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Robust Control, 9hp

7 Lectures, 7 exercises

Literature: Essentials of Robust Control, Zhou/Doyle, + Handouts
Tools: Matlab

Schedule and material: see Canvas page

Examination: Exercises + Handins + Exam

Collaboration encouraged on exercises and handins!

Handins are due before the exercise session, email to:
carolina.bergeling@control.lth.se with subject Robust control handin X

Prepare so that you are able to share your solutions to the exercises at the session.
(Take a photo of handwritten notes or typeset)
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Controls education (related to robust control)

Linear Algebra

Control course, basic

Matrix Theory

Multivariable Control

Functional Analysis (for Systems Theory)
Linear Systems

Robust Control
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Lecture 1 - today

@ Why robust control?
@ What the course (and book) is about

@ How to compare systems - Norms and spaces
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Why robust control?

disturbance
other controlled signals

™

System Interconnection

tracking errors

. controlle
reference signals

Figure 1.1: General system interconnection
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Doyle’s counterexample

Background: LQR guarantees 60° phase margin and 6 dB gain margin. Does there exist
similar guarantees for LQG (Kalman filter in the loop)?
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Doyle’s counterexample

Counterexample: Given

Xl_llxl 0u+lw
Xl 10 1 |x 1 1
X1
=11 0 + v,
y=[1 o[ |+v

with Q = qCCT, g >0,R =1, the optimal control and filter gain vectors are given by

L=f[1 1], K:d[}

’

where f =2+ /4+qgandd=2+v4+o0.
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Doyle’s counterexample

Assume u = —mLx, m nominally equals 1. Then stability (as dependent on m) requires

d+f-4+2m-1)df >0
1+1-m)df>0
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Doyle’s counterexample

Assume u = —mlLx, m nominally equals 1. Then stability (as dependent on m) requires

d+f-4+2m-1)df>0
1+1-m)df>0

For sufficiently large f and d (or g and o), the system is unstable for arbitrarily small
perturbations in m in either direction.

Carolina Bergeling Robust Control Lecture 1: introduction, norms and spaces.



What is this course about?

We design a controller C for a mathematical model M and want the corresponding real
process P to behave well.

Problems:

e P#M
@ Even if P = M there is controller implementation errors

Robustness philosophy: The controller C is robust if

p

c ~ Cc (BCr) = (M, C).

@ What does it mean “="? (This lecture)
@ How to check this? — Analysis.
@ How to find the controller? — Synthesis
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What does “=~” mean?

We want to be able to compare different systems. How to do that?

Carolina Bergeling Robust Control Lecture 1: introduction, norms and spaces.



What does “=~” mean?

We want to be able to compare different systems. How to do that?

@ Simpler question, how do you compare the maginitude of a scalar x with a scalar y?
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What does “=~” mean?

We want to be able to compare different systems. How to do that?

@ Simpler question, how do you compare the maginitude of a scalar x with a scalar y?

@ One level up, what if x and y are vectors in R"?
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What does “=~” mean?

We want to be able to compare different systems. How to do that?

@ Simpler question, how do you compare the maginitude of a scalar x with a scalar y?
@ One level up, what if x and y are vectors in R"?

@ Yet another level up, what if x and y are functions of time, i.e., x(#) and y(#)?
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What does “=~” mean?

We want to be able to compare different systems. How to do that?

@ Simpler question, how do you compare the maginitude of a scalar x with a scalar y?
@ One level up, what if x and y are vectors in R"?
@ Yet another level up, what if x and y are functions of time, i.e., x(#) and y(#)?

@ And what if we want to compare a system Gj to another system G»?
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What does “=~” mean?

We want to be able to compare different systems. How to do that?

@ Simpler question, how do you compare the maginitude of a scalar x with a scalar y?
@ One level up, what if x and y are vectors in R"?
@ Yet another level up, what if x and y are functions of time, i.e., x(#) and y(#)?

@ And what if we want to compare a system Gj to another system G»?

Dream: To use intuition from R” in more general situations
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Linear (or vector) space

Consider a set X = {x} and F =R or C with two operations +: X x X — X and -: F x X — X.
Then X is a linear space if

X1+ X2 = Xp + X1

(x1 4+ x2) + x3=x71 + (X2 + X3).

