfer function of LTI system (Parseval's relation + Theorem 4.3 in [Zhou+Doyle]).

Stability and Hardy spaces.

Stability is a very important issue in system analysis.

This motivates the introduction of *Hardy spaces*:

Define for
$$p = 2$$
 and $p = \infty$

$$\begin{array}{lcl} H_p &=& \{F\in L_p(j\mathbb{R}): \ F \ \text{is analytic in the right half plane}\}\\ \|F\|_{H_p} &=& \sup_{\sigma>0} \|F(\sigma+j\omega)\|_{L_p}. \end{array}$$

Are these norms easy to compute?

If G is stable, rational and strictly proper, then

$$||G||_p := ||G(j\omega)||_{L_p} = ||G||_{H_p}.$$

Notice that $||G||_2$ is finite if only if G is strictly proper.

 L_2/H_2 norm:

Theorem 1: Let $G(s) = C(sI - A)^{-1}B$ and A is stable matrix. Then

$$||G||_2^2 = \operatorname{tr}(B^*QB) = \operatorname{tr}(CPC^*)$$

where P is controllability and Q is observability Gramian

$$AP + PA^* + BB^* = 0,$$

 $A^*O + OA + C^*C = 0.$

The formula for $\|G\|_2$

The transfer function G(s) is the Laplace transform of the impulse response

$$g(t) = \begin{cases} Ce^{At}B, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

Hence by Parseval's formula

$$||G||_{2}^{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{tr}\{G(i\omega)^{*}G(i\omega)\}d\omega = \int_{0}^{\infty} \operatorname{tr}\{g(t)^{*}g(t)\}dt$$
$$= \int_{0}^{\infty} \operatorname{tr}\{B^{*}e^{A^{*}t}C^{*}Ce^{At}B\}dt = \operatorname{tr}(B^{*}QB)$$

since

$$Q = \int_0^\infty e^{A^*t} C^* C e^{At} dt$$

L_{∞}/H_{∞} norm:

For real-rational plants $||G||_{\infty} < +\infty$ only if G(s) is proper.

The computation is more complicated than for H_2 norm and requires a search.

Theorem 2: Let $G(s) = C(sI - A)^{-1}B + D \in H_{\infty}$. Then $||G||_{\infty} < \gamma$ if and only if

- $oldsymbol{arphi}$ H has no eigenvalues on the imaginary axis

where $R = \gamma^2 I - D^* D$ and

$$H = \begin{pmatrix} A + BR^{-1}D^*C & BR^{-1}B^* \\ -C^*(I + DR^{-1}D^*)C & -(A + BR^{-1}D^*C)^* \end{pmatrix}$$

What have we learned today?

- Robustness as a property of the closed-loop system to have similar behavior for all plants "close" to the nominal one.
- Normed linear space as the main tool to handle "close-far" notion. G_1 is "close" to G_2 $\leftrightarrow \|G_1 G_2\|$ is small.
- ||G|| depends on norms of input and output signal spaces.
- L_2 and L_∞ plus stability gives H_2 and H_∞ . These are the most important spaces in the theory of robust control.
- They are also not very hard to compute H_2 easier, H_∞ harder (needs an iteration).