JF0€ X suchthat x+0=x Vx € X.

Vx € X 3(—x) € X such that x+ (—x) =0.

A+ A2)x =1 x + A2x.

Alx1+x2) = Ax1 + Axo.

A1 (A2x) = (A1A2) x.

lx=x.

©00000O0CO
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Linear (or vector) space

Consider a set X = {x} and F =R or C with two operations +: X x X — X and -: F x X — X.
Then X is a linear space if

X1+ X2 = Xp + X1

(x1 4+ x2) + x3=x71 + (X2 + X3).

JF0€ X suchthat x+0=x Vx € X.

Vx € X 3(—x) € X such that x+ (—x) =0.
A+ A2)x =1 x + A2x.

Example 1: R" or C"
Example 2: functions from
any field Qto F
f+e®=f®)+g)

©00000O0CO

Alxy + x2) = Axp + Axp. A-2=A-g(1
M (A2x) = (A1 A2)x.
lx=x.
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The space of linear systems

Denote by £ the set of all linear systems. It becomes the linear space with the following
natural definition of + and -

»yi = G]_ u,

v = Gou = (G1+Gu=y1+y»,

y=Gu = (AG)u=A2y.
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The space of linear systems

Denote by £ the set of all linear systems. It becomes the linear space with the following
natural definition of + and -

»yi = G]_ u,

v = Gou = (G1+Gu=y1+y»,

y=Gu = (AG)u=A2y.

Only algebraic linearity is rather poor generalization of R”. What about the distance
between two linear systems? What does it mean

G1 =~ Gg?
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Normed linear space

A linear space X is called normed if every vector x € X has an associated real number | x||
— its “length”, called the norm of the vector x, — with the following properties

Q lx|=0and |x||=0< x=0.
Q [Axll=IAllxIl.

Q lIx1+x2ll = llx1ll + llx2l.

Now we can say that x; = Xy if || X2 — x1 1| is small.
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Normed linear space

A linear space X is called normed if every vector x € X has an associated real number | x||
— its “length”, called the norm of the vector x, — with the following properties

Q lx|=0and |x||=0< x=0.
Q [Axll=IAllxIl.

Q lIx1+x2ll = llx1ll + llx2l.

Now we can say that x; = Xy if || X2 — x1 1| is small.
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Norms for signals

Consider signals mapping (—oo,00) to R (piecewise continuous)
Some norms for a signal u(1)

Il =f lu(n)ldt

—00

Nl = (f u(t)zdt)z

lulloo = sup |u(1)]
t
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Norms for signals

Consider signals mapping (—o00,00) to R (piecewise continuous)

Reminder: For u € RN

N
> luil
i=1

Some norms for a signal u(t)

llelly

f lu(t)ldt Izl

—00

1
2

1
futz = [~ utw?as] o= (32
i=1

lulloo = sup |u(2)]
t | ulloo = max |u;]
l
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System definition and properties

Consider systems that are linear, time-invariant, causal, and finite-dimensional.
Time domain: y=g*u= ffzo g(t—7)u(r)dr. (Causality means that g(¢) =0 for £ <0.)
Frequency domain: y = GiI where G is the Laplace transform of g
Gis
@ rational by finite-dimensionality, and has real coefficients.
@ stable if it is analytic in the closed right half-plane
@ proper if G(joo) is finite
o strictly proper if G(joo) =0
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Norms for systems

Some norms for the transfer function G

Gl —(ifoom(' )2d )5
2= 27 J—oo J @

IGlloo = sup |G(jw)|
w

Notice that if G is stable, then ||Gll2 = l|gll2 (by Parseval’s theorem).

When are they finite? No poles on imaginary axis, and strictly proper/proper for 2-norm
and oco-norm, respectively.
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Input-Output Relationships

G stable and strictly proper.

u(t) =0(t) | u(t) =sin(wt)
lyll2 G2 00
l¥lloo l18lloo |G(jw)]

Carolina Bergeling
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Input-Output Relationships

G stable and strictly proper.

lulz | Nl
Iyllz | 1Gllos | o0
I¥llo | I1Gll2 | lIglh

Entries given by supj,, <1 |l ¥lly - what is such a norm called?
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Induced norm

A linear system can be considered as an operator from the input space U to the output
space Y. If U and Y are normed linear spaces then the following system norm is said to be
induced by the signal normson U and Y

IGll = sup [Guly.

luly=1

Now we can compare G; and Gy through |Gy — G-
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Banach spaces

A complete normed linear space is called Banach space.

Completeness means that there are no holes in the space. (Cauchy sequences converge to
a well defined limit within the space)
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Hilbert spaces

An inner product is a functional {,) with the properties

Q@ (x,x)=0and (x,x) =0iff x=0.
Q (x1,x2) = (x2, x1).

Q (x1+x2,x3) = (X1, X3) + (X2, X3).
Q (Axy, x2) = A{x1, X2).

If there is an inner product on X then the norm can be defined as
llxll = v/{x, x). (1)

A Banach space with inner product and the norm (1) is called Hilbert space.
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Remark:

@ Existence of the inner product gives an additional nice property of the corresponding
norm which makes the space be very similar to R”. This property is

2 2 2 2
21 + 22017 + ll2en = 22017 = 21 21 17 + 1 x2117).

It simplifies drastically the optimization in Hilbert spaces.
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Examples: L, and L., spaces.

Example 1: L, space. Consider the linear space of all matrix-valued functions on R
Ly(R) ={F : f tr[F(0)*F(1)] dt < +oo}.
R
This is the Hilbert space with the inner product
(F,G)2 =ftr[F(t)*G(t)]dt
R
Example 2: L, space. Consider the linear space of all matrix-valued functions on R

Loo(R) ={F : eSS sup o qax[F(1)] < +o0}.

This is a Banach space with || F||oo = €SS SUpP ;cg Omax[F ()]
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Choice of U and Y as L,.

One of the simplest choices of the input and output spaces is Ly mainly because it is the
Hilbert space. In this case the linear system G is a stable linear operator on L;[0,00)

G: L2[0,00) — L2[0,00)
and the norm of the linear system is L-induced norm

Gl = sup [IGullz=1G(jw)lo

lul2=<1

where G(s) is the transfer function of LTI system (Parseval’s relation + Theorem 4.3 in
[Zhou+Doyle]).
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Stability and Hardy spaces.

Stability is a very important issue in system analysis.
This motivates the introduction of Hardy spaces:
Define for p=2 and p =oco

H, = {FeLy(jR): Fisanalyticin the right half plane}
Il

sup||F(o + jo)l L,
g>0
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Are these norms easy to compute?

If G is stable, rational and strictly proper, then
IGllp =G L, =1GllH,-

Notice that ||G||; is finite if only if G is strictly proper.

Lo/H> norm:
Theorem 1: Let G(s) = C(sI — A)_IB and A is stable matrix. Then

IGI5 = tr(B*QB) = tr(CPC*)

where P is controllability and Q is observability Gramian

AP+ PA* + BB* 0,
A*Q+QA+C*C
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The formula for |G|,

The transfer function G(s) is the Laplace transform of the impulse response

Cet'B, t=0
g =
0, t<0

Hence by Parseval’s formula

G113

i[oo tr{G(iw)*G(iw)}dw:footr{g(t)*g(t)}dt
27 J-o 0

o0
f tr{B*e 'C*Ce ' Bidt = tr(B* QB)
0
since

(XD *
Q = f eVicrcetdr
0
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Loo/Hy norm:
For real-rational plants |G|« < +00 only if G(s) is proper.
The computation is more complicated than for H, norm and requires a search.
Theorem 2: Let G(s) = C(s] — A)_IB+D € Hy. Then ||Glloo <7y if and only if
Q omax(D) <7,
@ H has no eigenvalues on the imaginary axis
where R = yzl— D*D and

e A+BR™'D*C BR™'B*
“ | -C*U+DR'D")C -(A+BR'D*(O)*
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What have we learned today?

@ Robustness as a property of the closed-loop system to have similar behavior for all
plants “close” to the nominal one.

@ Normed linear space as the main tool to handle “close-far” notion. Gj is “close” to G»
<~ |G — Gzl is small.

@ |G|l depends on norms of input and output signal spaces.

@ L, and L, plus stability gives H» and H,,. These are the most important spaces in
the theory of robust control.

@ They are also not very hard to compute — H» easier, Hy, harder (needs an iteration).
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